[1]

Li YN. 1999. An investigation and studies on the origin and evolution of Malus domestica Borkh. in the World. Acta Horticulturae Sinica 26:213−220

[2]

Chen XS, Mao ZQ, Wang N, Zhang ZY, Xu YH. 2020. Red meat and red skin apples contribute to industrial revitalization and the construction of a healthy China. Fruit Growers' Friend 10:1−2 (in Chinese)

[3]

Food and Agriculture Organization of the United Nations. Crops and livestock products. www.fao.org/faostat/en/#data/QCL (accessed on 5 August 2024)

[4]

Bondonno NP, Bondonno CP, Ward NC, Hodgson JM, Croft KD. 2017. The cardiovascular health benefits of apples: whole fruit vs. isolated compounds. Trends in Food Science & Technology 69:243−256

doi: 10.1016/j.jpgs.2017.04.012
[5]

Zhu X, Xu G, Jin W, Gu Y, Huang X, et al. 2021. Apple or apple polyphenol consumption improves cardiovascular disease risk factors: a systematic review and meta-analysis. Reviews in Cardiovascular Medicine 22:835−843

doi: 10.31083/j.rcm2203089
[6]

Wang YX, Wang XJ, Cao Y, Zhong MS, Zhang J, et al. 2022. Chemical composition and morphology of apple cuticular wax during fruit growth and development. Fruit Research 2:5

doi: 10.48130/frures-2022-0005
[7]

Asma U, Morozova K, Ferrentino G, Scampicchio M. 2023. Apples and apple by-products: antioxidant properties and food applications. Antioxidants 12(7):1456

doi: 10.3390/antiox12071456
[8]

Nezbedova L, McGhie T, Christensen M, Heyes J, Nasef NA, et al. 2021. Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients 13:4025

doi: 10.3390/nu13114025
[9]

Janick J. 1974. The apple in Java. HortScience 9:13−15

doi: 10.21273/hortsci.9.1.13
[10]

Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, et al. 2019. A multifaceted overview of apple tree domestication. Trends in Plant Science 24(8):770−782

doi: 10.1016/j.tplants.2019.05.007
[11]

Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P. 2014. The domestication and evolutionary ecology of apples. Trends in Genetics 30(2):57−65

doi: 10.1016/j.tig.2013.10.002
[12]

Duan N, Bai Y, Sun H, Wang N, Ma Y, et al. 2017. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications 8:249

doi: 10.1038/s41467-017-00336-7
[13]

Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics 52(12):1423−1432

doi: 10.1038/s41588-020-00723-9
[14]

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics 42:833−839

doi: 10.1038/ng.654
[15]

Khoury C, Laliberté B, Guarino L. 2010. Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genetic Resources and Crop Evolution 57:625−639

doi: 10.1007/s10722-010-9534-z
[16]

Zhang Y, Cao YF, Huo HL, Xu JY, Tian LM, et al. 2022. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits. Journal of Integrative Agriculture 21(8):2275−2290

doi: 10.1016/S2095-3119(21)63885-6
[17]

Cheng CH, Tang Q, Deng CH, Dai ZG, Xu Y, et al. 2020. Application of Phenomics and Multiomics Joint Analysis in Accurate Identification of Plant Germplasm Resources. Molecular Plant Breeding 18(8):2747−2753 (in Chinese)

doi: 10.13271/j.mpb.018.002747
[18]

Gao Y, Wang K, Wang DJ, Liu L J, Li LW, et al. 2019. Genetic Diversity and Genetic Structure of Malus baccata and Malus prunifolia from China as Revealed by Fluorescent SSR Markers. Acta Horticulturae Sinica 46(7):1225−1237 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2018-0631
[19]

Gao Y, Wang D, Wang K, Cong P, Zhang C, et al. 2020. Genetic Diversity of Malus prunifolia Germplasms Based on Chloroplast DNA Analysis. Acta Horticulturae Sinica 47(5):853−863 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-0609
[20]

Reim S, Lochschmidt F, Proft A, Höfer M. 2020. Genetic integrity is still maintained in natural populations of the indigenous wild apple species Malus sylvestris (Mill.) in Saxony as demonstrated with nuclear SSR and chloroplast DNA markers. Ecology and Evolution 10(20):11798−11809

doi: 10.1002/ece3.6818
[21]

Ha YH, Oh SH, Lee SR. 2021. Genetic admixture in the population of wild apple (Malus sieversii) from the Tien Shan Mountains, Kazakhstan. Genes 12:104

doi: 10.3390/genes12010104
[22]

Zhou T, Fan J, Zhao M, Zhang D, Li Q, et al. 2019. Phenotypic variation of floral organs in Malus using frequency distribution functions. BMC Plant Biology 19:574

doi: 10.1186/s12870-019-2155-6
[23]

Zhou T, Ning K, Zhang W, Chen H, Lu X, et al. 2021. Phenotypic variation of floral organs in flowering crabapples and its taxonomic significance. BMC Plant Biology 21:503

doi: 10.1186/s12870-021-03227-8
[24]

Moradi Y, Khadivi A, Mirheidari F. 2022. Multivariate analysis of oriental apple (Malus orientalis Uglitzk.) based on phenotypic and pomological characterizations. Food Science & Nutrition 10(8):2532−2541

doi: 10.1002/fsn3.2858
[25]

Guan H, Huang B, Yan X, Zhao J, Yang S, et al. 2024. Identification of distinct roses suitable for future breeding by phenotypic and genotypic evaluations of 192 rose germplasms. Horticulture Advances 2:5

doi: 10.1007/s44281-023-00024-1
[26]

Chagné D, Dayatilake D, Diack R, Oliver M, Ireland H, et al. 2014. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Horticulture Research 1:14046

doi: 10.1038/hortres.2014.46
[27]

Nie JY. 2009. Analytical techniques of fruit quality and safety. Beijing: Chemical Industry Press. pp. 18−38

[28]

Wang K, Liu FZ, Cao YF. 2005, Descriptors and data standard for apple (Malus spp. Mill. ). Beijing: China Agriculture Press. pp. 8−26

[29]

Wang LR, Zhu GR, Fang WC. 2006. The evaluation criteria of some botanical quantitative characters of peach genetic resources. Agricultural Sciences in China 5:905−910

doi: 10.1016/s1671-2927(07)60003-0
[30]

Shang HY, Pu J, Ke HF, Gu QS, Sun ZW. 2024. Genetic diversity analysis and evaluation of domestic and international cotton germplasm resources under different planting environments. Acta Agronomica Sinica 50:2528−2537

doi: 10.3724/SP.J.1006.2024.44012
[31]

Mertoğlu K, Akkurt E, Evrenosoğlu Y, Çolak AM, Esatbeyoglu T. 2022. Horticultural characteristics of summer apple cultivars from Turkey. Plants 11(6):771

doi: 10.3390/plants11060771
[32]

Li YN. 2001. Researches of germplasm resources of Malus Mill. Beijing: China Agriculture Press. pp. 1−19

[33]

Liao L, Zhang W, Zhang B, Fang T, Wang XF, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14(9):1454−1471

doi: 10.1016/j.molp.2021.05.018
[34]

Lin Q, Chen J, Liu X, Wang B, Zhao Y, et al. 2023. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biology 24:95

doi: 10.1186/s13059-023-02945-6
[35]

Zhang W. 2023. Genomics analyses on the population diversity, quality domestication and improvement in apple. PhD. Thesis. Huazhong Agricultural University, China. pp. 29−48

[36]

Sakina A, Alkan C, Khan A. 2025. Population-level gene copy number variations reveal distinct genetic properties of different Malus species. BMC Genomics 26:687

doi: 10.1186/s12864-025-11677-9
[37]

Su Y, Yang X, Wang Y, Li J, Long Q, et al. 2024. Phased telomere-to-telomere reference genome and pangenome reveal an expansion of resistance genes during apple domestication. Plant Physiology 195(4):2799−2814

doi: 10.1093/plphys/kiae258
[38]

Wang C, Wang T, Zhang T, Song H, Shan D, et al. 2025. Domestication-selected promoter insertion in WRKY17 increases cadmium sensitivity in apple. Plant Biotechnology Journal 2025:1−19

doi: 10.1111/pbi.70376
[39]

Li Z, Sun S, Wang L, Tian W, Sun Y, et al. 2024. Genetic diversity analysis of apple germplasm resources based on phenotypic traits. Horticulturae 10(12):1318

doi: 10.3390/horticulturae10121318
[40]

Shen SY, Wang ZQ, Zhang Q, Yang J, Han F, et al. 2023. Analysis of fruit quality and sensory evaluation of 36 kiwifruit (Actinidia) germplasm accessions. Plant Science Journal 41(4):540−551 (in Chinese)

doi: 10.11913/PSJ.2095-0837.22300
[41]

Geleta BT, Abebe AM, Heo JY. 2025. Effect of genotype  × Environment interactions on apple fruit characteristics in aHigh latitude region of Korea. Applied Fruit Science 67:14

doi: 10.1007/s10341-024-01243-0
[42]

Zhang XC, Ren HL, Tang SM, Zhu L, Zhang SJ, et al. 2021. Genetic Diversity Analysis of Phenotypic Traits in 160 Germplasm Resources of Malus sieversii from Tianshan in Ili. Journal of Plant Genetic Resources 22(6):1521−1530 (in Chinese)

doi: 10.13430/j.cnki.jpgr.20210415002