[1]
|
Fincham WNW, Redhead JW, Woodcock BA, Pywell RF. 2022. Exploring drivers of within-field crop yield variation using a national precision yield network. Journal of Applied Ecology 60:319−29 doi: 10.1111/1365-2664.14323
CrossRef Google Scholar
|
[2]
|
Echer FR, Cordeiro CFDS, de la Torre ERJ. 2020. The effects of nitrogen, phosphorus, and potassium levels on the yield and fiber quality of cotton cultivars. Journal of Plant Nutrition 43:921−32 doi: 10.1080/01904167.2019.1702204
CrossRef Google Scholar
|
[3]
|
Liao Z, Zeng H, Fan J, Lai Z, Zhang C, et al. 2022. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management 268:107688 doi: 10.1016/j.agwat.2022.107688
CrossRef Google Scholar
|
[4]
|
Uçgun K, Altindal M. 2021. Effects of increasing doses of nitrogen, phosphorus, and potassium on the uptake of other nutrients in sweet cherry trees. Communications in Soil Science and Plant Analysis 52:1248−55 doi: 10.1080/00103624.2021.1879122
CrossRef Google Scholar
|
[5]
|
DalCorso G, Manara A, Piasentin S, Furini A. 2014. Nutrient metal elements in plants. Metallomics 6:1770−88 doi: 10.1039/C4MT00173G
CrossRef Google Scholar
|
[6]
|
Ho LC, White PJ. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany 95:571−81 doi: 10.1093/aob/mci065
CrossRef Google Scholar
|
[7]
|
Torres E, Recasens I, Lordan J, Alegre S. 2017. Combination of strategies to supply calcium and reduce bitter pit in 'Golden Delicious' apples. Scientia Horticulturae 217:179−88 doi: 10.1016/j.scienta.2017.01.028
CrossRef Google Scholar
|
[8]
|
Tanoi K, Kobayashi NI. 2015. Leaf Senescence by magnesium deficiency. Plants 4:756−72 doi: 10.3390/plants4040756
CrossRef Google Scholar
|
[9]
|
Xie R, Zhao J, Lu L, Ge J, Brown PH, et al. 2019. Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. Plant, Cell & Environment 42:3167−81 doi: 10.1111/pce.13621
CrossRef Google Scholar
|
[10]
|
Huang S, Wang P, Yamaji N, Ma J. 2020. Plant nutrition for human nutrition: hints from rice research and future perspectives. Molecular Plant 13:825−35 doi: 10.1016/j.molp.2020.05.007
CrossRef Google Scholar
|
[11]
|
Thor K. 2019. Calcium-nutrient and messenger. Frontiers in Plant Science 10:440 doi: 10.3389/fpls.2019.00440
CrossRef Google Scholar
|
[12]
|
White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92:487−511 doi: 10.1093/aob/mcg164
CrossRef Google Scholar
|
[13]
|
Montanaro G, Dichio B, Xiloyannis C. 2010. Significance of fruit transpiration on calcium nutrition in developing apricot fruit. Journal of Plant Nutrition and Soil Science 173:618−22 doi: 10.1002/jpln.200900376
CrossRef Google Scholar
|
[14]
|
Hocking B, Tyerman SD, Burton RA, Gilliham M. 2016. Fruit calcium: transport and physiology. Frontiers in Plant Science 7:569 doi: 10.3389/fpls.2016.00569
CrossRef Google Scholar
|
[15]
|
Torres E, Alegre S, Recasens I, Asín L, Lordan J. 2021. Integral procedure to predict bitter pit in 'Golden Smoothee' apples based on calcium content and symptom induction. Scientia Horticulturae 277:109829 doi: 10.1016/j.scienta.2020.109829
CrossRef Google Scholar
|
[16]
|
Schlegel TK, Schönherr J. 2002. Stage of development affects penetration of calcium chloride into apple fruits. Journal of Plant Nutrition and Soil Science 165:738−45 doi: 10.1002/jpln.200290012
CrossRef Google Scholar
|
[17]
|
Sun C, Zhang W, Qu H, Yan L, Li L, et al. 2022. Comparative physiological and transcriptomic analysis reveal MdWRKY75 associated with sucrose accumulation in postharvest 'Honeycrisp' apples with bitter pit. BMC Plant Biology 22:71 doi: 10.1186/s12870-022-03453-8
CrossRef Google Scholar
|
[18]
|
Val J, Monge E, Risco D, Blanco A. 2008. Effect of pre-harvest calcium sprays on calcium concentrations in the skin and flesh of apples. Journal of Plant Nutrition 31:1889−905 doi: 10.1080/01904160802402757
CrossRef Google Scholar
|
[19]
|
Yu X, Wang J, Nie P, Xue X, Wang G, et al. 2018. Control efficacy of Ca-containing foliar fertilizers on bitter pit in bagged 'Fuji' apple and effects on the Ca and N contents of apple fruits and leaves. Journal of the Science of Food and Agriculture 98:5435−43 doi: 10.1002/jsfa.9087
CrossRef Google Scholar
|
[20]
|
Chardonnet CO, Charron CS, Sams CE, Conway WS. 2003. Chemical changes in the cortical tissue and cell walls of calcium-infiltrated 'Golden Delicious' apples during storage. Postharvest Biology and Technology 28:97−111 doi: 10.1016/S0925-5214(02)00139-4
CrossRef Google Scholar
|
[21]
|
Raliya R, Saharan V, Dimkpa C, Biswas P. 2018. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66:6487−503 doi: 10.1021/acs.jafc.7b02178
CrossRef Google Scholar
|
[22]
|
de Freitas ST, do Amarante CVT, Mitcham EJ. 2015. Mechanisms regulating apple cultivar susceptibility to bitter pit. Scientia Horticulturae 186:54−60 doi: 10.1016/j.scienta.2015.01.039
CrossRef Google Scholar
|
[23]
|
Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15:15−22 doi: 10.1007/s10311-016-0600-4
CrossRef Google Scholar
|
[24]
|
Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514:131−39 doi: 10.1016/j.scitotenv.2015.01.104
CrossRef Google Scholar
|
[25]
|
Guleria G, Thakur S, Shandilya M, Sharma S, Thakur S, et al. 2023. Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry 194:533−49 doi: 10.1016/j.plaphy.2022.12.004
CrossRef Google Scholar
|
[26]
|
Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V. 2021. Nanofertilizers for sustainable fruit production: a review. Environmental Chemistry Letters 19:1693−714 doi: 10.1007/s10311-020-01125-3
CrossRef Google Scholar
|
[27]
|
Liu X, Zhang F, Zhang S, He X, Wang R, et al. 2005. Responses of peanut to Nano-calcium carbonate. Plant Nutrition and Fertilizer Science 11:385−89 doi: 10.3321/j.issn:1008-505X.2005.03.017
CrossRef Google Scholar
|
[28]
|
Feil SB, Rodegher G, Gaiotti F, Alzate Zuluaga MY, Carmona FJ, et al. 2021. Physiological and molecular investigation of urea uptake dynamics in Cucumis sativus L plants fertilized with urea-doped amorphous calcium phosphate nanoparticles. Frontiers in Plant Science 12:745581 doi: 10.3389/fpls.2021.745581
CrossRef Google Scholar
|
[29]
|
An J, Zhang X, Bi S, You C, Wang X, et al. 2019. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytologist 222:735−51 doi: 10.1111/nph.15628
CrossRef Google Scholar
|
[30]
|
Wang X, Zhang J, Wang X, An J, You C, et al. 2022. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Horticultural Plant Journal 8:22−34 doi: 10.1016/j.hpj.2021.11.005
CrossRef Google Scholar
|
[31]
|
Wei K, Ma C, Sun K, Liu Q, Zhao N, et al. 2020. Relationship between optical properties and soluble sugar contents of apple flesh during storage. Postharvest Biology and Technology 159:111021 doi: 10.1016/j.postharvbio.2019.111021
CrossRef Google Scholar
|
[32]
|
Hu H, Brown PH. 1994. Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiology 105:681−89 doi: 10.1104/pp.105.2.681
CrossRef Google Scholar
|
[33]
|
Wang H, Wang J, Mujumdar AS, Jin X, Liu Z, et al. 2021. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids 118:106808 doi: 10.1016/j.foodhyd.2021.106808
CrossRef Google Scholar
|
[34]
|
Taylor KA, Buchanan-Smith JG. 1992. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Analytical Biochemistry 201:190−96 doi: 10.1016/0003-2697(92)90194-C
CrossRef Google Scholar
|
[35]
|
White PJ. 2001. The pathways of calcium movement to the xylem. Journal of Experimental Botany 52:891−99 doi: 10.1093/jexbot/52.358.891
CrossRef Google Scholar
|
[36]
|
Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, et al. 2002. Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. The Plant Journal 32:799−808 doi: 10.1046/j.1365-313X.2002.01467.x
CrossRef Google Scholar
|
[37]
|
Yong J, Zhang R, Bi S, Li P, Sun L, et al. 2021. Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiology 187:886−99 doi: 10.1093/plphys/kiab303
CrossRef Google Scholar
|
[38]
|
Liu C, Cao W, Lu Y, Huang H, Chen L, et al. 2009. Cerium under calcium deficiency—influence on the antioxidative defense system in spinach plants. Plant and Soil 323:285−94 doi: 10.1007/s11104-009-9937-9
CrossRef Google Scholar
|
[39]
|
Mohebbi S, Babalar M, Zamani Z, Askari MA. 2020. Influence of early season boron spraying and postharvest calcium dip treatment on cell-wall degrading enzymes and fruit firmness in 'Starking Delicious' apple during storage. Scientia Horticulturae 259:108822 doi: 10.1016/j.scienta.2019.108822
CrossRef Google Scholar
|
[40]
|
Ciccarese A, Stellacci AM, Gentilesco G, Rubino P. 2013. Effectiveness of pre- and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biology and Technology 75:135−41 doi: 10.1016/j.postharvbio.2012.08.010
CrossRef Google Scholar
|
[41]
|
Ranjbar S, Rahemi M, Ramezanian A. 2018. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv Red Delicious. Scientia Horticulturae 240:57−64 doi: 10.1016/j.scienta.2018.05.035
CrossRef Google Scholar
|
[42]
|
Balic I, Ejsmentewicz T, Sanhueza D, Silva C, Peredo T, et al. 2014. Biochemical and physiological study of the firmness of table grape berries. Postharvest Biology and Technology 93:15−23 doi: 10.1016/j.postharvbio.2014.02.001
CrossRef Google Scholar
|
[43]
|
Hou J, Riaz M, Yan L, Lu K, Jiang C. 2022. Effect of exogenous l-aspartate nano-calcium on root growth, calcium forms and cell wall metabolism of Brassica napus L. NanoImpact 27:100415 doi: 10.1016/j.impact.2022.100415
CrossRef Google Scholar
|
[44]
|
Zhu M, Yu J, Wang R, Zeng Y, Kang L, et al. 2023. Nano-calcium alleviates the cracking of nectarine fruit and improves fruit quality. Plant Physiology and Biochemistry 196:370−80 doi: 10.1016/j.plaphy.2023.01.058
CrossRef Google Scholar
|