[1]
|
Li B, Gao K, Ren H, Tang W. 2018. Molecular mechanisms governing plant responses to high temperatures. Journal of Integrate Plant Biology 60:757−79 doi: 10.1111/jipb.12701
CrossRef Google Scholar
|
[2]
|
FAO. 2017. Fruit and vegetables for health initiative. pp 1−8. http://www.fao.org/3/a-i6807e.pdf.
|
[3]
|
Harfouche A, Meilan R, Altman A. 2014. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology 34:1181−98 doi: 10.1093/treephys/tpu012
CrossRef Google Scholar
|
[4]
|
Herbette S, Roeckel-Drevet P, Drevet JR. 2007. Seleno-independent glutathione peroxidases: more than simple antioxidant scavengers. The FEBS Journal 274:2163−80 doi: 10.1111/j.1742-4658.2007.05774.x
CrossRef Google Scholar
|
[5]
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. 2021. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiologia Plantarum 172:1106−32 doi: 10.1111/ppl.13328
CrossRef Google Scholar
|
[6]
|
Wolters H, Jürgens G. 2009. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics 10:305−17 doi: 10.1038/nrg2558
CrossRef Google Scholar
|
[7]
|
Liu Y, Huang W, Zhang J. 2006. Effect of heat acclimation and SA pretreat on the ultrastructure of mesophyll cell in grape plants under heat shock. Acta Horticulturae Sinica 3:491−95 doi: 10.3321/j.issn:0513-353X.2006.03.007
CrossRef Google Scholar
|
[8]
|
Liu D, Zhang D, Liu G, Hussain S, Teng Y. 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). Journal of Zhejiang University SCIENCE B 14:1070−83 doi: 10.1631/jzus.B1300094
CrossRef Google Scholar
|
[9]
|
Ye Z, Du J, Su M, Li L, Zhang S. 2010. Effects of high temperature on the microsporogenesis and pollen development of peach. Acta Horticulturae Sinica 37:355−62
Google Scholar
|
[10]
|
Li Y, Li L, Chen X, Ye B, Gao D. 2011. Effects of high temperature on the anther and pollen development of sweet cherry in solar greenhouse. Acta Horticulturae Sinica 38:1029−36
Google Scholar
|
[11]
|
Chen L, Li P, Cheng L. 2009. Comparison of thermotolerance of sun-exposed peel and shaded peel of 'Fuji' apple. Environmental and Experimental Botany 66:110−16 doi: 10.1016/j.envexpbot.2008.12.017
CrossRef Google Scholar
|
[12]
|
Olivares-Soto H, Bastías RM, Calderón-Orellana A, López MD. 2020. Sunburn control by nets differentially affects the antioxidant properties of fruit peel in 'Gala' and 'Fuji' apples. Horticulture, Environment, and Biotechnology 61:241−54 doi: 10.1007/s13580-020-00226-w
CrossRef Google Scholar
|
[13]
|
Schrader LE, Kahn C, Elfving DC. 2009. Sunburn browning decreases at-harvest internal fruit quality of apples (Malus domestica Borkh.). International Journal of Fruit Science 9:425−37 doi: 10.1080/15538360903378781
CrossRef Google Scholar
|
[14]
|
Hao Y. 2004. Study on the mechanism of sunburn development and the resistance to photo-oxidation in apple peel. Thesis. China Agricultural University, CN. pp. 17−19.
|
[15]
|
Krasnow MN, Matthews MA, Smith RJ, Benz J, Weber E, et al. 2010. Distinctive symptoms differentiate four common types of berry shrivel disorder in grape. California Agriculture 64:155−59 doi: 10.3733/ca.v064n03p155
CrossRef Google Scholar
|
[16]
|
Gambetta JM, Holzafel BP, Stoll M, Friedel M. 2021. Sunburn in grapes: a review. Frontiers in Plant Science 11:604691 doi: 10.3389/fpls.2020.604691
CrossRef Google Scholar
|
[17]
|
Schrader L, Sun J, Zhang J, Felicetti D, Tian J. 2008. Heat and light-induced apple skin disorders: causes and prevention. Acta Horticulturae 772:51−58 doi: 10.17660/actahortic.2008.772.5
CrossRef Google Scholar
|
[18]
|
Xie Z, Bhaskar. 2018. Impacts of sunburn on the anatomical structure and quality of chardonnay grape berry. Acta Botanica Boreali-Occidentalia Sinica 38:68−76 doi: 10.7606/j.issn.1000-4025.2018.01.0068
CrossRef Google Scholar
|
[19]
|
Man P, Wang C, Li Z, Jiang Z, Yang H, et al. 2015. High-temperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in red-fleshed Actinidia chinensis. Physiologia Plantarum 153:565−83 doi: 10.1111/ppl.12263
CrossRef Google Scholar
|
[20]
|
Lecourieux F, Kappel C, Pieri P, Charon J, Pillet J, et al. 2017. Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Frontiers in Plant Science 8:53 doi: 10.3389/fpls.2017.00053
CrossRef Google Scholar
|
[21]
|
Nawaz R, Abbasi NA, Hafiz IA, Khalid A. 2020. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environmental and Experimental Botany 171:103936 doi: 10.1016/j.envexpbot.2019.103936
CrossRef Google Scholar
|
[22]
|
Yan Y, Song C, Falginella L, Castellarin SD. 2020. Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in 'Merlot' (Vitis vinifera L.) grapes during ripening. Frontiers in Plant Science 11:1095 doi: 10.3389/fpls.2020.01095
CrossRef Google Scholar
|
[23]
|
Fang H, Dong Y, Yue X, Chen X, He N, et al. 2019. MdCOL4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple. Plant and Cell Physiology 60:1055−66 doi: 10.1093/pcp/pcz023
CrossRef Google Scholar
|
[24]
|
Li Y, Cui W, Qi X, Lin M, Qiao C, et al. 2020. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). Plant Science 296:110476 doi: 10.1016/j.plantsci.2020.110476
CrossRef Google Scholar
|
[25]
|
de Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, van Staden J. 2004. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology 161:1211−24 doi: 10.1016/j.jplph.2004.01.014
CrossRef Google Scholar
|
[26]
|
Chen L, Li P, Cheng L. 2008. Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta 228:745−56 doi: 10.1007/s00425-008-0776-3
CrossRef Google Scholar
|
[27]
|
Luo H, Ma L, Xi H, Duan W, Li S, et al. 2011. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS ONE 6:e23033 doi: 10.1371/journal.pone.0023033
CrossRef Google Scholar
|
[28]
|
Chen L, Cheng L. 2009. Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. Photosynthetica 47:112−20 doi: 10.1007/s11099-009-0017-4
CrossRef Google Scholar
|
[29]
|
de Las Rivas J, Barber J. 1997. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry 36:8897−903 doi: 10.1021/bi970684w
CrossRef Google Scholar
|
[30]
|
Ji W, Qiu C, Jiao Y, Guo Y, Teng Y. 2012. Effects of high temperature and strong light on photosynthesis, D1 protein, and the Deg1 protease in pear (Pyrus pyrifolia) leaves. Journal of Fruit Science 29:794−99
Google Scholar
|
[31]
|
Gao Y, Zheng W, Zhang C, Zhang L, Xu K. 2019. High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Scientia Horticulturae 248:132−37 doi: 10.1016/j.scienta.2019.01.007
CrossRef Google Scholar
|
[32]
|
Yamada M, Hidaka T, Fukamachi H. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae 67:39−48 doi: 10.1016/S0304-4238(96)00931-4
CrossRef Google Scholar
|
[33]
|
Xu H, Liu G, Liu G, Yan B, Duan W, et al. 2014. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biology 14:156 doi: 10.1186/1471-2229-14-156
CrossRef Google Scholar
|
[34]
|
Sakamoto A, Murata N. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment 25:163−71 doi: 10.1046/j.0016-8025.2001.00790.x
CrossRef Google Scholar
|
[35]
|
Sairam RK, Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86:407−21
Google Scholar
|
[36]
|
Nishad A, Nandi AK. 2021. Recent advances in plant thermomemory. Plant Cell Reports 40:19−27 doi: 10.1007/s00299-020-02604-1
CrossRef Google Scholar
|
[37]
|
Chen M, Jiang Q, Yin X, Lin Q, Chen J, et al. 2012. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae 147:118−25 doi: 10.1016/j.scienta.2012.09.011
CrossRef Google Scholar
|
[38]
|
Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, et al. 2009. Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment. Journal of Experimental Botany 60:4315−33 doi: 10.1093/jxb/erp267
CrossRef Google Scholar
|
[39]
|
Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C, et al. 2012. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant and Cell Physiology 53:1776−92 doi: 10.1093/pcp/pcs121
CrossRef Google Scholar
|
[40]
|
Jin J, Yang L, Fan D, Hao Q. 2018. Effects of high temperature stress physiological characteristics on jujube seedlings. Xinjiang Agricultural Sciences 55:439−47
Google Scholar
|
[41]
|
Vuletić MV, Mihaljević I, Tomaš V, Horvat D, Zdunić Z, et al. 2022. Physiological response to short-term heat stress in the leaves of traditional and modern plum (Prunus domestica L.) cultivars. Horticulturae 8:72 doi: 10.3390/horticulturae8010072
CrossRef Google Scholar
|
[42]
|
Tian J, Jia L, Meng Q, Li Z, Xu J. 2021. Heat tolerance threshold and physiological and biochemical response of leaves of different apple varieties. Journal of Henan Agricultural Sciences 50:121−28
Google Scholar
|
[43]
|
Toan CV, Luo C, He XH, Dong L, Hu DI. 2016. Effect of high temperature stress on physiology indices of mango seedlings. Chinese Journal of Tropical Crops 37:53−58 doi: 10.3969/j.issn.1000-2561.2016.01.010
CrossRef Google Scholar
|
[44]
|
Gulen H, Eris A. 2003. Some physiological changes in strawberry (Fragaria × ananassa 'Camarosa') plants under heat stress. The Journal of Horticultural Science and Biotechnology 78:894−98 doi: 10.1080/14620316.2003.11511715
CrossRef Google Scholar
|
[45]
|
Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86 doi: 10.1186/s12870-016-0771-y
CrossRef Google Scholar
|
[46]
|
Wang L, Huang W, Liu Y, Zhan J. 2005. Change in salicylic acid and abscisic acid during heat acclimation and their effect on thermotolerance to grape plants. Russian Journal of Plant Physiology 52:516−20 doi: 10.1007/s11183-005-0076-8
CrossRef Google Scholar
|
[47]
|
Gao Y, Tong Y, Yang X, Zhai H, Du Y, et al. 2020. Effects of acetic acid and ABA on light inhibition of 'Moldova' grape leaves under field high temperature stress. Sino-Overseas Grapevine and Wine 5:1−5 doi: 10.13414/j.cnki.zwpp.2020.05.001
CrossRef Google Scholar
|
[48]
|
Santiago JP, Sharkey TD. 2019. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant, Cell & Environment 42:2759−75 doi: 10.1111/pce.13576
CrossRef Google Scholar
|
[49]
|
Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials 399:123020 doi: 10.1016/j.jhazmat.2020.123020
CrossRef Google Scholar
|
[50]
|
Wang L, Fan L, Loescher W, Duan W, Liu G, et al. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology 10:34 doi: 10.1186/1471-2229-10-34
CrossRef Google Scholar
|
[51]
|
Wahid A, Ghazanfar A. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology 163:723−30 doi: 10.1016/j.jplph.2005.07.007
CrossRef Google Scholar
|
[52]
|
Wang F, Ren G, Li F, Qi S, Xu Y, et al. 2018. A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoid accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum 40:97 doi: 10.1007/s11738-018-2680-1
CrossRef Google Scholar
|
[53]
|
Li P, Cheng L. 2009. The elevated anthocyanin level in the shaded peel of 'Anjou' pear enhances its tolerance to high temperature under high light. Plant Science 177:418−26 doi: 10.1016/j.plantsci.2009.07.005
CrossRef Google Scholar
|
[54]
|
Zhuang W, Yao K, Yang M, Liang H. 2009. Effects of quercetin to alleviate injury of kiwifruit plants under high temperature and intensive sunlight. Acta Horticulturae Sinica 36:787−92 doi: 10.3321/j.issn:0513-353X.2009.06.002
CrossRef Google Scholar
|
[55]
|
Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, et al. 2001. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology 126:993−1000 doi: 10.1104/pp.126.3.993
CrossRef Google Scholar
|
[56]
|
Okereke CN, Liu B, Kaurilind E, Niinemets Ü. 2021. Heat stress resistance drives coordination of emissions of suites of volatiles after severe heat stress and during recovery in five tropical crops. Environmental and Experimental Botany 184:104375 doi: 10.1016/j.envexpbot.2021.104375
CrossRef Google Scholar
|
[57]
|
Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, et al. 2019. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. New Phytologist 223:1307−18 doi: 10.1111/nph.15847
CrossRef Google Scholar
|
[58]
|
Velikova V, Edreva A, Loreto F. 2004. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiologia Plantarum 122:219−25 doi: 10.1111/j.0031-9317.2004.00392.x
CrossRef Google Scholar
|
[59]
|
Bertamini M, Faralli M, Varotto C, Grando MS, Cappellin L. 2021. Leaf monoterpene emission limits photosynthetic downregulation under heat stress in field-grown grapevine. Plants 10:181 doi: 10.3390/plants10010181
CrossRef Google Scholar
|
[60]
|
Ding Y, Shi Y, Yang S. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant 13:544−64 doi: 10.1016/j.molp.2020.02.004
CrossRef Google Scholar
|
[61]
|
Gao F, Han X, Wu J, Zheng S, Shang Z, et al. 2012. A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses. The Plant Journal 70:1056−69 doi: 10.1111/j.1365-313X.2012.04969.x
CrossRef Google Scholar
|
[62]
|
Gong M, van der Luit AH, Knight MR, Trewavas AJ. 1998. Heat shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiology 116:429−37 doi: 10.1104/pp.116.1.429
CrossRef Google Scholar
|
[63]
|
Wang L, Huang W, Li J, Liu Y, Shi Y. 2004. Peroxidation of membrane lipid and Ca2+ homeostasis in grape mesophyll cells during the process of cross-adaptation to temperature stresses. Plant Science 167:71−77 doi: 10.1016/j.plantsci.2004.02.028
CrossRef Google Scholar
|
[64]
|
Trewavas AJ, Malho R. 1997. Signal perception and transduction: the origin of the phenotype. The Plant Cell 9:1181−95 doi: 10.1105/tpc.9.7.1181
CrossRef Google Scholar
|
[65]
|
Mccormack E, Tsai YC, Braam J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Science 10:383−89 doi: 10.1016/j.tplants.2005.07.001
CrossRef Google Scholar
|
[66]
|
Reddy ASN, Ali GS, Celesnik H, Day IS. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. The Plant Cell 23:2010−32 doi: 10.1105/tpc.111.084988
CrossRef Google Scholar
|
[67]
|
Wang H, Gong J, Su X, Li L, Pang X, et al. 2017. MaCDPK7, a calcium-dependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses. The Journal of Horticultural Science and Biotechnology 92:240−50 doi: 10.1080/14620316.2016.1265902
CrossRef Google Scholar
|
[68]
|
Suzuki N, Mittler R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 126:45−51 doi: 10.1111/j.0031-9317.2005.00582.x
CrossRef Google Scholar
|
[69]
|
Guo Y, Zhou H, Zhang L. 2006. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Scientia Horticulturae 108:260−67 doi: 10.1016/j.scienta.2006.01.029
CrossRef Google Scholar
|
[70]
|
Khandaker MM, Boyce AN, Osman N. 2012. The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & L.M. Perry var. jambu madu) fruits. Plant Physiology and Biochemistry 53:101−10 doi: 10.1016/j.plaphy.2012.01.016
CrossRef Google Scholar
|
[71]
|
Fancy NN, Bahlmann AK, Loake GJ. 2017. Nitric oxide function in plant abiotic stress. Plant, Cell & Environment 40:462−72 doi: 10.1111/pce.12707
CrossRef Google Scholar
|
[72]
|
O'Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley-Usmar VM, et al. 1997. Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with α-tocopherol. Biochemistry 36:15216−23 doi: 10.1021/bi971891z
CrossRef Google Scholar
|
[73]
|
Song L, Ding W, Shen J, Zhang Z, Bi Y, et al. 2008. Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Science 175:826−32 doi: 10.1016/j.plantsci.2008.08.005
CrossRef Google Scholar
|
[74]
|
Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, et al. 2013. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiology and Biochemistry 68:118−26 doi: 10.1016/j.plaphy.2013.04.004
CrossRef Google Scholar
|
[75]
|
Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, et al. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences 29:471−87 doi: 10.1007/BF02712120
CrossRef Google Scholar
|
[76]
|
Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19 doi: 10.1016/j.bbagrm.2011.10.002
CrossRef Google Scholar
|
[77]
|
Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, et al. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones 6:177−89
Google Scholar
|
[78]
|
Kotak S, Port M, Ganguli A, Bicker F, Von Koskull-Döring P. 2004. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant Journal 39:98−112 doi: 10.1111/j.1365-313X.2004.02111.x
CrossRef Google Scholar
|
[79]
|
Guo M, Liu J, Ma X, Luo D, Gong Z, et al. 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science 7:114 doi: 10.3389/fpls.2016.00114
CrossRef Google Scholar
|
[80]
|
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Science 22:53−65 doi: 10.1016/j.tplants.2016.08.015
CrossRef Google Scholar
|
[81]
|
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, et al. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics 286:321−32 doi: 10.1007/s00438-011-0647-7
CrossRef Google Scholar
|
[82]
|
Xie D, Huang H, Zhou C, Liu C, Kanwar MK, et al. 2022. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in Solanum lycopersicum L. Horticulture Research 9:uhac163 doi: 10.1093/hr/uhac163
CrossRef Google Scholar
|
[83]
|
Hu Y, Han Y, Wei W, Li Y, Zhang K, et al. 2015. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Frontiers in Plant Science 6:736 doi: 10.3389/fpls.2015.00736
CrossRef Google Scholar
|
[84]
|
Zhang L, Li Y, Xing D, Gao C. 2009. Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. Journal of Experimental Biology 60:2073−91 doi: 10.1093/jxb/erp078
CrossRef Google Scholar
|
[85]
|
Giorno F, Guerriero G, Baric S, Mariani C. 2012. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13:639 doi: 10.1186/1471-2164-13-639
CrossRef Google Scholar
|
[86]
|
Liu G, Chai F, Wang Y, Jiang J, Duan W, et al. 2018. Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Horticultural Plant Journal 4:133−43 doi: 10.1016/j.hpj.2018.06.001
CrossRef Google Scholar
|
[87]
|
Liu X, Chen H, Li S, Lecourieux D, Duan W, et al. 2023. Natural Variations of HSFA2 enhance thermotolerance in grapevine. Horticulture Research 10:uhac250 doi: 10.1093/hr/uhac250
CrossRef Google Scholar
|
[88]
|
Wu Z, Liang J, Wang C, Zhao X, Zhong X, et al. 2018. Overexpression of Lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. Journal of Experimental Botany 69:2005−21 doi: 10.1093/jxb/ery035
CrossRef Google Scholar
|
[89]
|
Wang C, Zhou Y, Yang X, Zhang B, Xu F, et al. 2022. The heat stress transcription factor LlHsfA4 enhanced basic thermotolerance through regulating ROS metabolism in lilies (Lilium longiflorum). International Journal of Molecular Sciences 23:572 doi: 10.3390/ijms23010572
CrossRef Google Scholar
|
[90]
|
Li F, Zhang H, Zhao H, Gao T, Song A, et al. 2018. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnology Journal 16:1311−21 doi: 10.1111/pbi.12871
CrossRef Google Scholar
|
[91]
|
Baniwal SK, Chan KY, Scharf KD, Nover L. 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. The Journal of Biological Chemistry 282:3605−13 doi: 10.1074/jbc.M609545200
CrossRef Google Scholar
|
[92]
|
Huang YC, Niu CY, Yang CR, Jinn TL. 2016. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat response. Plant Physiology 172:1182−99 doi: 10.1104/pp.16.00860
CrossRef Google Scholar
|
[93]
|
Zha Q, Xi X, He Y, Jiang A. 2020. Transcriptomic analysis of the leaves of two grapevine cultivars under high-temperature stress. Scientia Horticulturae 265:109265 doi: 10.1016/j.scienta.2020.109265
CrossRef Google Scholar
|
[94]
|
Li S, Liu S, Lin X, Grierson D, Yin X, et al. 2022. Citrus heat shock transcription factor CitHsfA7-mediated citric acid degradation in response to heat stress. Plant, Cell and Environment 45:95−104 doi: 10.1111/pce.14207
CrossRef Google Scholar
|
[95]
|
Wang N, Liu W, Yu L, Guo Z, Chen Z, et al. 2020. HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiology 184:1273−90 doi: 10.1104/pp.20.01106
CrossRef Google Scholar
|
[96]
|
Miller G, Mittler R. 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annals of Botany 98:279−88 doi: 10.1093/aob/mcl107
CrossRef Google Scholar
|
[97]
|
Li Z, Tian Y, Zhao W, Xu J, Wang L, et al. 2015. Functional characterization of a grape heat stress transcription factor VvHsfA9 in transgenic Arabidopsis. Acta Physiologiae Plantarum 37:133 doi: 10.1007/s11738-015-1884-x
CrossRef Google Scholar
|
[98]
|
Prieto-Dapena P, Almoguera C, Personat JM, Merchan F, Jordano J. 2017. Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis. Journal of Experimental Botany 68:1097−108 doi: 10.1093/jxb/erx020
CrossRef Google Scholar
|
[99]
|
Peng S, Zhu Z, Zhao K, Shi J, Yang Y, et al. 2013. A novel heat shock transcription factor, VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses. Plant Molecular Biology Reporter 31:240−47 doi: 10.1007/s11105-012-0463-1
CrossRef Google Scholar
|
[100]
|
Tan B, Yan L, Li H, Lian X, Cheng J, et al. 2021. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 9:e10961 doi: 10.7717/peerj.10961
CrossRef Google Scholar
|
[101]
|
Jiao S, Guo C, Yao W, Zhang N, Zhang J, et al. 2022. An Amur grape VaHsfC1 is involved in multiple abiotic stresses. Scientia Horticulturae 295:110785 doi: 10.1016/j.scienta.2021.110785
CrossRef Google Scholar
|
[102]
|
Jaimes-Miranda F, Chávez Montes RA. 2020. The plant MBF1 protein family: a bridge between stress and transcription. Journal of Experimental Botany 71:1782−91 doi: 10.1093/jxb/erz525
CrossRef Google Scholar
|
[103]
|
Yan Q, Hou H, Singer SD, YanX, Guo R, et al. 2014. The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture (PCTOC) 118:571−82 doi: 10.1007/s11240-014-0508-2
CrossRef Google Scholar
|
[104]
|
Zhu Z, Shi J, Xu W, Li H, He M, et al. 2013. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology 170:923−33 doi: 10.1016/j.jplph.2013.01.017
CrossRef Google Scholar
|
[105]
|
Zha Q, Xi X, He Y, Yin X, Jiang A. 2022. Interaction of VvbZIP60s and VvHSP83 in response to high-temperature stress in grapes. Gene 810:146053 doi: 10.1016/j.gene.2021.146053
CrossRef Google Scholar
|
[106]
|
Liu J, Chen N, Chen F, Cai B, Santo SD, et al. 2014. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics 15:281 doi: 10.1186/1471-2164-15-281
CrossRef Google Scholar
|
[107]
|
Hao S, Lu Y, Peng Z, Wang E, Chao L, et al. 2021. McMYB4 improves temperature adaptation by regulating phenylpropanoid metabolism and hormone signaling in apple. Horticulture Research 8:182 doi: 10.1038/s41438-021-00620-0
CrossRef Google Scholar
|
[108]
|
Zhang C, Liu H, Zhang X, Guo Q, Bian S, et al. 2020. VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress. Gene 757:144935 doi: 10.1016/j.gene.2020.144935
CrossRef Google Scholar
|
[109]
|
Ju Y, Yue X, Min Z, Wang X, Fang Y, et al. 2020. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 146:98−111 doi: 10.1016/j.plaphy.2019.11.002
CrossRef Google Scholar
|
[110]
|
Meng X, Wang N, He H, Tan Q, Wen B, et al. 2022. Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. Plant Physiology and Biochemistry 182:194−201 doi: 10.1016/j.plaphy.2022.04.026
CrossRef Google Scholar
|
[111]
|
Wei W, Hu Y, Han Y, Zhang K, Zhao F, et al. 2016. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: identification and expression analysis under biotic and abiotic stresses. Plant Physiology and Biochemistry 105:129−44 doi: 10.1016/j.plaphy.2016.04.014
CrossRef Google Scholar
|
[112]
|
Zhu H, Zhang Y, Tang R, Qu H, Duan X, et al. 2019. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics 20:33 doi: 10.1186/s12864-018-5395-1
CrossRef Google Scholar
|
[113]
|
Zhang L, Fan D, Li H, Chen Q, Zhang Z, et al. 2023. Characterization and identification of grapevine heat stress-responsive microRNAs revealed the positive regulated function of vvi-miR167 in thermostability. Plant Science 329:111623 doi: 10.1016/j.plantsci.2023.111623
CrossRef Google Scholar
|
[114]
|
Khan Z, Shahwar D. 2020. Role of Heat Shock Proteins (HSPs) and heat stress tolerance in crop plants, In Sustainable Agriculture in the Era of Climate Change, eds Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S. Vol. 9, xxii, 690 pp. Switzerland: Springer Nature Switzerland AG. pp 211−34. https://doi.org/10.1007/978-3-030-45669-6_9
|
[115]
|
Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244−52 doi: 10.1016/j.tplants.2004.03.006
CrossRef Google Scholar
|
[116]
|
Zhang J, Wang L, Pan Q, Wang Y, Zhan J, et al. 2008. Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Scientia Horticulturae 117:231−40 doi: 10.1016/j.scienta.2008.04.012
CrossRef Google Scholar
|
[117]
|
Lian X, Wang Q, Li T, Gao H, Li H, et al. 2022. Phylogenetic and transcriptional analyses of the HSP20 gene family in peach revealed that PpHSP20-32 is involved in plant height and heat tolerance. International Journal of Molecular Sciences 23:10849 doi: 10.3390/ijms231810849
CrossRef Google Scholar
|
[118]
|
Yu K, Zhu K, Ye M, Zhao Y, Chen Q, et al. 2016. Heat tolerance of highbush blueberry is related to the antioxidative enzymes and oxidative protein-repairing enzymes. Scientia Horticulturae 198:36−43 doi: 10.1016/j.scienta.2015.11.018
CrossRef Google Scholar
|
[119]
|
Liang D, Gao F, Ni Z, Lin L, Deng Q, et al. 2018. Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules 23:584 doi: 10.3390/molecules23030584
CrossRef Google Scholar
|