[1]
|
Harley JL, Smith SE. 1983. Mycorrhizal Symbiosis. London: Academic Press.
|
[2]
|
Smith SE, Read DJ. 1997. Mycorrhizal symbiosis. 2nd Edition. San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-652840-4.X5000-1
|
[3]
|
Read DJ. 1999. Mycorrhiza − the state of the art. In Mycorrhiza: structure, function, molecular biology and biotechnology, eds.Varma A, Hock B. 2nd Edition. Berlin, Heidelberg: Springer. pp. 3−34. https://doi.org/10.1007/978-3-662-03779-9_1
|
[4]
|
Trappe JM. 1987. Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In Ecophysiology of VA mycorrhizal plants, ed. Safir GR. Boca Raton: CRC Press. pp. 5−26.
|
[5]
|
Harley JL, Harley EL. 1987. A check-list of mycorrhiza in the British flora—addenda, errata and index. New Phytologist 107:741−49 doi: 10.1111/j.1469-8137.1987.tb00912.x
CrossRef Google Scholar
|
[6]
|
Morton JB. 1993. Problems and solutions for the integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2:97−109 doi: 10.1007/BF00203855
CrossRef Google Scholar
|
[7]
|
Janos DP. 1980. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61:151−62 doi: 10.2307/1937165
CrossRef Google Scholar
|
[8]
|
Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, et al. 2001. Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159−62 doi: 10.1007/s005720100117
CrossRef Google Scholar
|
[9]
|
Haselwandter K. 1987. Mycorrhizal infection and its possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angewandte Botanik 61:107−14
Google Scholar
|
[10]
|
Muthukumar T, Udaiyan K. 2006. Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two tropical soil types with and without fertilizer application. New Forests 31:469−85 doi: 10.1007/s11056-005-1380-z
CrossRef Google Scholar
|
[11]
|
Selosse MA, Le Tacon F. 1998. The land flora: a phototroph-fungus partnership? Trends in Ecology & Evolution 13:15−20 doi: 10.1016/S0169-5347(97)01230-5
CrossRef Google Scholar
|
[12]
|
Schüβler A, Schwarzott D, Walker C. 2001. A new fungal Phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105:1413−21 doi: 10.1017/S0953756201005196
CrossRef Google Scholar
|
[13]
|
Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. 3rd Edition. London: Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
|
[14]
|
Smith FA, Jakobsen I, Smith SE. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147:357−66 doi: 10.1046/j.1469-8137.2000.00695.x
CrossRef Google Scholar
|
[15]
|
Allen MF. 2011. Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. Journal of Arid Land 3:155−63 doi: 10.3724/sp.j.1227.2011.00155
CrossRef Google Scholar
|
[16]
|
Balestrini R, Lumini E, Borriello R, Bianciotto V. 2015. Plant-soil biota interactions. In Soil Microbiology, Ecology and Biochemistry, ed. Paul EA. Amsterdam: Academic Press, Elsevier. pp. 311−38. https://doi.org/10.1016/b978-0-12-415955-6.00011-6
|
[17]
|
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841 doi: 10.1371/journal.pone.0090841
CrossRef Google Scholar
|
[18]
|
Lewe N. 2023. The interplay between host plants and priority effects in community assembly processes of arbuscular mycorrhizal fungi. Doctoral dissertation. Victoria University of Wellington Library. https://doi.org/10.26686/wgtn.21974357
|
[19]
|
Smith SE, Smith FA. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1−13 doi: 10.3852/11-229
CrossRef Google Scholar
|
[20]
|
Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3−42 doi: 10.1007/s005720100097
CrossRef Google Scholar
|
[21]
|
Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 32:181−200 doi: 10.1007/s13593-011-0029-x
CrossRef Google Scholar
|
[22]
|
Ruiz-Lozano JM. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309−17 doi: 10.1007/s00572-003-0237-6
CrossRef Google Scholar
|
[23]
|
Ruiz-Lozano JM, Aroca R. 2010. Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In Symbioses and stress, eds. Seckbach J, Grube M. Vol. 17. Dordrecht: Springer. pp. 357−74. https://doi.org/10.1007/978-90-481-9449-0_17
|
[24]
|
Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, et al. 2012. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany 109:1009−17 doi: 10.1093/aob/mcs007
CrossRef Google Scholar
|
[25]
|
Bárzana G, Aroca R, Ruiz-lozano JM. 2015. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell & Environment 38:1613−27 doi: 10.1111/pce.12507
CrossRef Google Scholar
|
[26]
|
Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N. 2014. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science 5:547 doi: 10.3389/fpls.2014.00547
CrossRef Google Scholar
|
[27]
|
Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115−22 doi: 10.1007/s00425-006-0225-0
CrossRef Google Scholar
|
[28]
|
Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, et al. 2008. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environmental Pollution 153:137−47 doi: 10.1016/j.envpol.2007.07.012
CrossRef Google Scholar
|
[29]
|
Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, et al. 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry 57:925−28 doi: 10.1016/j.soilbio.2012.10.031
CrossRef Google Scholar
|
[30]
|
Meier S, Cornejo P, Cartes P, Borie F, Medina J, et al. 2015. Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. Journal of Plant Nutrition and Soil Science 178:126−35 doi: 10.1002/jpln.201400092
CrossRef Google Scholar
|
[31]
|
González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, et al. 2005. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology 42:130−40 doi: 10.1016/j.fgb.2004.10.007
CrossRef Google Scholar
|
[32]
|
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America 110:20117−22 doi: 10.1073/pnas.1313452110
CrossRef Google Scholar
|
[33]
|
Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytologist 171:41−53 doi: 10.1111/j.1469-8137.2006.01750.x
CrossRef Google Scholar
|
[34]
|
Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374:523−37 doi: 10.1007/s11104-013-1899-2
CrossRef Google Scholar
|
[35]
|
Leifheit EF, Verbruggen E, Rillig MC. 2015. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and Biochemistry 81:323−28 doi: 10.1016/j.soilbio.2014.12.003
CrossRef Google Scholar
|
[36]
|
Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, et al. 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist 205:1385−88 doi: 10.1111/nph.13045
CrossRef Google Scholar
|
[37]
|
van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69−72 doi: 10.1038/23932
CrossRef Google Scholar
|
[38]
|
Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, et al. 2014. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal 8:1336−45 doi: 10.1038/ismej.2013.224
CrossRef Google Scholar
|
[39]
|
Lazcano C, Barrios-Masias FH, Jackson LE. 2014. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry 74:184−92 doi: 10.1016/j.soilbio.2014.03.010
CrossRef Google Scholar
|
[40]
|
Miller RM, Jastrow JD. 2000. Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Physiology and Function, eds. Kapulnik Y, Douds DD. Dordrecht: Springer. pp. 3−18. https://doi.org/10.1007/978-94-017-0776-3_1
|
[41]
|
Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil 181:193−203 doi: 10.1007/BF00012053
CrossRef Google Scholar
|
[42]
|
Kuila D, Ghosh S. 2022. Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences 3:100107 doi: 10.1016/j.crmicr.2022.100107
CrossRef Google Scholar
|
[43]
|
Selosse MA, Strullu-Derrien C, Martin FM, Kamoun S, Kenrick P. 2015. Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. New Phytologist 206:501−6 doi: 10.1111/nph.13371
CrossRef Google Scholar
|
[44]
|
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205:1406−23 doi: 10.1111/nph.13288
CrossRef Google Scholar
|
[45]
|
Jha SS, Songachan LS. 2020. Research on diversity and community composition of arbuscular mycorrhizal fungi species in India: a review. Plant Archives 20(2):4201−26
Google Scholar
|
[46]
|
Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, et al. 2009. Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution, and Systematics 40:699−715 doi: 10.1146/annurev.ecolsys.39.110707.173454
CrossRef Google Scholar
|
[47]
|
Jha SS, Songachan LS. 2022. Mycorrhizoremediation: understanding the science behind it and it’s future prospects. Materials Today: Proceedings 51:2431−36 doi: 10.1016/j.matpr.2021.11.605
CrossRef Google Scholar
|
[48]
|
Navarro JM, Pérez-Tornero O, Morte A. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology 171:76−85 doi: 10.1016/j.jplph.2013.06.006
CrossRef Google Scholar
|
[49]
|
Alqarawi AA, Abd Allah EF, Hashem A. 2014. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions 9:802−10 doi: 10.1080/17429145.2014.949886
CrossRef Google Scholar
|
[50]
|
Alqarawi AA, Hashem A, Abd_Allah EF, Alshahrani TS, Huqail AA. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata decne. Acta Biologica Hungarica 65:61−71 doi: 10.1556/ABiol.65.2014.1.6
CrossRef Google Scholar
|
[51]
|
Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D. 2015. Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. Journal of Plant Interactions 10:230−42 doi: 10.1080/17429145.2015.1052025
CrossRef Google Scholar
|
[52]
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. 2021. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Archives of Microbiology 203:5859−85 doi: 10.1007/s00203-021-02576-0
CrossRef Google Scholar
|
[53]
|
Barrow CJ. 2012. Biochar: potential for countering land degradation and for improving agriculture. Applied Geography 34:21−28 doi: 10.1016/j.apgeog.2011.09.008
CrossRef Google Scholar
|
[54]
|
Syamsiyah J, Herawati A, Mujiyo. 2018. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil. IOP Conference Series: Earth and Environmental Science 142:012045 doi: 10.1088/1755-1315/142/1/012045
CrossRef Google Scholar
|
[55]
|
Wu Z, McGrouther K, Huang J, Wu P, Wu W, et al. 2014. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biology and Biochemistry 68:283−90 doi: 10.1016/j.soilbio.2013.10.010
CrossRef Google Scholar
|
[56]
|
Sharma S, Prasad R, Varma A, Sharma AK. 2017. Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian Journal of Plant Pathology 11:199−202 doi: 10.3923/ajppaj.2017.199.202
CrossRef Google Scholar
|
[57]
|
He F, Sheng M, Tang M. 2017. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Frontiers in Plant Science 8:183 doi: 10.3389/fpls.2017.00183
CrossRef Google Scholar
|
[58]
|
Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress − a meta-analysis. Frontiers in Plant Science 10(10):457 doi: 10.3389/fpls.2019.00457
CrossRef Google Scholar
|
[59]
|
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, et al. 2022. Biological control of plant pathogens: a global perspective. Microorganisms 10:596 doi: 10.3390/microorganisms10030596
CrossRef Google Scholar
|
[60]
|
Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils 37:1−16 doi: 10.1007/s00374-002-0546-5
CrossRef Google Scholar
|
[61]
|
Fracchia S, Sampedro I, Scervino J, Garcia-Romera I, Ocampo J, et al. 2004. Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses. Symbiosis 36(2):169−82
Google Scholar
|
[62]
|
Rambelli A. 1973. The rhizosphere of mycorrhizae. In Ectomyhyphencorrhizae, eds. Marks GC, Kozlowski TT. New York: Academic Press. pp. 299−349. https://doi.org/10.1016/b978-0-12-472850-9.50014-1
|
[63]
|
Rajkumar HG, Seema HS, Sunil Kumar CP. 2012. Diversity of arbuscular mycorrhizal fungi associated with some medicinal plants in Western Ghats of Karnataka region, India. World Journal of Nuclear Science and Technology 2:13−20
Google Scholar
|
[64]
|
Gemma JN, Koske RE, Flynn T. 1992. Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. American Journal of Botany 79:843−52 doi: 10.1002/j.1537-2197.1992.tb13665.x
CrossRef Google Scholar
|
[65]
|
Muthukumar T, Sathiyaraj G, Priyadharsini P, Uma E, Sathiyadash K. 2014. Arbuscular mycorrhizal and dark septate endophyte fungal associations in ferns and lycophytes of Palni Hills, Western Ghats, southern India. Brazilian Journal of Botany 37:561−81 doi: 10.1007/s40415-014-0085-y
CrossRef Google Scholar
|
[66]
|
Santhosh Kumar S, Nagarajan N. 2014. AM fungal association in the Rhizosphere soil of some Pteridophytic plant species in Valparai Hills, Western Ghats of Tamilnadu, India. International Journal of Life Sciences 2:201−6
Google Scholar
|
[67]
|
Vosátka M, Gryndler M. 1999. Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Applied Soil Ecology 11:245−51 doi: 10.1016/S0929-1393(98)00151-6
CrossRef Google Scholar
|
[68]
|
Gryndler M. 2000. Interactions of arbuscular mycorrhizal fungi with other soil organisms. In Arbuscular Mycorrhizas: Physiology and Function, eds. Kapulnik Y, Douds DD. Dordrecht: Springer. pp. 239−62. https://doi.org/10.1007/978-94-017-0776-3_11
|
[69]
|
Giovannetti M, Sbrana C, Logi C. 1994. Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytologist 127:703−9 doi: 10.1111/j.1469-8137.1994.tb02973.x
CrossRef Google Scholar
|
[70]
|
Hart MM, Reader RJ. 2004. Do arbuscular mycorrhizal fungi recover from soil disturbance differently? Tropical Ecology 45:97−111
Google Scholar
|
[71]
|
IJdo M, Cranenbrouck S, Declerck S. 2011. Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1−16 doi: 10.1007/s00572-010-0337-z
CrossRef Google Scholar
|
[72]
|
Bécard G, Fortin JA. 1988. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist 108:211−18 doi: 10.1111/j.1469-8137.1988.tb03698.x
CrossRef Google Scholar
|
[73]
|
Declerck S, Strullu DG, Plenchette C. 1998. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579−85 doi: 10.2307/3761216
CrossRef Google Scholar
|
[74]
|
Klironomos JN, Hart MM. 2002. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181−84 doi: 10.1007/s00572-002-0169-6
CrossRef Google Scholar
|
[75]
|
Biermann B, Linderman RG. 1983. Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist 95:97−105 doi: 10.1111/j.1469-8137.1983.tb03472.x
CrossRef Google Scholar
|
[76]
|
Brundrett MC, Jasper DA, Ashwath N. 1999. Glomalean mycorrhizal fungi from tropical Australia. Mycorrhiza 8:315−21 doi: 10.1007/s005720050252
CrossRef Google Scholar
|
[77]
|
Gosling P, Jones J, Bending GD. 2016. Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Mycorrhiza 26:77−83 doi: 10.1007/s00572-015-0651-6
CrossRef Google Scholar
|
[78]
|
Wagg C, Barendregt C, Jansa J, van der Heijden MGA. 2015. Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. Journal of Ecology 103:1233−44 doi: 10.1111/1365-2745.12452
CrossRef Google Scholar
|
[79]
|
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, et al. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223−41 doi: 10.1111/j.1469-8137.2010.03334.x
CrossRef Google Scholar
|
[80]
|
Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164:357−64 doi: 10.1111/j.1469-8137.2004.01169.x
CrossRef Google Scholar
|
[81]
|
Gai JP, Feng G, Christie P, Li XL. 2006. Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. Journal of Plant Nutrition 29:1085−94 doi: 10.1080/01904160600689225
CrossRef Google Scholar
|
[82]
|
Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR. 2010. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Current Biology 20:1216−21 doi: 10.1016/j.cub.2010.05.031
CrossRef Google Scholar
|
[83]
|
Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, et al. 2014. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genetics 10:e1004078 doi: 10.1371/journal.pgen.1004078
CrossRef Google Scholar
|
[84]
|
Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575−85 doi: 10.1046/j.1469-8137.1997.00729.x
CrossRef Google Scholar
|
[85]
|
Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227−50 doi: 10.1146/annurev-arplant-042110-103846
CrossRef Google Scholar
|
[86]
|
Smith SE, Jakobsen I, Grønlund M, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156(3):1050−57 doi: 10.1104/pp.111.174581
CrossRef Google Scholar
|
[87]
|
Sadhana B. 2014. Arbuscular mycorrhizal fungi (AMF) as a biofertilizers—a review. International Journal of Current Microbiology and Applied Sciences 3(4):384−400
Google Scholar
|
[88]
|
Ortas I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125:35−48 doi: 10.1016/j.fcr.2011.08.005
CrossRef Google Scholar
|
[89]
|
Yang S, Li F, Malhi SS, Wang P, Suo D, et al. 2004. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China. Agronomy Journal 96:1039−49 doi: 10.2134/agronj2004.1039
CrossRef Google Scholar
|
[90]
|
Mehrotra VS. 1996. Use of revegetated coal mine spoil as source of arbuscular mycorrhizal inoculum for nursery inoculations. Current Science 71:73−77 doi: 10.2307/24111673
CrossRef Google Scholar
|
[91]
|
Chaurasia B, Pandey A, Palni LMS. 2005. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. Forest Ecology and Management 207:315−24 doi: 10.1016/j.foreco.2004.10.014
CrossRef Google Scholar
|
[92]
|
Stutz JC, Copeman R, Martin CA, Morton JB. 2000. Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Canadian Journal of Botany 78:237−45 doi: 10.1139/b99-183
CrossRef Google Scholar
|
[93]
|
An ZQ, Grove JH, Hendrix JW, Hershman DE, Henson GT. 1990. Vertical distribution of endogonaceous mycorrhizal fungi associated with soybean, as affected by soil fumigation. Soil Biology and Biochemistry 22:715−19 doi: 10.1016/0038-0717(90)90020-Z
CrossRef Google Scholar
|
[94]
|
Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, et al. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165:273−83 doi: 10.1111/j.1469-8137.2004.01235.x
CrossRef Google Scholar
|
[95]
|
Verma N, Tarafdar JC, Srivastava KK. 2010. Periodic changes in Prosopis cineraria associated AM population at different soil depth and its relationship with organic carbon and soil moisture. African Journal of Microbiology Research 4:11−12
Google Scholar
|
[96]
|
Brady NC, Weil RR. 2008. The nature and properties of soils. Upper Saddle River, N.J.: Pearson Prentice Hall. pp. 662−710.
|
[97]
|
Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD. 2012. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Applied Soil Ecology 61:300−4 doi: 10.1016/j.apsoil.2011.11.008
CrossRef Google Scholar
|
[98]
|
Säle V, Aguilera P, Laczko E, Mäder P, Berner A, et al. 2015. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 84:38−52 doi: 10.1016/j.soilbio.2015.02.005
CrossRef Google Scholar
|
[99]
|
Mukherjee PK, Rai RK. 2000. Effect of vesicular arbuscular mycorrhizae and phosphate-solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum). Indian Journal of Agronomy 45:602−7
Google Scholar
|
[100]
|
Rajendran K, Jayasree R. 2007. Effect of biofertilizers on quality seedling production of Acacia nilotica. Journal of Non-Timber Forest Products 14:5−11 doi: 10.54207/bsmps2000-2007-w887ok
CrossRef Google Scholar
|
[101]
|
Zahid MA, Iqbal SM, Ali A, Hussain S. 2007. Efficacy of microbial bioagents for the control of collar rot disease in chickpea. Pakistan Journal of Botany 39:2667−72
Google Scholar
|
[102]
|
Khan, Ayub N, Mirza SN, Nizami SM, Azam M. 2008. Synergistic effect of dual inoculation (vesicular arbuscular mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pakistan Journal of Botany 40:939−45
Google Scholar
|
[103]
|
Giri N. 2010. Growth and yield response of chick pea (Cicer arietinum) to seed inoculation with Rhizobium sp. Nature and Science 8(9):232−36
Google Scholar
|
[104]
|
Rodriguez A, Sanders IR. 2015. The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME Journal 9:1053−61 doi: 10.1038/ismej.2014.207
CrossRef Google Scholar
|
[105]
|
Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, et al. 2013. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633 doi: 10.1371/journal.pone.0070633
CrossRef Google Scholar
|