PERSPECTIVE   Open Access    

Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?

More Information
  • Soil quality improvement is crucial in tropical soils to enhance crop productivity. Organic matter incorporation is not a viable approach regarding perennials as it completely degrades within a year. Hence, biochar is a sustainable solution to boost crop productivity in the tropics. Biochar has been utilized in agriculture for decades due to its inherent properties that enhance the soil-mediated properties associated with soil fertility. The impact of biochar on tropical perennial intensive cropping systems has been understudied, possibly because of the high initial input demand. This paper highlights the facts related to soil chemical, physical, and biological property enhancement upon biochar incorporation relating to long-term impacts on perennial crops.
  • Bletilla Rchb. f. is one of the most economically valuable groups of orchids in the world. Due to its ornamental significance, the genus Bletilla occupies an important place in the worldwide horticultural market. Furthermore, in China, Japan, South Korea, and other Asian countries, it is highly valued for its medicinal use[1].

    There are eight species in the genus Bletilla, including Bletilla chartacea (King & Pantl.) Tang & F.T. Wang, Bletilla cotoensis Schltr., Bletilla foliosa (King & Pantl.) Tang & F.T. Wang, Bletilla formosana Schltr., Bletilla guizhouensis J. Huang & G.Z. Chen, Bletilla morrisonensis Schltr., Bletilla ochracea Schltr., and Bletilla striata Rchb.f.[2,3]. The distribution area spans from northern Myanmar in Asia to Japan via China[4]. Five species are native to China, namely, B. foliosa, B. formosana, B. guizhouensis, B. ochracea, and B. striata. In China, people have assigned various names to Bletilla based on its morphology and efficacy, such as baiji (白及/白芨), baigen (白根), baige (白给), baijier (白鸡儿), baijiwa (白鸡娃), diluosi (地螺丝), gangen (甘根), junkouyao (皲口药), lianjicao (连及草), and yangjiaoqi (羊角七)[5]. These diverse appellations highlight the importance of this genus in Chinese folk biological culture.

    The medicinal material known as 'baiji' in traditional Chinese medicine (TCM) is usually the dried tuber of B. striata, which is also the authentic product included in the Chinese Pharmacopoeia[6]. According to the Chinese Pharmacopoeia (2020), TCM baiji is sliced, dried, and crushed into a powder that can be used topically or internally, with a recommended dosage of 3–6 g at a time, offering astringent, hemostatic, detumescence, and myogenic effects. It is often used for conditions such as hemoptysis, hematemesis, traumatic bleeding, sores, and skin chaps[7]. Although only B. striata is the authentic product of TCM baiji, the other four Bletilla species native to China are also used as substitutes, and this practice is widespread[8].

    Modern research indicates that Bletilla contains a variety of chemical components, including benzol, dihydrophenanthrene, phenanthrene, and quinone derivatives. These components confer pharmacological effects on Bletilla, such as hemostasis, anti-tumor activity, and promotion of cell growth[9]. Due to its outstanding medicinal value, Bletilla can be found in nearly every corner of the traditional medicine market (Fig. 1). However, habitat destruction and uncontrolled mining have led to a significant reduction in the native populations of Bletilla, making its protection an urgent priority. Therefore, this paper provides a comprehensive review of relevant research up to August 2023, covering botanical characteristics, resource distribution, ethnobotanical uses, chemical components, pharmacological effects, clinical applications, and safety evaluations of Bletilla. The aim is to raise awareness and promote the protection and sustainable use of this genus.

    Figure 1.  Varieties of Bletilla at the traditional March Medicinal Market in Dali, Yunnan, China.

    The morphology of different Bletilla species is highly similar. The primary taxonomic feature distinguishing each species is the characteristics of the flower, particularly the lip of the flower, including its size, shape, and the number and shape of longitudinal ridges on the lip plate (Table 1, Fig. 2)[1014].

    Table 1.  The morphological differences among five species of Bletilla plants native to China.
    Morphological featureBletilla striataBletilla formosanaBletilla ochraceaBletilla foliosaBletilla guizhouensis
    Plant height (cm)18−6015−8025−5515−2045−60
    Rhizome shapeCompressedCompressedSomewhat compressedSubgloboseCompressed
    Rhizome diameter (cm)1−31−2About 21−1.53−4
    Stem characteristicsStoutEnclosed by sheathsStoutStout, shortThin
    Leaf shapeNarrowly oblongLinear-lanceolateOblong-lanceolateElliptic-lanceolateNarrowly lanceolate
    Leaf size (cm)8−29 × 1.5−46−40 × 0.5−4.58−35 × 1.5−2.85−12 × 0.8−325−45 × 1.2−4.5
    Flower colorPurplish red or pinkPale purple or pinkYellowPale purpleDeep purple
    Flower sizeLargeMediumMediumSmall to mediumLarge
    Inflorescence structureBranched or simpleBranched or simpleSimpleSimpleBranched
    Pedicel and ovary length (mm)10−248−12About 187−913−17
    Sepal shapeNarrowly oblongLanceolateLanceolateLinear-lanceolateOblong-elliptic
    Petal shapeSlightly larger than sepalsSlightly narrower than sepalsObliqueLanceolateOblong-elliptic
    Lip shapeObovate-ellipticBroadly ellipticNarrowly rhombic-obovateNarrowly oblongNarrowly oblong
    Lip colorWhite with purplish veinsWhitish to pale yellow with small dark purple spotsWhitish to pale yellow with small dark purple spotsWhite with purplish spots and purple edgeWhite with deep purple edge
    Number of lip Lamellae5 lamellae5 undulate lamellae5 longitudinal lamellae3 fimbriate lamellae7 longitudinal lamellae
    Column characteristicsSubterete, dilated towards apexSubterete, dilated towards apexSlender, dilated towards apexCylindric, dilated towards apexSuberect, with narrow wings
     | Show Table
    DownLoad: CSV
    Figure 2.  (a)−(d) Bletilla striata (Thunb. ex Murray) Rchb. f. (e)−(h) Bletilla formosana (Hayata) Schltr. (i)−(l) Bletilla ochracea Schltr. (m), (n) Bletilla sinensis (Rolf) Schltr. (o), (p) Bletilla guizhouensis Jie Huang & G.Z. Chen (Photographed by Wang Meina, Zhu Xinxin, and He Songhua).

    The flowers of B. striata are large and purplish-red or pink, with narrowly oblong sepals and petals measuring 25−30 mm in length and 6−8 mm in width. They have acute apices, nearly as long as the sepals and petals. The lip is obovate or elliptic, predominantly white with purplish-red coloration and purple veins, measuring 23−28 mm in length, slightly shorter than the sepals and petals. The lip disc exhibits five longitudinal folds extending from the base to near the apex of the middle lobe, with waviness occurring only above the middle lobe[11]. In China, B. striata is found in regions such as Anhui, Fujian, Guangdong, Guangxi, Gansu, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Shaanxi, Sichuan, and Zhejiang. It also occurs in the Korean Peninsula and Japan, thriving in evergreen broad-leaved forests, coniferous forests, roadside grassy areas, or rock crevices, at altitudes ranging from 100−3,200 m[12].

    B. ochracea's flowers are medium to large, featuring yellow or yellow-green exteriors on the sepals and petals, while the insides are yellow-white, occasionally nearly white. The sepals and petals are nearly equal in length, oblong, measuring 18−23 mm long and 5−7 mm wide, with obtuse or slightly pointed apices, often adorned with fine purple spots on the reverse side. The lip is elliptic, typically white or light yellow, measuring 15−20 mm in length and 8−12 mm in width, with three lobes above the middle. The lip disc is characterized by five longitudinally ridged pleats, with undulations primarily occurring above the middle lobe[13]. B. ochracea is native to southeastern Gansu, southern Shaanxi, Henan, Hubei, Hunan, Guangxi, Guizhou, Sichuan, and Yunnan, thriving in evergreen broad-leaved forests, coniferous forests, or beneath shrubs, in grassy areas or alongside ditches at altitudes ranging from 300−2,350 m[14].

    B. formosana's flowers come in shades of lavender or pink, occasionally white, and are relatively small. The sepals and petals are narrowly oblong, measuring 15−21 mm in length and 4−6.5 mm in width, and are nearly equal in size. The sepals have subacute apices, while the petal apices are slightly obtuse. The lip is elliptic, measuring 15−18 mm in length and 8−9 mm in width, with three lobes above the middle. The lip disc exhibits five longitudinal ridge-like pleats, which are wavy from the base to the top of the middle lobe[15]. B. formosana is indigenous to southern Shaanxi, southeastern Gansu, Jiangxi, Taiwan, Guangxi, Sichuan, Guizhou, central to northwest Yunnan, southeast Tibet (Chayu), and Japan. It is typically found in evergreen broad-leaved forests, coniferous forests, road verges, valley grasslands, grassy slopes, and rock crevices, at altitudes ranging from 600−3,100 m[16].

    The flowers of B. foliosa are small and lavender, with white sepals and petals featuring purple apices. The sepals are linear-lanceolate, measuring 11−13 mm in length and 3 mm in width, with subacute apices. The petals are lanceolate, also measuring 11−13 mm in length and 3 mm in width, with acute apices. The lip is white, oblong, adorned with fine spots, and features a purple apex. It measures 11−13 mm in length and 5−6 mm in width, tapering near the base and forming a scaphoid shape. The lip is anteriorly attenuated, unlobed, or abruptly narrowing with inconspicuous three lobes and exhibits fringe-like fine serrations along the edge. Three longitudinal ridge-like pleats are present on the upper lip disc[17]. B. foliosa typically grows on hillside forests, with its type specimen collected from Mengzi City, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, China[17].

    B. guizhouensis is a recently discovered species in Guizhou, China. In terms of shape, B. guizhouensis closely resembles B. striata, but it can be distinguished by its ovate-oblong buds, oblong dorsal sepals, obovate lips, and middle lobes of the lips, which are oval in shape. The disc of B. guizhouensis features seven distinct longitudinal lamellae, setting it apart from other known Bletilla species and establishing it as a distinct species[2]. Presently, B. guizhouensis has only been found in Guizhou, China, primarily thriving in evergreen broad-leaved forests at altitudes ranging from 900−1,200 m[3].

    Understanding the morphology, habitat, and distribution of Bletilla species is crucial for the conservation and propagation of these resources. To effectively implement plant conservation and breeding programs, a comprehensive understanding of the specific morphological characteristics, growth environments, and native habitats of these plants is essential, as without this knowledge, effective results cannot be achieved.

    The ethnobotanical uses of Bletilla worldwide primarily fall into two categories: ornamental and medicinal purposes. Bletilla orchids, renowned for their striking and distinct flowers, are commonly cultivated for ornamental purposes across many countries[18]. Valued for their aesthetic appeal, these orchids are frequently grown in gardens and utilized as potted plants. Among the various cultivars, B. striata stands out as the most favored choice for ornamental horticulture due to its ease of cultivation and adaptability to diverse climates[19,20].

    Contrastingly, in select Asian countries, Bletilla assumes a crucial role as a medicinal plant. For instance, influenced by TCM, the tuber of Bletilla also serves as a crude drug for hemostatic and anti-swelling purposes in Japan[21]. Likewise, traditional Korean medicine, deeply rooted in TCM principles, extensively documents the versatile use of Bletilla in addressing issues such as alimentary canal mucosal damage, ulcers, bleeding, bruises, and burns[22]. In Vietnam, Bletilla has been used as a medicinal herb for treating tumors and skin fissures, aligning with practices observed in the ethnic communities of southwest China[23].

    In China, Bletilla boasts a longstanding medicinal history, with numerous classical ancient Chinese medicine books containing detailed records of its medicinal applications[2432]. Even in contemporary society, many ethnic groups residing in mountainous areas in China continue to uphold the traditional medical practice of using Bletilla medicinally[31].

    In ancient Chinese medical literature, detailed records of Bletilla's morphology can be traced back to the late Han Dynasty, around 200 AD[24]. The Mingyi Bielu, a historical source, documented, 'Bletilla grows in the valley, with leaves resembling those of Veratrum nigrum L., and its root is white and interconnected. The ideal time for harvesting is September'. As awareness of the medicinal significance of Bletilla grew, successive dynastic-era Chinese medical texts consistently included descriptions of Bletilla's morphology (Table 2). In the Ming Dynasty, Li Shizhen compiled these earlier accounts of Bletilla's plant characteristics in his work, the Compendium of Materia Medica. He even provided an illustrative depiction of this plant genus (Fig. 3)[25].

    Table 2.  Morphological description of the plants belonging to Bletilla in the ancientChinese medicinal books.
    Dynasty (Year)TitleAuthorOriginal ChineseEnglish translation
    Late Han
    (184−220 AD)
    Mingyi Bielu/白给生山谷, 叶如藜芦,
    根白相连, 九月采
    Bletilla grows in the valley, with leaves like Veratrum nigrum L., root is white and connected. September is the time for harvesting.
    Wei-Jin period
    (220−420 AD)
    WuPu BencaoWu Pu白根, 茎叶如生姜, 藜芦,
    十月花, 直上, 紫赤色,
    根白连, 二月, 八月, 九月采
    Bletilla, stems and leaves like Zingiber officinale Roscoe and V. nigrum. It blooms in October and is purple and red, the inflorescence is vertical and upward. The roots are white and connected. It can be dug in February, August, and September.
    the Northern and Southern
    (420−589 AD)
    Bencao JizhuTao Hongjing近道处处有之, 叶似杜若,
    根形似菱米, 节间有毛
    It is everywhere near the road. The leaves are like Pollia japonica Thunb. The roots are like the fruit of Trapa natans L., and internode are many fibrous roots.
    Tang
    (618−907 AD)
    Su Jing, Zhangsun Wuji, etcTang materia medica生山谷, 如藜芦, 根白连, 九月采Born in the valley, with leaves like V. nigrum, root is white and connected. September is the time for harvesting.
    Song
    (960−1279 AD)
    Su SongCommentaries on the Illustrations白芨, 生石山上。春生苗,
    长一尺许, 似栟榈及藜芦,
    茎端生一台, 叶两指大, 青色,
    夏开花紫, 七月结实, 至熟黄黑色。
    至冬叶凋。根似菱米, 有三角白色, 角端生芽。二月, 七月采根
    Bletilla grow on the stone hill. It sprouts in spring and grows about a foot long. The seedlings are like Trachycarpus fortunei (Hook.) H. Wendl. and V. nigrum. The leaves are two finger-size. In summer, it blooms purple flowers and bears fruit in July. The ripe fruit is yellow-black. The leaves wither in winter. The root is like the fruit of T. natans, with three corners, white, and sprouting at the corners. The roots are dug in February and July.
    Ming
    (1368−1644 AD)
    Li ShizhenCompendium of Materia Medica一棵只抽一茎, 开花长寸许,
    红紫色, 中心如舌, 其根如菱米,
    有脐, 如凫茈之脐,
    又如扁扁螺旋纹, 性难干
    Only one stem per herb. The flower is more than one inch long, red and purple, and the center resembles a tongue. Its root is similar to the fruit of T. natans, possessing an umbilicus akin to that of Eleocharis dulcis (N. L. Burman) Trinius ex Henschel. It has spiral veins and is challenging to dry.
    −, Anonymous.
     | Show Table
    DownLoad: CSV
    Figure 3.  Bletilla in Compendium of Materia Medica.

    Generally, ancient Chinese medical texts did not make clear distinctions between different Bletilla species. They collectively referred to plants with similar morphological traits as 'baige', 'baigen', 'baiji', 'gangen', 'lianjicao', or 'ruolan'. However, through textual analysis, it has been established that the descriptions of Bletilla in ancient texts before the Ming Dynasty largely align with Bletilla striata in terms of plant height, pseudo-bulb shape, leaf morphology, flower and fruit colors, and other characteristics. While the Bletilla portrayed in attached images may not precisely match B. striata in terms of morphology, considering the textual descriptions, it generally corresponds with B. striata. In writings from the Ming Dynasty and later periods, more specific descriptions of Bletilla emerged, encompassing details about its vascular arrangement, inflorescence, and flower structure, which consistently align with B. striata. Consequently, researchers have corroborated that the original plant of Bletilla described in ancient texts is Bletilla striata[24,33].

    According to the ancient Chinese medicinal books, Bletilla was used to treat a wide variety of conditions, including coughing, bruising, and bleeding, but their most mentioned use in ancient Chinese texts is for skin whitening and freckle removal[25]. Since ancient times, Bletilla species have been used consistently for skin care and whitening, and there are many well-known skincare products related to Bletilla. These Chinese formulae with Bletilla are similar to modern facial masks, face creams, facial cleanser, hand creams and other skin care products[26].

    For example, a prescription for 'facial fat (面脂)' in Medical Secrets from the Royal Library (752 AD) is made by boiling Bletilla with other traditional ingredients, and is applied to the face, resulting in skin whitening, freckle and wrinkle removal[27]. The 'Angelica dahurica cream (白芷膏)' in the General Medical Collection of Royal Benevolence (1111−1125 AD) is reputed to whiten facial skin through a seven-day treatment regiment, and contains Bletilla as the main botanical ingredient along with Angelica dahurica[28]. Jingyue Quanshu (1563-1640 AD) also contains a prescription called 'Yurong powder (玉容散)' for facial skin care. 'Yurong powder' is made of a fine powder of Bletilla, Nardostachys jatamansi (D. Don) DC., Anthoxanthum nitens (Weber) Y. Schouten & Veldkamp and other herbs[29]. Washing the face with Yurong powder in the morning and evening every day is said to make a person's face white without blemishes (Fig. 4)[29].

    Figure 4.  Yurong powder made of Bletilla and other traditional Chinese medicines in Jingyue Quanshu.

    In addition, in ancient Chinese medicine texts, Bletilla is also a well-known medicine for treating hematemesis, hemoptysis and bruises[23]. According to Shennong's Classic of Materia Medica (25−220), grinding the white fungus into fine powder and taking it after mixing with rice soup can be effective for treating lung damage and hematemesis[30]. Among the Prescriptions for Universal Relief (1406), 18 traditional Chinese medicines, such as Bletilla, are used to make 'snake with raw meat cream', which is said to be useful to treat carbuncles and incised wounds[31]. There is also a record of Bletilla powder treating lung heat and hematemesis in the Collected Statements on the Herbal Foundation (1624)[32].

    In ancient Chinese medicinal texts, most Bletilla are said to be useful for lung injury and hemoptysis, epistaxis, metal-inflicted wounds, carbuncles, burns, chapped hands and feet, whitening and especially for skin care. In the ancient medicinal texts, Bletilla is used alone or mixed with other traditional Chinese medicines. It is usually used in the form of a powder. The various medicinal effects of Bletilla described in these ancient texts suggest the great potential of this genus in clinical application, especially in the market of skin care products and cosmetics.

    As a skin care herb praised by ancient medical classics, 11 ethnic minorities in China, such as Bai, Dai, De'ang, Jingpo, Lisu, Miao, Mongolian, Mulao, Tu, Wa, and Yi still retain the traditional habit of using Bletilla for skin care in their daily life (Table 3). In addition to B. striata, B. formosana and B. ochracea are also used as substitutes. Although Chinese ethnic groups have different names for Bletilla spp., the skin care methods are basically the same. Dry Bletilla tubers are ground into a powder and applied to the skin[34], and this usage is also confirmed by the records in ancient medical texts[23, 24]. The various local names of Bletilla by different ethnic groups also indirectly suggests which ethnic groups play an important role in the traditional use. For example, Bai people called B. striata baijier (白鸡儿), goubaiyou (狗白尤), and yangjiaoqi (羊角七) (Table 3).

    Table 3.  The traditional medicinal knowledge of Bletilla in ethnic communities, China.
    Ethnic groupLatin nameLocal nameUsed partUse methodMedicinal effect
    AchangBletilla striata (Thunb. ex Murray) Rchb. F.BaijiTuberAfter the roots are dried, chew them orally or grind them into powder for external applicationTuberculosis, hemoptysis, bleeding from gastric ulcer, burns and scalds
    BaiBaijier, Goubaiyou, YangjiaoqiTuberTreatment of tuberculosis hemoptysis, bronchiectasis hemoptysis, gastric ulcer hemoptysis, hematochezia, skin cracking
    DaiYahejieTuberUsed for tuberculosis, tracheitis, traumatic injury, and detumescence
    De'angBageraoTuberTuberculosis, hemoptysis, bleeding from gastric ulcer, burns and scalds
    DongShaque, SanjueTuberTreat hematemesis and hemoptysis
    JingpoLahoiban, PusehzuotuberFor tuberculosis, bronchiectasis, hemoptysis, gastric ulcer, hematemesis, hematuria, hematochezia, traumatic bleeding, burns, impotence
    MengMoheeryichagan, NixingTuberFor tuberculosis hemoptysis, ulcer bleeding, traumatic bleeding, chapped hands, and feet
    MiaoBigou, Wujiu, SigouTuberUsed for hemoptysis of tuberculosis, bleeding of ulcer disease, traumatic bleeding, chapped hands, and feet
    MolaoDajiebaTuberTreat internal and external injuries caused by falls
    TibetanSanchabaijiTuberFresh chopped and soaked with honey; Powdered after sun-dried, then taken with honey and waterMainly used to treat cough, asthma, bronchitis, lung disease and a few gynecological diseases
    TuRuokeyeTuberAfter the roots are dried, chew them orally or grind them into powder for external applicationTreatment of tuberculosis, hemoptysis, bloody stool, chapped skin
    WaBaijiTuberAfter the roots are dried, chew them orally or grind them into powder for external applicationFor tuberculosis, hemoptysis, gastrointestinal bleeding, scald and burn
    YaoBiegeidaiTuberTreat gastric ulcer, pulmonary tuberculosis, cough, hemoptysis, and hematemesis
    YiDaibaij, Tanimobbaili, Niesunuoqi, AtuluoboTuberTreatment of tuberculosis, hemoptysis, golden wound bleeding, burns, chapped hands and feet
    ZhuangManggounuTuberTreat stomachache and hemoptysis
    BaiBletilla formosana (Hayata) Schltr.Baijier, YangjiaoqiTuberAfter the roots are dried, chew them orally or grind them into powder for external applicationIt is used for emesis, hemoptysis due to tuberculosis, and hemoptysis due to gastric ulcer. External application for treatment of incised wound
    MiaoLianwuTuberThe effect is the same as that of B. striata
    LisuHaibiqiuTuberIt can treat tuberculosis, hemoptysis, epistaxis, golden sore bleeding, carbuncle and swelling poison, scald by soup fire, chapped hands and feet
    YiNiesunuoqi, Yeruomaoranruo, Atuluobo, Ribumama, Atuxixi, Abaheiji, Binyue, ZiyouTuberIt is used for tuberculosis, hemoptysis, traumatic injury, treatment of frostbite, burn, scald, bed-wetting of children and other diseases
    BaiBletilla ochracea Schltr.Baijier, YangjiaoqiTuberAfter the roots are dried, chew them orally or grind them into powder for external applicationFor hematemesis, epistaxis, hemoptysis due to tuberculosis, hemoptysis due to gastric ulcer; External application of golden sore and carbuncle
    MengMoheeryichagan, NixingtuberThe effect is the same as that of B. striata
     | Show Table
    DownLoad: CSV

    The formation of traditional medical knowledge among Chinese people is often directly related to the specific living environment and cultural background[34]. For example, the Bai, Dai, De'ang, Jingpo, Lisu Yi, Wa and other ethnic minorities live in mountainous areas. The cold weather in winter and year-round outdoor manual work makes it difficult to maintain their skin[35, 36]. In the face of this situation, the ethnic people who are concerned about their physical appearance have long ago chosen local Bletilla species for skin care, and have handed down this tradition for many generations[34]. This important traditional skin care tradition is worthy of further in-depth study.

    The six main classes of Bletilla chemical components, phenanthrene derivatives, phenolic acids, bibenzyls, flavonoids, triterpenoids, and steroids, have been described previously. Almost three hundred compounds have been isolated from Bletilla, including 116 phenanthrene derivatives, 58 phenolic acids, 70 bibenzyls, 8 flavonoids, 24 triterpenoids and steroid and 13 other compounds (Figs 514). Chemical structures of the isolates of Bletilla species most are phenanthrene derivatives, which have been demonstrated to possess various pharmacological activities.

    The prominent opioids oxycodone, hydrocodone, naloxone, and naltrexone are all phenanthrene derivatives[37]. Currently, phenanthrene derivatives (Fig. 5, 1 to 66) were isolated from B. formosana, B. ochracea, and B. striata. In 2022, 17 phenanthrene derivatives (117) were isolated from the ethyl acetate (EtOAc) extracts of B. striata tubers[38]. Then, other phenanthrene derivatives were isolated from Bletilla, such as dihydrophenanthrenes (1841), phenanthrenes (4266), biphenanthrenes (Fig. 6, 6789), dihydro/phenanthrenes with uniquestructures (90112) and phenanthraquinones (Fig. 7, 113116). Thus far, this genus has been documented to include these compounds, which have been shown to exhibit pharmacological actions[3945].

    Figure 5.  Phenanthrene derivatives from Bletilla species (1−66)[3841,4345,47,49,58,7072,7479].
    Figure 6.  Phenanthrene derivatives from Bletilla species (67−105)[41,43,49,5961,70,76,7986].
    Figure 7.  Phenanthrene derivatives from Bletilla species (106−116)[43,49,70,75,84,85,87].

    Phenolic acids are carboxylic acids created from the skeletons of either benzoic or cinnamic acids[4648]. Fifty-eight phenolic acids (Figs 810, 117 to 174) were isolated from B. formosana, B. ochracea, and B. striata.

    Figure 8.  Phenolic acids from Bletilla species (117−134)[1,5,36,4752,54,67,88,90].
    Figure 9.  Phenolic acids from Bletilla species (135−169)[39,45,4854,56,61,68,69,73,76,82,83,8994].
    Figure 10.  Phenolic acids from Bletilla species (170−174)[20,95].

    For example, compounds 121, 126, 139, 141, 148, 149, 154, 155 and 157 were isolated from the rhizomes of B. formosana[1,49,5052]. The structures of these compounds were determined, mostly from their NMR spectroscopy data. Additionally, protocatechuic (136) and vanillin (137) also have been isolated from B. striata[53]. Moreover, some bioactive components such as 2-hydroxysuccinic acid (164) and palmitic acid (165) have been discovered and identified from B. striata[20,5456].

    The bibenzyls were small-molecular substances with a wide range of sources, which were steroidal ethane derivatives and resembling the structural moiety of bioactive iso-quinoline alkaloids[57].

    For example, depending on their structural characteristics, 70 bibenzyl compounds (Fig. 11, 175 to 244) can be grouped into three groups, simple bibenzyls (175186, 233238), complex bibenzyls (189225) and chiral bibenzyls (226-232, 239-244)[5860].

    Figure 11.  Bibenzyls from Bletilla species (175-244)[1,4042,47,49,50,5860,70,73,76,9699].

    Flavonoids are among the most common plant pigments. Eight bibenzyls (Fig. 12, 245 to 252) have been isolated from B. formosana, B. ochracea, and B. striata. Apigenin (245) and 8-C-p-hydoxybenzylkaempferol (249) were isolated from the whole plant of B. formosana[45]. Bletillanol A (250), bletillanol B (251) and tupichinol A (252) were isolated from B. striata[61]. The names and chemical structures of the flavonoids reported from Bletilla are shown below (Fig. 12).

    Figure 12.  Flavonoids from Bletilla species (245–252)[45,61].

    Twenty-four triterpenoids and steroids (Fig. 13, 253 to 276) have been reported from Bletilla (Fig. 13), such as, tetracyclic triterpenes (253259) and pentacyclic triterpenes (189225) and chiral bibenzyls (260)[6264]. Steroids (261276) isolated from the Bletilla and have shown some bioactivity. For example, bletilnoside A (272) was isolated from Bletilla species and displayed anti-tumor activity[65,66].

    Figure 13.  Triterpenoids and steroid compounds from Bletilla species (253-276)[56,6265].

    Thirteen other compounds (Fig. 14, 277 to 289) were isolated from B. formosana, B. ochracea, and B. striata. These compounds included amino acids, indoles and anthraquinones[67,68]. For example, syringaresinol (285) and pinoresinol (286) have been described in the methanol extract of the tubers of B. striata[61].

    Figure 14.  Others compounds from Bletilla species (277−289)[50,54,61,62,67,68,94,97].

    Based on the information about the chemical constituents of Bletilla species, it appears that there is a substantial body of research on these compounds. However, there are some areas that may warrant further investigation and research. At first, it would be valuable to investigate potential synergistic effects and interactions between the different classes of compounds within Bletilla species, as some of the compounds may work together. Besides, it is worth considering the improvement of compound yield. Optimizing extraction methods and finding the most efficient and environmentally friendly techniques are vital for both research purposes and potential commercial applications. It is also important to take into account the variability in chemical composition among different Bletilla species and even within the same species from different cultivars.

    The rich and varied chemical components make the plants of Bletilla have a wide variety of pharmacological activities (Table 4). Many studies have shown that the plants of this genus have anti-inflammatory, antineoplastic, antiviral, antioxidant, hemostatic, antibacterial, and other biological activities, which help to support the traditional medicinal practice of Bletilla in folk medicine.

    Table 4.  Summary of the pharmacological activities of Bletilla species.
    Pharmacological activityTested substance/partTested system/organ/cellTested dose/dosing methodResultsRefs.
    Anti-inflammatoryEthanol extract of Bletilla striataRAW264.7 cells RAW264.7 cells were pre-treated with ethanol extract of B. striata for 1 h and then stimulated with LPS (200 ng/mL) for 12 h, 0.05% DMSO was applied as the parallel solvent control. The culture supernatant was collected for IL-6 and TNF-α detection.Ethanol extract of B striata significantly inhibited LPS-induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression at 2.5 µg/mL.[41]
    The ethyl acetate-soluble (EtOAc) extract of tubers of B. striataH2O2-induced PC12 cell injury modelPC12 cells were seeded in 96-well multiplates at a density of 1.5 × 105 cells/mL. After overnight incubation at 37 °C with 5% CO2, 10 μM test samples and H2O2 (final concentration of 450 μM) were added into the wells and incubated for another 12 h.It protected the cells with the cell viabilities of 57.86 ± 2.08%, 64.82 ± 2.84%, and
    64.11 ± 2.52%.
    [98]
    Ethanol extract of tubers of B. striataRAW264.7 cellsCells were treated with ethanol extracts (25 μM) dissolved in DMSO, in the presence of
    1 μg/mL lipopolysacchride
    (LPS) for 18 h
    The anti-inflammatory activity with IC50 of 2.86 ± 0.17 μM.[54]
    PE extract of the tubers of B. striataLPS-stimulated BV2 cellsCells treated with extract
    (0, 1, 10, 30, 100 μg/mL) and dihydropinosylvi (0, 1, 10, 30, 100 μM) in presence of LPS
    (1 μg/mL)
    The anti-inflammatory activity with IC50 values of 96.0 μM.[96]
    Ethanol extract of the roots of B. striataCox-1 and Cox-2Treated with the ethanol extracts at various concentrations
    (0, 1, 10, 100 μM)
    The compounds with sugar moieties displayed selective inhibition of Cox-2 (N90%).[38]
    B. striata polysaccharide (BSPb)Human mesangial cells (HMCs)HMCs were pre-treated with BSPb (5, 10, 20 μg/mL)BSPb efficiently mediated expression of NOX4 and TLR2, to attenuate generation of ROS and inflammatory cytokines.[12]
    Compounds extracted from the rhizomes of Bletilla ochraceaRAW264.7 cellsAfter 24 h preincubation,
    cells were treated with serial dilutions in the presence of
    1 μg/mL LPS for 18 h. Each compound was dissolved in DMSO and further diluted in medium to produce different concentrations. NO production in the supernatant was assessed by adding 100 μL of Griess regents.
    It showed the inhibitory effects with IC50 values in the range of 15.29–24.02 μM.[76]
    Compounds extracted from the rhizomes of B. ochraceaMurine monocytic RAW264.7 cellsAfter 24 h preinubation, RAW 264.7 cells were treated with compounds (25 μM) dissolved in DMSO, in the prenence of
    1 μg/mL LPS for 18 h. NO production in each well was assessed by adding 100 μL of Giress regent
    It showed the inhibitory effects with IC50 2.86 ± 0.17 μM.[86]
    Compounds extracted from the rhizomes of Bletilla formosanaElastase Release AssaysNeutrophils (6 × 105 cells/mL) were equilibrated in MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide (100 μM) at 37 °C for 2 min and then incubated with a test compound or an equal volume of vehicle (0.1% DMSO, negative control) for 5 min.Most of the isolated compounds were evaluated for their anti-inflammatory activities. The results showed that IC50 values for the inhibition of superoxide anion generation and elastase release ranged from 0.2 to 6.5 μM and 0.3 to 5.7 μM, respectively.[49]
    Anti-tumorTwo compounds from Bletilla striataA549 cellsCompounds were tested for their ability to induce ROS generation in A549 cells at concentrations of 20 two compounds for 24 h, the cells were harvested to evaluate the ROS production.The two compounds exhibited antiproliferative effects using the MTT test; these effects may be due to cell cycle arrest and inducing ROS generation.[87]
    Stilbenoids from B. striataBCRP-transduced K562 (K562/BCRP) cellsIt showed antimitotic activity and inhibited the polymerization of tubulin at IC50 10 μM.[78]
    Compounds extracted from the rhizomes of B. ochraceaThe human tumor cell lines HL-60 (acute leukemia), SMMC-7721 (hepatic cancer), A-549 (lung cancer), MCF-7 (breast cancer), and SW480 (colon cancer)100 μL of adherent cells were seeded into each well of 96-well cell culture plates. After 12 h of incubation at 37 °C, the test compound was added. After incubated for 48 h, cells were subjected to the MTS assay.All isolated metabolites except 7 were evaluated for cytotoxic activity against five human cancer cell lines (HL-60, SMMC7721, A-549, MCF-7 and SW480).[76]
    AntiviralThe tuber of B. striataMadin-Darby canine kidney model and embryonated eggs modelAs simultaneous treatment with 50% inhibition concentration (IC50) ranging from 14.6 ± 2.4 to 43.3 ± 5.3 μM.Phenanthrenes from B. striata had strong anti-influenza viral activity in both embryonated eggs and MDCK models.[107]
    The 95% ethanol
    Extract of B. striata
    BALB/C miceIt has significant anti-influenza
    virus effect in mice, which may be related to the increase of IL-2, INFα, INF-β and thus enhance the immune function of mice.
    [12]
    AntioxidantCompounds extracted from the rhizomes of B. formosanaDPPH radical-scavenging assaySolutions containing 160 μL of various concentrations of sample extract, 160 μL of various concentrations of BHA, 160 μL of various concentrations of ascorbic acid, and the control (160 μL of 75% methanol) were mixed separately with 40 μL of 0.8 mM DPPH dissolved in 75% methanol. Each mixture was shaken vigorously and left to stand for 30 min at room temperature in the dark.Tthe seedlings grown by tissue culture of B. formosan collected in Yilan County had the best antioxidant capacity. In addition, B. formosana collected in Taitung County had the best scavenging capacity in the tubers, leaves and roots.[93]
    Fibrous roots of B. striataDPPH model and superoxide anion systemThe ABTS+ solution was prepared by reacting 7 Mm ABTS with 2.45 mM potassium persulfate (final concentrations both dissolved in phosphate buffer, 0.2 M, pH 7.4) at room temperature for 12–16 h in the dark.It removed free radicals and inhibit tyrosinase activity.[33]
    B. striata extracts (BM60)The murine macrophage cells NR8383, male SD mice (180~200 g)NR8383 were pretreated with extracts (1, 10 and 100 g/mL) for 4 h and then 65 stimulated with 1 g/mL of LPS for 24 h. Acute lung injury was induced in mice by nonhexposure intratracheal instillation of LPS (3.0 mg/kg). Administration of the BM60 extract of 35, 70, and 140 mg/kg (L, M, H) was performed by oral gavages.The BM60 treatment reduced the production of NO in NR8383 macrophages. Treatments with BM60 at the doses of 35, 70, 140 mg/kg significantly reduced macrophages and
    neutrophils in the bronchoalveolar lavage fluid (BALF).
    [12]
    The crude
    polysaccharides obtained from B. striata
    DPPH free radical scavenging activityConcentration
    range of 2.5–5.0 mg/mL
    The IC50 of BSPs-H was 6.532 mg/mL.[35]
    HemostasisB. striata polysaccharide (BSP)Diabetes mellitus (DM) mouse models were induced by high fat-diet feeding combined with low-dose streptozocin injectionDM mouse models were induced by high fat-diet feeding combined with low-dose streptozocin injection. The BSP solutions were applied on the surface of each wound at a volume of 50 μl. RD mice were assigned as normal controls and received saline treatment (n = 6). All mice were treated with vehicle or BSP once daily from the day of wounding (d0) until 12 days later (d12).BSP administration accelerated diabetic wound healing, suppressed macrophage infiltration, promoted angiogenesis, suppressed NLRP3 inflammasome activation, decreased IL-1β secretion, and improved insulin sensitivity in wound tissues in DM mice.[112]
    B. striata Micron Particles (BSMPs)Tail amputation model and healthy male Sprague-Dawley (SD) rats
    (250 ± 20 g, 7 weeks of
    age)
    Rats were divided into six groups of five treated with cotton gauze and BSMPs (350–250, 250–180, 180–125, 125–75, and < 75 μm), respectively.Compared to other BSMPs of different size ranges, BSMPs of 350–250 μm are most efficient in hemostasis. As powder sizes decrease, the degree of aggregation between particles and hemostatic BSMP effects declines.[109]
    Rhizoma Bletillae polysaccharide (RBp)Adult male SD rats weighing 220 ± 20 gAfter incubation for 1 min at 37 °C, 300 μL of PRP was dealt with different concentrations of RBp (50, 100, 150, and 200 mg/L) under continuous stirring, and the vehicle was used as the blank control.RBp significantly enhanced the platelet aggregations at concentrations of 50−200 mg/L in a concentration-dependent manner.[113]
    AntibacterialBibenzyl derivatives from the tubers of Bletilla striataS. aureus ATCC 43300, Bacillus subtilis ATCC 6051, S. aureus ATCC 6538 and Escherichia coli ATCC 11775Using a microbroth dilution method, bacteria were seeded at
    1 × 106 cells per well (200 μL) in a
    96-well plate containing Mueller-Hinton broth with different concentrations (from 1 to 420 μg/mL, 300 μg/mL and so on;
    2-fold increments) of each test compound.
    It showed inhibitory activities with MIC of (3–28 μg/mL) against S. aureus ATCC6538[116]
    The crude extract of B. striataS. album, A. capillaris, C. cassiaThey were seeded at 1 × 106 cells per well (200 μL) in a 96-well plate containing Mueller−Hinton broth (meat extracts 0.2%, acid digest of casein 1.75%, starch 0.15%) with different concentrations (from 1 to 128 μg/mL; 2-fold increments) of each test compound.It showed S. album (0.10%), A. capillaris (0.10%), and C. cassia (0.10%) to have the strongest antibacterial properties.[118]
    The ethyl acetate-soluble (EtOAc) extract of tubers of B. striataS. aureus ATCC 43300, S. aureus ATCC 6538, and Bacillus subtilis ATCC 6051) and Escherichia coli ATCC 11775)Bacteria were seeded at 1 × 106 cells per well (200 μL) in a 96-well plate containing Mueller Hinton broth with different concentrations (from 1 to 420 μg/ml; 2-fold increments) of each test compound.The extract was effective against three Gram-positive bacteria with minimum inhibitory concentrations (MICs) of 52–105 μg/ml.[98]
    The phenanthrene fraction (EF60) from the ethanol extract of fibrous roots of Bletilla striata pseudobulbsS. aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 43300, E. coli ATCC 35218, and P. aeruginosa ATCC 27853, Bacillus subtilis 168EF60 was active against all tested strains of Staphylococcus aureus, including clinical isolates and methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentration (MIC) values of EF60 against these pathogens ranged from 8 to 64 μg/mL.EF60 could completely kill S. aureus ATCC 29213 at 2× the MIC within 3 h but could kill less than two logarithmic units of ATCC 43300, even at 4× the MIC within 24 h. The postantibiotic effects (PAE) of EF60 (4× MIC) against strains 29213 and 43300 were 2.0 and 0.38 h, respectively.[117]
    Anti-adhesiveBletilla striata extraction solutionPPA was induced by cecal wall abrasion, and Bletilla striata was injected to observe its efect on adhesion in ratsThe rats in the sham operation group was not treated; the other rats of the three experimental groups were intraperitoneally injected with 8 ml of phosphate-buffered saline (Control group), 15% Bletilla striata extraction solution (BS group), and 0.2% hyaluronic acid solution (HA group), respectively.Bletilla striata decreased the development of abdominal adhesion in abrasion-induced model of rats and reduced the expression of the important substance which increased in PPAs.[120]
    ImmunomodulatoryB. striata polysaccharide (BSPF2)Mouse spleen cellsTo observe the immune activity of BSPF2, mouse spleen cells were stimulated with BSPF2 at 10–100 g/mL for 72 h.Immunological assay results demonstrated that BSPF2 significantly induced the spleen cell proliferation in a dose-dependent manner.[121]
    Anti-pulmonary fibrosisB. striata polysaccharideClean grade male SD ratsSD rats were randomly divided into 5 groups, sham operation group (equal volume of normal saline), model group (equal volume of normal saline), tetrandrine positive control (24 mg/kg) group and white and Polysaccharide low
    (100 mg/kg) and high (400 mg/kg) dose groups.
    The Bletilla striata polysaccharide has remarkable regulation effect on anti-oxidation system and immune system, but cannot effectively prevent lung fibrosis.[127]
    Small molecule components of Bletilla striataClean grade male SD ratsSD rats were randomly divided into 5 groups, sham operation group (0.5 mL normal saline), model group (0.5 mL normal saline), and positive control group (tetrandrine 24 mg/kg) and low (20 mg/kg) and high (40 mg/kg) dosage groups of the small molecule pharmacological components of Bletilla, which were administered by gavage once a day for 2 consecutive months.The small molecule components of Bletilla striata can effectively prevent lung fibrosis though regulating the anti-oxidation system,immune system and cytokine level; SMCBS is one of the active components of Bletilla striata on silicosis therapy[124]
    —, not given.
     | Show Table
    DownLoad: CSV

    Many phytochemicals have been well characterized to lessen swelling or inflammation[89]. A series of phenolic acid and polysaccharide compounds isolated from Bletilla demonstrated anti-inflammatory bioactivity against BV-2 microglial, RAW 264.7, and PC12 cells[96,100102]. For example, phochinenin K (106) exhibited growth inhibitory effects with an IC50 of 1.9 μM, and it is a possible candidate for development as neuroinflammation inhibitory agent[43]. Using the H2O2-induced PC12 cell injury model, (7S)-bletstrin E (242), (7R)-bletstrin F (243) and (7S)-bletstrin F (244) could clearly protect the cells with the cell viabilities of 57.86% ± 2.08%, 64.82% ± 2.84%, and 64.11% ± 2.52%, respectively[98]. With an IC50 of 2.86 ± 0.17 μM, 2,7-dihydroxy-4-methoxyphenanthrene (53) showed potential action against NO generation in RAW 264.7 macrophages[54]. The use of Bletilla in traditional skin care, it is said to function as an astringent, hemostatic and wound healing[33]. Modern medical pharmacology research has validated that this plant has antibacterial effects, which may may help to explain, in part, its traditional use in skin care[24].

    Though it's mentioned that some of these compounds from Bletilla have demonstrated anti-inflammatory action, more extensive studies are needed to fully understand their mechanisms of action, potential therapeutic applications, and safety profiles. Conducting in vivo studies and clinical trials can provide more concrete evidence of their effectiveness.

    There are important antineoplastic agents that have originated from plant natural products[103]. In recent years, several bibenzyl and flavonoid compounds have been discovered from Bletilla that have antineoplastic activity against A549 cells and other cells. For example, 7-hydroxy-2-methoxy-phenanthrene-3,4-dione (160) and 3′,7′,7-trihydroxy-2,2′,4′-trimethoxy-[1,8′-biphenanthrene]-3,4-dione (163) have shown strong antiproliferative effects and induced ROS production after 24 h in A549 cells[87]. The doxorubicin (Dox)/FA (folate)-BSP-SA (stearic acid) modified Bletilla striata polysaccharide micelles boosted the drug enrichment in tumors and improved the in vivo anticancer effects[104,105]. Micelles, nanoparticles, microspheres, and microneedles are examples of B. striata polysaccharide-based drug delivery systems that exhibit both drug delivery and anti-cancer functionality. These experiments confirmed that some of the compounds isolated from the Bletilla have potential activity for the treatment of cancer.

    However, most of the evidence presented in the previous studies is based on in vitro experiments or cell culture studies. It is highly necessary to use animal models to study the in vivo anti-tumor effects of Bletilla extracts or compounds. These studies can help evaluate the safety and effectiveness of treatments based on Bletilla. Additionally, through such methods, researchers can further investigate the mechanisms of Bletilla's anti-tumor activities, exploring how Bletilla compounds interact with cancer cells, immune responses, and signaling pathways involved in tumor growth and metastasis.

    Antiviral medications are essential for preventing the spread of illness, and are especially important nowadays with pandemics and drug-resistant viral strains[5, 6]. Therefore, it is vitally necessary to find novel, safe, and effective antiviral medications to treat or prevent viral infections[106]. B. striata plant contains compounds that have been recorded in ancient texts to cure cough, pneumonia, and skin rashes, and these may be related to potential antiviral constituents[23]. Some constituents of B. striata have antiviral activity, for example, phenanthrenes and diphenanthrenes from B. striata displayed potent anti-influenza viral in a Madin-Darby canine kidney model and embryonated eggs model, diphenanthrenes with parentally higher inhibitory activity than monophenanthrenes[107]. But more research is needed to further determine the antiviral activity of Bletilla, understand how Bletilla compounds interact with viral proteins or the host immune response, and conduct safety and toxicity studies, which are crucial for the development of related materials.

    Free radicals have the potential to exacerbate lipid peroxidation and harm cell membranes, which can lead to several prevalent human diseases, including cancer, cataracts, and coronary heart disease[108]. Research has shown that extracts from Bletilla possess strong antioxidant activity. However, this antioxidant activity can vary depending on the different growing environments of the plant. Additionally, the antioxidant capabilities of extracts from different parts of the Bletilla plant also vary[93]. Clinical studies have shown that traditional Chinese medicine formulas containing Bletilla can inhibit tyrosinase activity and possess antioxidant properties, thus resulting in skin-whitening effects[108]. Furthermore, some research reveals that the polysaccharides in the plant exhibit significant antioxidant activity, effectively scavenging free radicals and inhibiting tyrosinase activity[33]. This highlights the skin-whitening potential of the fibrous root of Bletilla striata, indicating promising prospects for the comprehensive utilization of the B. striata plant[33]. However, most studies on the pharmacological activities of Bletilla have focused solely on B. striata, neglecting other species within the genus. Different species may possess varying phytochemical compositions and antioxidant properties, which can lead to an incomplete understanding of the genus as a whole.

    Available hemostatic agents are expensive or raise safety concerns, and B. striata may serve as an inexpensive, natural, and promising alternative[109]. Polysaccharides of B. striata displayed hemostatic activity through inhibition of the NLRP3 inflammasome[110112]. The ADP receptor signaling pathways of P2Y1, P2Y12, and PKC receptors may be activated as part of the hemostasis[113]. Alkaloids from Bletilla have hemostatic activities through platelet deformation, aggregation, and secretion. In addition, polysaccharides of Bletilla striata have potential wound-healing medicinal value[110]. Currently, Bletilla plants have been used in various traditional systems, such as traditional Chinese medicine and Ayurveda, to control bleeding.

    Previous studies revealed that Bletilla displayed antibacterial effects[114]. For example, bletistrin F, showed inhibitory activities with MIC of (3–28 μg/mL) against S. aureus ATCC 6538[115,116]. Antimicrobial screening of Bletilla showed S. album (0.10%), A. capillaris (0.10%), and C. cassia (0.10%) to have the strongest antibacterial properties[117,118]. In addition, phenanthrenes are worthy of further investigation as a potential phytotherapeutic agent for treating infections caused by S. aureus and MRSA[119]. However, further in vivo studies on the antibacterial activity of Bletilla are lacking, which is needed for clinical application. For example, the specific mechanism of antibacterial activity of Bletilla still needs to be elucidated. While research on the antibacterial activity of Bletilla plants is promising, it faces several shortcomings and challenges that need to be addressed for a more comprehensive understanding of their potential therapeutic applications. Further studies with standardized methodologies, mechanistic insights, clinical trials, and consideration of ecological and safety concerns are essential to advance this field.

    There are other pharmacological activities of Bletilla, like anti-fibrosis activity, anti-adhesive activity, and immunomodulatory activity. For example, B. striata has been studied as a new and cheaper antiadhesive substance which decreased the development of abdominal adhesion abrasion-induced model in rats[120]. However, the natural resources of Bletilla are also getting scarcer. To preserve the sustainable development of Bletilla species, proper farming practices are required, along with the protection and economical use of these resources. The immunomodulatory activity of the Bletilla species was assessed using the 3H-thymidine incorporation method test, and BSP-2 increased the pinocytic capacity and NO generation, which improved the immunomodulatory function[121,122].

    B. striata extract was shown to have anti-pulmonary fibrosis effect[123]. B. striata polysaccharide can successfully prevent lung fibrosis through established by invasive intratracheal instillation method and evaluated by lung indexes[123,124]. Moreover, Bletilla species need further investigations to evaluate their long-term in vivo and in vitro activity before proceeding to the development of pharmaceutical formulation.

    While there is currently a deep understanding of the pharmacological activity of plants in the Bletilla genus, there are still many gaps that need to be addressed. To overcome these shortcomings, future research on the pharmacological activity of Bletilla species should emphasize comprehensive, well-designed studies with a focus on species-specific effects, mechanistic insights, and rigorous clinical trials. Additionally, collaboration among researchers, standardization of methods, and transparent reporting of results can help advance our understanding of the therapeutic potential of Bletilla plants. Researchers should also consider safety aspects and explore potential herb-drug interactions to ensure the responsible use of Bletilla-based therapies.

    There are several common clinical applications of Bletilla striata in TCM. The gum of B. striata has unique viscosity characteristics and can be used as thickener, lubricant, emulsifier and moisturizer in the petroleum, food, medicine, and cosmetics industries[125130]. B. striata is used as a coupling agent, plasma substitute, preparation adjuvant, food preservative and daily chemical raw material[131133]. In clinical practice, B. striata glue has also been proven to control the infections and is beneficial to the healing of burns and wounds[133135].

    In ethnic communities in Southwest China, the locals chew fresh Bletilla tubers directly or take them orally after soaking in honey to treat cough, pneumonia and other diseases[33, 34]. This traditional use is common in local communities in Southwest China, and suggests at the safety of Bletilla. However, current research shows it is still necessary to control the dosage when using Bletilla[136].

    Zebrafish embryos and larvae respond to most drugs in a manner similar to humans[137]. Militarine, the main active ingredient of Bletilla, was tested in a zebrafish embryo development assay at concentrations of 0.025 g/L and 0.05 g/L, and with the increased concentration, the heart rate of zebrafish embryos is slowed. Mortality and malformation rates of zebrafish embryos gradually increased with time and militarine concentration[138]. Although Bletilla species are safe at therapeutic dose ranges, further research on their safety is required[136]. More in-depth studies should be carried out on Bletilla to extract effective ingredients and make better preparations for clinical use[139].

    According to the traditional medicinal knowledge in ancient Chinese texts, Bletilla has been an important ingredient for skin care since ancient times. Many ethnic minority groups in China still retain the practice of using Bletilla for skin care, and the plant parts and preparation methods of use are consistent with the records in ancient texts. Almost 300 phytochemicals have been identified from Bletilla, and some of them possess important pharmacological activities, which support its traditional uses and suggest the important medicinal development potential of this genus. This review has demonstrated that Bletilla, as an important medicinal plant of Orchidaceae, still requires further research to fathom its medicinal potential.

    For instance, it is necessary to enhance the quality control procedures based on the chemical components and pharmacological activity of Bletilla. The chemical composition and pharmacological properties of Bletilla are critical areas of current research. According to previous studies, the main bioactive components of Bletilla can vary greatly according to its origin, harvest time, distribution, storage, and adulteration. However, variation in bioactivities caused by the differences in Bletilla constituentshave not been explored extensively yet. To develop clinical applications of Bletilla, it is crucial to further explore the mechanism of action between its chemical composition variation and its pharmacological actions.

    In addition, although the tuber has historically been the main medicinal part of Bletilla, research has shown that the chemical composition in other parts of Bletilla, such as stems, leaves, and flowers, also give these parts a variety of pharmacological activities. Further in-depth analysis of the chemical components and pharmacological activities of different parts of this genus is worthwhile, to explore the specific chemical basis of its pharmacological activities, develop related drugs, and promote clinical applications. For example, Bletilla polysaccharide has good hemostasis and astringent wound effects[110], so it may have the potential to be developed into a drug or related medical materials to stop bleeding and heal wounds.

    Finally, as a cautionary note, many unrestrained collections and the destruction of habitats have made the resources of wild Bletilla rarer. In addition to protecting the wild populations of Bletilla, appropriate breeding techniques should be adopted to meet the commercial needs of this economically important genus, thereby allowing its sustainable use in commerce.

    The authors confirm contribution to the paper as follows: study conception and design, funding acquirement: Long C; data analysis, draft manuscript preparation, literature review: Fan Y, Zhao J; manuscript revise and language editing: Wang M, Kennelly EJ, Long C. All authors reviewed the results and approved the final version of the manuscript.

    The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation, to any qualified researcher. Requests to access these datasets should be directed to Yanxiao Fan (fanyanxiao0510@163.com).

    This research was funded by the Yunnan Provincial Science and Technology Talent and Platform Plan (202305AF150121), Assessment of Edible & Medicinal Plant Diversity and Associated Traditional Knowledge in Gaoligong Mountains (GBP-2022-01), the National Natural Science Foundation of China (32370407, 31761143001 & 31870316), China Scholarship Council (202206390021), and the Minzu University of China (2020MDJC03, 2022ZDPY10 & 2023GJAQ09).

  • The authors declare that they have no conflict of interest.

  • [1]

    Are KS. 2019. Biochar and soil physical health. In Biochar - An Imperative Amendment for Soil and the Environment, eds. Abrol V, Sharma P. London, United Kingdom: Intechopen. pp. 21–33. doi: https://doi.org/10.5772/intechopen.83706

    [2]

    Asio VB, Jahn R, Perez FO, Navarrete IA, Abit SM Jr. 2009. A review of soil degradation in the Philippines. Annals of Tropical Research 31(2):69−94

    doi: 10.32945/atr3124.2009

    CrossRef   Google Scholar

    [3]

    Tejada M, Garcia C, Gonzalez JL, Hernandez MT. 2006. Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry 38(6):1413−21

    doi: 10.1016/j.soilbio.2005.10.017

    CrossRef   Google Scholar

    [4]

    Bitew Y, Alemayehu M. 2017. Impact of crop production inputs on soil health: a review. Asian Journal of Plant Sciences 16(3):109−31

    doi: 10.3923/ajps.2017.109.131

    CrossRef   Google Scholar

    [5]

    Ross SM. 1993. Organic matter in tropical soils: current conditions, concerns and prospects for conservation. Progress in Physical Geography 17(3):265−305

    doi: 10.1177/030913339301700301

    CrossRef   Google Scholar

    [6]

    Guo M, He Z, Uchimiya SM. 2016. Introduction to biochar as an agricultural and environmental amendment. In Agricultural and environmental applications of biochar: Advances and barriers, eds. Guo M, He Z. vol. 63. Uchimiya, Madison, USA: SSSA Special Publication. pp. 1–14. https://doi.org/10.2136/sssaspecpub63.2014.0034

    [7]

    Renner R. 2007. Rethinking biochar. Environmental science & Technology 41:5932−33

    doi: 10.1021/es0726097

    CrossRef   Google Scholar

    [8]

    UK Biochar Research Centre. 2020. What is Biochar? www.biochar.ac.uk/what_is_biochar.php.

    [9]

    Cole E, Herbert S, Hashemi M, Xing B. 2015. Enhancing Soil Health with Hardwood Biochar. https://ag.umass.edu/sites/ag.umass.edu/files/research-reports/Enhancing%20Soil%20Health%20with%20Hardwood%20Biochar.pdf

    [10]

    Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, et al. 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters 12(5):053001

    doi: 10.1088/1748-9326/aa67bd

    CrossRef   Google Scholar

    [11]

    Alkharabsheh HM, Seleiman MF, Battaglia ML, Shami A, Jalal RS, et al. 2021. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 11(5):993

    doi: 10.3390/agronomy11050993

    CrossRef   Google Scholar

    [12]

    Verheijen F, Jeffery S, Bastos AC, Van der Velde M, Diafas I. 2010. Biochar application to soils - A critical scientific review of effects on soil properties, processes, and functions. Technical Report. EUR 24099(162). pp. 2183–207. https://doi.org/10.2788/472

    [13]

    Biederman LA, Harpole WS. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5(2):202−14

    doi: 10.1111/gcbb.12037

    CrossRef   Google Scholar

    [14]

    Obia A, Cornelissen G, Mulder J, Dörsch P. 2015. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils. PLoS One 10(9):e0138781

    doi: 10.5061/dryad.m8q78

    CrossRef   Google Scholar

    [15]

    Quilliam RS, Marsden KA, Gertler C, Rousk J, DeLuca TH, et al. 2012. Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agriculture, Ecosystems & Environment 158:192−99

    doi: 10.1016/j.agee.2012.06.011

    CrossRef   Google Scholar

    [16]

    Varela Milla O, Rivera EB, Huang WJ, Chien CC, Wang YM. 2013. Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. Journal of Soil Science and Plant Nutrition 13(2):251−66

    doi: 10.4067/S0718-95162013005000022

    CrossRef   Google Scholar

    [17]

    Wang T, Camps-Arbestain M, Hedley M, Bishop P. 2012. Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357(1):173−87

    doi: 10.1007/s11104-012-1131-9

    CrossRef   Google Scholar

    [18]

    Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19(1):191−215

    doi: 10.1007/s11157-020-09523-3

    CrossRef   Google Scholar

    [19]

    Adekiya AO, Agbede TM, Olayanju A, Ejue WS, Adekanye TA, et al. 2020. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. The Scientific World Journal 2020:9391630

    doi: 10.1155/2020/9391630

    CrossRef   Google Scholar

    [20]

    Shi W, Ju Y, Bian R, Li L, Joseph S, et al. 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment 701:134424

    doi: 10.1016/j.scitotenv.2019.134424

    CrossRef   Google Scholar

    [21]

    Gamage DNV, Mapa RB, Dharmakeerthi RS, Biswas A. 2016. Effect of rice-husk biochar on selected soil properties in tropical Alfisols. Soil Research 54(3):302−10

    doi: 10.1071/SR15102

    CrossRef   Google Scholar

    [22]

    Blanco-Canqui H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal 81(4):687−711

    doi: 10.2136/sssaj2017.01.0017

    CrossRef   Google Scholar

    [23]

    Mukherjee A, Lal R. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313−39

    doi: 10.3390/agronomy3020313

    CrossRef   Google Scholar

    [24]

    Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G. 2016. Long-term effects of biochar on soil physical properties. Geoderma 282(2016):96−102

    doi: 10.1016/j.geoderma.2016.07.019

    CrossRef   Google Scholar

    [25]

    Aslam Z, Khalid M, Aon M. 2017. Impact of biochar on soil physical properties impact of biochar on soil physical properties. Scholarly Journal of Agricultural Science 4(5):280−84

    Google Scholar

    [26]

    Lema B, Mesfin S, Kebede F, Abraha Z, Fitiwy I, et al. 2019. Evaluation of soil physical properties of long-used cultivated lands as a deriving indicator of soil degradation, north Ethiopia. Physical Geography 40(4):323−38

    doi: 10.1080/02723646.2019.1568148

    CrossRef   Google Scholar

    [27]

    Chang Y, Rossi L, Zotarelli L, Gao B, Shahid MA, et al. 2021. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture 8:7

    doi: 10.1186/s40538-020-00204-5

    CrossRef   Google Scholar

    [28]

    Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E. 2012. Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology 42(22):2311−64

    doi: 10.1080/10643389.2011.574115

    CrossRef   Google Scholar

    [29]

    Asadi H, Ghorbani M, Rezaei-Rashti M, Abrishamkesh S, Amirahmadi E, et al. 2021. Application of rice husk biochar for achieving sustainable agriculture and environment. Rice Science 28(4):325−43

    doi: 10.1016/j.rsci.2021.05.004

    CrossRef   Google Scholar

    [30]

    Warnock DD, Lehmann J, Kuyper TW, Rillig MC. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil 300:9−20

    doi: 10.1007/s11104-007-9391-5

    CrossRef   Google Scholar

    [31]

    Shakoor A, Shahzad SM, Chatterjee N, Arif MS, Farooq TH, et al. 2021. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis Journal of Environmental Management 285:112170

    doi: 10.1016/j.jenvman.2021.112170

    CrossRef   Google Scholar

    [32]

    Sorrenti G. 2015. Biochar in perennial crops: nutritional, agronomical and environmental implications. Thesis. University of Bologna, Italy. pp: 1–291. https://doi.org/10.6092/unibo/amsdottorato/7129

    [33]

    Safaei Khorram M, Zhang G, Fatemi A, Kiefer R, Maddah K, et al. 2019. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4-year field study. Journal of the Science of Food and Agriculture 99(4):1862−69

    doi: 10.1002/jsfa.9380

    CrossRef   Google Scholar

    [34]

    Abo-Ogiala A. 2018. Impact of biochar on vegetative parameters, leaf mineral content, yield and fruit quality of Grande Naine Banana in saline-sodic soil. Egyptian Journal of Horticulture 45:315−30

    doi: 10.21608/ejoh.2018.4754.1074

    CrossRef   Google Scholar

    [35]

    Gondim R, Maia A, Taniguchi C, Muniz C, Araujo TA. et al. 2022. Beneficial effect of biochar on irrigated dwarf-green coconut tree. Atmosphere 13(1):51

    doi: 10.3390/atmos13010051

    CrossRef   Google Scholar

  • Cite this article

    Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?. Technology in Agronomy 3:4 doi: 10.48130/TIA-2023-0004
    Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?. Technology in Agronomy 3:4 doi: 10.48130/TIA-2023-0004

Article Metrics

Article views(3850) PDF downloads(643)

PERSPECTIVE   Open Access    

Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?

Technology in Agronomy  3 Article number: 4  (2023)  |  Cite this article

Abstract: Soil quality improvement is crucial in tropical soils to enhance crop productivity. Organic matter incorporation is not a viable approach regarding perennials as it completely degrades within a year. Hence, biochar is a sustainable solution to boost crop productivity in the tropics. Biochar has been utilized in agriculture for decades due to its inherent properties that enhance the soil-mediated properties associated with soil fertility. The impact of biochar on tropical perennial intensive cropping systems has been understudied, possibly because of the high initial input demand. This paper highlights the facts related to soil chemical, physical, and biological property enhancement upon biochar incorporation relating to long-term impacts on perennial crops.

    • Assessing the degradation of a specific soil and the long-term viability of a particular agricultural practice based on chemical, physical, and biological factors is referred to as 'soil health'[1]. Soil health that is physically impoverished can be identified by reduced water infiltration, increased surface runoff, inadequate root penetration, and insufficient aeration. Acidification, salinization, and heavy nutrient leaching are a few attributes of chemically degraded soil[2]. Multiple strategies were presumed for restoring degraded soil, including amending with organic manure, compost, leafy manure, vermicompost, and various soil amendments[3]. Whereas organic amendments improve the soil health and fertility[4], high decomposition rate of organic manure in tropical climates is only possible through the continuous application of organic amendments[5]. This creates a huge challenge for farmers due to the large quantity requirements and associated high costs in application for perennial plants. As biochar contains a high proportion of recalcitrant carbon that can contribute to the biological cycling of nutrients, it is a promising and cost-effective option for rehabilitating less fertile soils[6].

    • Biochar often referred to as 'Black Gold' is a promising soil amendment used in agriculture that enhances crop productivity and reduces the need for fertilizer[7]. The UK Biochar Research Centre has defined it using a broader term; 'porous solid carbon material produced thermo chemically converting organic matter in a minimal oxygen condition and which is physiologically suitable to store C and improve soil'[8]. Biochar has been used as an amendment in many cropping systems to improve soil health, soil fertility, crop productivity, and cleaning of contaminated water and agricultural soils[911]. In general, it improves soil fertility by modifying the soil physical, chemical, and biological properties, consequently maximizing crop growth and yield.

    • Literature demonstrates that biochar amendment improves soil nutrient availability through the liming effect and accelerated decomposition of soil organic matter[10,1214]. Biochar improves total N, P, and CEC availability while lowering toxic metal availability[7,1517] in addition, it increases soil pH which enhances the nutrient availability to the plants[18]. It has been discovered that biochar was effective in absorbing NH+4 and NH3 as well as other soluble nutrients such as NO3, PO4, and ionic compounds from soil solutions[19]. Electrostatically charged surfaces of biochar retain nutrients limiting the losses of nutrients by various means (i.e. leaching, fixation, and volatilization). Furthermore, high recalcitrant C content, CEC, moisture, and nutrient retention capability have contributed to reduced fertilizer losses through leaching and elevated fertilizer use efficiency[12, 20].

    • Biochar application to soil enhances the water-holding ability of soil due to its intensely high surface area and porosity[21]. According to Blanco-Canqui, biochar is more responsive in sandy soils than clayey soils[22]. Moreover, biochar application reduces bulk density, tensile strength, increases soil porosity, wet aggregation, water availability, soil consistency, regulates water infiltration, saturated hydraulic conductivity, and dry soil aggregation[2327]. Blanco-Canqui has discovered the smaller the particle size, the greater the water holding capacity and lower the saturated flow[22].

    • Biochar promotes increased microbial activity in soil by mediating soil physicochemical properties, supplying electrons, and leading to the formation of habitats[28]. Biochar is a rich source of carbon, nutrients, and moisture, which promotes the growth of soil microorganisms and in due course stimulates plant-microbe interaction[29]. Warnock et al. have found an abundance of mycorrhizal fungi in the presence of biochar due to enhanced soil properties and interfering microbial interactions[30]. In addition to providing a large surface area for microbial habitats, it was evidenced that biochar stimulates the secretion of sensing chemicals for nutrient absorption and desorption and regulates the exudation of allelochemicals and toxic compounds[12].

    • The characteristics of biochar have inevitably contributed to an increase in productivity. According to Jeffery et al., biochar amendment increased crop yield by an average of 25% in tropical soils, but not in temperate soils where biochar application induced liming, thus reducing fertilizer costs and greenhouse gas emissions[10]. Biochar application further improves water and fertilizer use efficiency by conserving water, reducing fertilizer losses, and absorbing heavy metals and toxic contaminants in the soil, all of which have an impact on long-term crop productivity[20,31]. Finally, biochar absorbs carbon dioxide (CO2) from the atmosphere by converting the intense C pool (crop residues or trees) to an inert carbon pool[13]. When being incorporated into the soil, biochar quickly oxidizes, allowing higher rate of available organic C absorption. Higher molecular weight and complex nature of newly attached external compounds, block the micro pores (less than 2 nm) in outer surface layer of biochar structure, reducing active surface area for microbial activities and decomposition. As a result of that, decomposition rate of biochar is slower in tropics compared to other conventional organic amendments types and lasts longer in the soil.

      Sorrenti discovered that using different rates (0–30 t/ha) of wood-derived biochar had no effect on yield and fruit quality of Kiwi and Nectarine grown in temperate regions[32]. Biochar and compost blends produced at rates of 10 t/ha and 25 t/ha, respectively, have enhanced the trunk diameter and number of shoots of apple seedlings[33]. Besides that, Abo-Ogiala reported that a 20 t/ha rate of biochar application improved plant growth, fruit quality, and productivity of banana, a semi-perennial crop[34]. In a two-year experiment conducted by Gondim et al., the irrigated water requirement for coconut seedlings was also reduced by applying coconut husk biochar at rates of 0.5–4 kg/plant[35].

    • The use of biochar in agriculture has increased over the last decade. Biochar improves soil carbon sequestration and productivity in weathered tropical soils by lowering bulk density, intensifying water-holding capacity and nutrient retention, sustaining soil organic matter, prompting microbial activity, and triggering nutrient availability while trapping heavy metals. Given all of these pluses, biochar may be a promising amendment for use on tropical soils to increase the productivity of perennial crops grown on potentially degraded lands.

    • The data and material during the current study are available from the corresponding author on reasonable request.

    • Authors greatly acknowledge Coconut Research Institute of Sri Lanka and three anonymous reviewers for the comments that significantly improved the quality and scope of this manuscript.

      • The authors declare that they have no conflict of interest.

      • Copyright: © 2023 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.
    References (35)
  • About this article
    Cite this article
    Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?. Technology in Agronomy 3:4 doi: 10.48130/TIA-2023-0004
    Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics?. Technology in Agronomy 3:4 doi: 10.48130/TIA-2023-0004

Catalog

  • About this article

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return