[1]
|
da Silva JT, Rashid Z, Nhut DT, Sivakumar D, Gera A, et al. 2007. Papaya (Carica papaya L.) biology and biotechnology. Tree and Forestry Science and Biotechnology 1:47−73
Google Scholar
|
[2]
|
Carvalho FA, Renner SS. 2012. A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. Molecular Phylogenetics and Evolution 65:46−53 doi: 10.1016/j.ympev.2012.05.019
CrossRef Google Scholar
|
[3]
|
Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JKK, et al. 2021. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology 10:287 doi: 10.3390/biology10040287
CrossRef Google Scholar
|
[4]
|
Koul B, Pudhuvai B, Sharma C, Kumar A, Sharma V, et al. 2022. Carica papaya L.: a tropical fruit with benefits beyond the tropics. Diversity 14:683 doi: 10.3390/d14080683
CrossRef Google Scholar
|
[5]
|
Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y. 2003. Fractionation and purification of the enzymes stored in the latex of Carica papaya. Journal of Chromatography B 790:229−38 doi: 10.1016/S1570-0232(03)00084-9
CrossRef Google Scholar
|
[6]
|
Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, et al. 2009. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371 doi: 10.1186/1471-2164-10-371
CrossRef Google Scholar
|
[7]
|
Gonsalves D. 1998. Control of Papaya ringspot virus in papaya: a case study. Annual Review of Phytopathology 36:415−37 doi: 10.1146/annurev.phyto.36.1.415
CrossRef Google Scholar
|
[8]
|
Gonsalves D. 2006. Transgenic papaya: development, release, impact and challenges. In Advances in Virus Research, ed. Maramorosch K, Shatkin AJ, Thresh JM. Vol. 67. Amsterdam, Netherlands: Academic Press. pp. 317−54. https://doi.org/10.1016/S0065-3527(06)67009-7
|
[9]
|
Tecson Mendoza EM, Laurena AC, Botella JR. 2008. Recent advances in the development of transgenic papaya technology. Biotechnology Annual Review 14:423−62 doi: 10.1016/S1387-2656(08)00019-7
CrossRef Google Scholar
|
[10]
|
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, et al. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991−96 doi: 10.1038/nature06856
CrossRef Google Scholar
|
[11]
|
Hoang THT, Nguyen NH, Nguyen LT, Bui TP, Le NT, et al. 2023. Developing a robust in vivo hairy root system for assessing transgene expression and genome editing efficiency in papaya. Plant Cell, Tissue and Organ Culture 152:661−67 doi: 10.1007/s11240-022-02421-2
CrossRef Google Scholar
|
[12]
|
Brewer SE, Chambers AH. 2022. CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. The Journal of Horticultural Science and Biotechnology 97:580−92 doi: 10.1080/14620316.2022.2038699
CrossRef Google Scholar
|
[13]
|
Lacroix B, Citovsky V. 2020. Biolistic approach for transient gene expression studies in plants. In Biolistic DNA Delivery in Plants. Methods in Molecular Biology, eds. Rustgi S, Luo H. New York: Humana. vol 2124. pp. 125-39. https://doi.org/10.1007/978-1-0716-0356-7_6
|
[14]
|
Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC. 1990. Stable transformation of papaya via microprojectile bombardment. Plant Cell Reports 9:189−94 doi: 10.1007/BF00232177
CrossRef Google Scholar
|
[15]
|
Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC. 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Nature Biotechnology 10:1466−72 doi: 10.1038/nbt1192-1466
CrossRef Google Scholar
|
[16]
|
Gonsalves C, Cai W, Tennant P, Gonsalves D. 1998. Effective development of Papaya ringspot virus resistant papaya with untranslatable coat protein gene using a modified microprojectile transformation method. Acta Horticulturae 461:311−14 doi: 10.17660/actahortic.1998.461.34
CrossRef Google Scholar
|
[17]
|
Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L. 1995. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Reports 15:1−7 doi: 10.1007/BF01690242
CrossRef Google Scholar
|
[18]
|
Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH. 2005. Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Reports 24:426−32 doi: 10.1007/s00299-005-0956-6
CrossRef Google Scholar
|
[19]
|
Azad MA, Amin L, Sidik NM. 2014. Gene technology for papaya ringspot virus disease management. The Scientific World Journal 2014:768038
Google Scholar
|
[20]
|
Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V. 2006. Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnology Journal 4:209−18 doi: 10.1111/j.1467-7652.2005.00173.x
CrossRef Google Scholar
|
[21]
|
Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL. 1993. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Reports 12:245−49 doi: 10.1007/BF00237128
CrossRef Google Scholar
|
[22]
|
Hwang HH, Yu M, Lai EM. 2017. Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186 doi: 10.1199/tab.0186
CrossRef Google Scholar
|
[23]
|
Pang SZ, Sanford JC. 1988. Agrobacterium-mediated gene transfer in papaya. Journal of the American Society for Horticultural Science 113:287−91 doi: 10.21273/JASHS.113.2.287
CrossRef Google Scholar
|
[24]
|
Yang JS, Yu TA, Cheng YH, Yeh SD. 1996. Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Reports 15:459−64 doi: 10.1007/BF00232974
CrossRef Google Scholar
|
[25]
|
Cheng YH, Yang JS, Yeh SD. 1996. Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with caborundum. Plant Cell Reports 16:127−32 doi: 10.1007/BF01890852
CrossRef Google Scholar
|
[26]
|
Kung YJ, Yu TA, Huang CH, Wang HC, Wang SL, et al. 2010. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Research 19:621−35 doi: 10.1007/s11248-009-9344-2
CrossRef Google Scholar
|
[27]
|
Jiang L, Maoka T, Komori S, Fukamachi H, Kato H, et al. 2004. An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.). Journal of Molecular Cell Biology 37:189−98
Google Scholar
|
[28]
|
Ali A, Bang SW, Chung SM, Staub JE. 2014. Plant transformation via pollen tube-mediated gene transfer. Plant Molecular Biology Reporter 33:742−47 doi: 10.1007/s11105-014-0839-5
CrossRef Google Scholar
|
[29]
|
Ming R, Yu Q, Moore PH. 2007. Sex determination in papaya. Seminars in Cell & Developmental Biology 18:401−8 doi: 10.1016/j.semcdb.2006.11.013
CrossRef Google Scholar
|
[30]
|
Wei J, Liu D, Chen Y, Cai Q, Zhou P. 2008. Transformation of PRSV-CP dsRNA gene into papaya by pollen-tube pathway technique. Acta Botanica Boreali-Occidentalia Sinica 28:2159−63
Google Scholar
|
[31]
|
Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D. 2008. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Molecular Plant Pathology 9:269−80 doi: 10.1111/j.1364-3703.2008.00467.x
CrossRef Google Scholar
|
[32]
|
Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D. 2002. Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease 86:101−5 doi: 10.1094/PDIS.2002.86.2.101
CrossRef Google Scholar
|
[33]
|
Gonsalves D, Ferreira S. 2003. Transgenic papaya: a case for managing risks of Papaya ringspot virus in Hawaii. Plant Health Progress 4:18 doi: 10.1094/php-2003-1113-03-rv
CrossRef Google Scholar
|
[34]
|
Ye C, Li H. 2010. 20 years of transgenic research in China for resistance to Papaya ringspot virus. Transgenic Plant Journal 4:58−63
Google Scholar
|
[35]
|
Kung YJ, You BJ, Raja JAJ, Chen KC, Huang CH, et al. 2015. Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Scientific Reports 5:9804 doi: 10.1038/srep09804
CrossRef Google Scholar
|
[36]
|
Chen LFC, Bau hJ, Yeh SD. 2002. Identification of viruses capable of breaking transgenic resistance of papaya conferred by the coat protein gene of Papaya ringspot virus. Acta Horticulturae 575:465−74 doi: 10.17660/actahortic.2002.575.54
CrossRef Google Scholar
|
[37]
|
Tennant P, Fermin G, Fitch M, Manshardt R, Slightom J, et al. 2001. Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology 107:645−53 doi: 10.1023/A:1017936226557
CrossRef Google Scholar
|
[38]
|
Souza MT, Tennant PF, Gonsalves D. 2005. Influence of coat protein transgene copy number on resistance in transgenic line 63-1 against Papaya ringspot virus Isolates. HortScience 40:2083−87 doi: 10.21273/HORTSCI.40.7.2083
CrossRef Google Scholar
|
[39]
|
Fermin GA, Castro LT, Tennant PF. 2010. CP-Transgenic and non-transgenic approaches for the control of papaya ringspot current situation and challenges. Transgenic Plant Journal 4:1−15
Google Scholar
|
[40]
|
Jia R, Zhao H, Huang J, Kong H, Zhang Y, et al. 2017. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Scientific Reports 7:12636 doi: 10.1038/s41598-017-13049-0
CrossRef Google Scholar
|
[41]
|
Gonsalves D. 2014. Hawaii’s transgenic papaya story 1978–2012: a personal account. In Genetics and Genomics of Papaya, ed. Ming R, Moore PH. Vol. 10, New York: Springer. pp. 115−42. https://doi.org/10.1007/978-1-4614-8087-7_7
|
[42]
|
Hamim I, Borth WB, Marquez J, Green JC, Melzer MJ, et al. 2018. Transgene-mediated resistance to Papaya ringspot virus: challenges and solutions. Phytoparasitica 46:1−18 doi: 10.1007/s12600-017-0636-4
CrossRef Google Scholar
|
[43]
|
Davis MJ, Ying Z. 2004. Development of papaya breeding lines with transgenic resistance to papaya ringspot virus. Plant Disease 88:352−8 doi: 10.1094/PDIS.2004.88.4.352
CrossRef Google Scholar
|
[44]
|
Lines RE, Persley D, Dale JL, Drew R, Bateson MF. 2002. Genetically engineered immunity to papaya ringspot virus in Australian papaya cultivars. Molecular Breeding 10:119−29 doi: 10.1023/A:1020381110181
CrossRef Google Scholar
|
[45]
|
Tennant P, Ahmad MH, Gonsalves D. 2005. Field resistance of coat protein transgenic papaya to papaya ringspot virus in Jamaica. Plant Disease 89:841−47 doi: 10.1094/PD-89-0841
CrossRef Google Scholar
|
[46]
|
Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD. 2003. Broad-spectrum resistance to different geographic strains of papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112−20 doi: 10.1094/PHYTO.2003.93.1.112
CrossRef Google Scholar
|
[47]
|
Fermin G, Inglessis V, Garboza C, Rangel S, Dagert M. 2004. Engineered resistance against PRSV in Venezuelan transgenic papayas. Plant Disease 88:516−22 doi: 10.1094/PDIS.2004.88.5.516
CrossRef Google Scholar
|
[48]
|
Retuta AMO, Magdalita PM, Aspuria ET, Espino RRC. 2012. Evaluation of selected transgenic papaya (Carica papaya L.) lines for inheritance of resistance to papaya ringspot virus and horticultural traits. Plant Biotechnology 29:339−49 doi: 10.5511/plantbiotechnology.12.0215b
CrossRef Google Scholar
|
[49]
|
Bau HJ, Kung YJ, Raja JAJ, Chan SJ, Chen KC, et al. 2008. Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus. Phytopathology 98:848−56 doi: 10.1094/PHYTO-98-7-0848
CrossRef Google Scholar
|
[50]
|
Tuo D, Shen W, Yan P, Li C, Gao L, et al. 2013. Complete genome sequence of an isolate of papaya leaf distortion mosaic virus from commercialized PRSV-resistant transgenic papaya in China. Acta Virologica 57:452−55 doi: 10.4149/av_2013_04_452
CrossRef Google Scholar
|
[51]
|
Shen W, Tuo D, Yang Y, Yan P, Li X, et al. 2014. First report of mixed infection of Papaya ringspot virus and Papaya leaf distortion mosaic virus on Carica papaya L. Journal of Plant Pathology 96(4):S121
Google Scholar
|
[52]
|
Kung YJ, Bau HJ, Wu YL, Huang CH, Chen TM, et al. 2009. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99:1312−20 doi: 10.1094/PHYTO-99-11-1312
CrossRef Google Scholar
|
[53]
|
Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH. 2004. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241−50 doi: 10.1007/s00425-004-1343-1
CrossRef Google Scholar
|
[54]
|
Zhu YJ, Agbayani R, Moore PH. 2007. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87−97 doi: 10.1007/s00425-006-0471-1
CrossRef Google Scholar
|
[55]
|
Zhu YJ, Agbayani R, Nishijima W, Moore P. 2007. Characterization of disease resistance of Carica papaya to Phytophthora. Acta Horticulturae 740:265−69 doi: 10.17660/actahortic.2007.740.32
CrossRef Google Scholar
|
[56]
|
Parage C, Tavares R, Réty S, Baltenweck-Guyot R, Poutaraud A, et al. 2012. Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiology 160:1407−19 doi: 10.1104/pp.112.202705
CrossRef Google Scholar
|
[57]
|
Thevissen K, Francois IEJA, Takemoto JY, Ferket KKA, Meert EMK, et al. 2003. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiology Letters 226:169−73 doi: 10.1016/S0378-1097(03)00590-1
CrossRef Google Scholar
|
[58]
|
Kinkema M, Fan W, Dong X. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. The Plant Cell 12:2339−50 doi: 10.1105/tpc.12.12.2339
CrossRef Google Scholar
|
[59]
|
Bunawan H, Baharum SN. 2015. Papaya dieback in Malaysia: a step towards a new insight of disease resistance. Iranian Journal of Biotechnology 13:e1139 doi: 10.15171/ijb.1139
CrossRef Google Scholar
|
[60]
|
Sekeli R, Hamid MH, Razak RA, Wee CY, Ong-Abdullah J. 2018. Malaysian Carica papaya L. var. Eksotika: current research strategies fronting challenges. Frontiers in Plant Science 9:1380 doi: 10.3389/fpls.2018.01380
CrossRef Google Scholar
|
[61]
|
Sekeli R, Nazaruddin NH, Abdullah Ni, Tamizi AA, Amin NM. 2016. Genetic engineering of Eksotika papaya for resistance to papaya dieback. Proceeding 25th Malaysian Society of Plant Physiology Conference, Perak, 2015. Selangor: Malaysian Society of Plant Physiology. pp. 39-41.
|
[62]
|
McCafferty HRK, Moore PH, Zhu YJ. 2006. Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Research 15:337−47 doi: 10.1007/s11248-006-0005-4
CrossRef Google Scholar
|
[63]
|
Arakane Y, Muthukrishnan S. 2010. Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67:201−16 doi: 10.1007/s00018-009-0161-9
CrossRef Google Scholar
|
[64]
|
Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, et al. 1998. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Research 7:77−84 doi: 10.1023/A:1008820507262
CrossRef Google Scholar
|
[65]
|
Osman GH, Assem SK, Alreedy RM, El-Ghareeb DK, Basry MA, et al. 2015. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports 5:18067 doi: 10.1038/srep18067
CrossRef Google Scholar
|
[66]
|
McCafferty HRK, Moore PH, Zhu YJ. 2008. Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Science 175:385−93 doi: 10.1016/j.plantsci.2008.05.007
CrossRef Google Scholar
|
[67]
|
Green JM, Owen MDK. 2011. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. Journal of Agricultural and Food Chemistry 59:5819−29 doi: 10.1021/jf101286h
CrossRef Google Scholar
|
[68]
|
de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L. 1997. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566−68 doi: 10.1126/science.276.5318.1566
CrossRef Google Scholar
|
[69]
|
Tahjib-Ul-Arif M, Zahan MI, Karim MM, Imran S, Hunter CT, et al. 2021. Citric acid-mediated abiotic stress tolerance in plants. International Journal of Molecular Sciences 22:7235 doi: 10.3390/ijms22137235
CrossRef Google Scholar
|
[70]
|
Soares CG, do Prado SBR, Andrade SCS, Fabi JP. 2021. Systems biology applied to the study of papaya fruit ripening: the influence of ethylene on pulp softening. Cells 10:2339 doi: 10.3390/cells10092339
CrossRef Google Scholar
|
[71]
|
Fabi JP, do Prado SBR. 2019. Fast and furious: ethylene-triggered changes in the metabolism of papaya fruit during ripening. Frontiers in Plant Science 10:535 doi: 10.3389/fpls.2019.00535
CrossRef Google Scholar
|
[72]
|
López-Gómez R, Cabrera-Ponce JL, Saucedo-Arias LJ, Carreto-Montoya L, Villanueva-Arce R, et al. 2009. Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Research 18:89−97 doi: 10.1007/s11248-008-9197-0
CrossRef Google Scholar
|
[73]
|
Sekeli R, Abdullah JO, Namasivayam P, Muda P, Abu Bakar UK, et al. 2014. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L. ) papaya fruit. Molecules 19:8350−62 doi: 10.3390/molecules19068350
CrossRef Google Scholar
|
[74]
|
Cabanos CS, Sajise AG, Garcia RN, Siar SV, Tecson-Mendoza EM. 2013. Compositional analysis of transgenic papaya with delayed ripening. The Philippine Agricultural Scientist 96:331−39
Google Scholar
|
[75]
|
Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, et al. 1986. The expression of a nopaline synthase — human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology 6:347−57 doi: 10.1007/BF00034942
CrossRef Google Scholar
|
[76]
|
Tschofen M, Knopp D, Hood E, Stöger E. 2016. Plant molecular farming: much more than medicines. Annual Review of Analytical Chemistry 9:271−94 doi: 10.1146/annurev-anchem-071015-041706
CrossRef Google Scholar
|
[77]
|
Sahoo A, Mandal AK, Dwivedi K, Kumar V. 2020. A cross talk between the immunization and edible vaccine: current challenges and future prospects. Life Sciences 261:118343 doi: 10.1016/j.lfs.2020.118343
CrossRef Google Scholar
|
[78]
|
Monreal-Escalante E, Ramos-Vega A, Angulo C, Bañuelos-Hernández B. 2022. Plant-based vaccines: antigen design, diversity, and strategies for high level production. Vaccines 10:100 doi: 10.3390/vaccines10010100
CrossRef Google Scholar
|
[79]
|
Sohrab SS, Suhail M, Kamal MA, Husen A, Azhar EI. 2017. Recent development and future prospects of plant-based vaccines. Current Drug Metabolism 18:831−41 doi: 10.2174/1389200218666170711121810
CrossRef Google Scholar
|
[80]
|
Takeyama N, Kiyono H, Yuki Y. 2015. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Therapeutic Advances in Vaccines 3:139−54 doi: 10.1177/2051013615613272
CrossRef Google Scholar
|
[81]
|
Zhang G, Zhou P, Guo A, Shen W, Li X. 2003. An initial study of transgenic Carica papaya used as a kind of vaccine for anti tuberculosis. Acta Botanica Yunnanica 25:223−29 doi: 10.3969/j.issn.2095-0845.2003.02.012
CrossRef Google Scholar
|
[82]
|
Hernández M, Cabrera-Ponce JL, Fragoso G, López-Casillas F, Guevara-García A, et a. 2007. A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252−60 doi: 10.1016/j.vaccine.2007.02.080
CrossRef Google Scholar
|
[83]
|
Fragoso G, Hernández M, Cervantes-Torres J, Ramírez-Aquino R, Chapula H, et al. 2017. Transgenic papaya: a useful platform for oral vaccines. Planta 245:1037−48 doi: 10.1007/s00425-017-2658-z
CrossRef Google Scholar
|
[84]
|
Caltempa AO, Herna\u0301ndez M, Pérez A, Aguilar L, Guzmán C, et al. 2022. Improvement of cell suspension cultures of transformed and untransformed Carica papaya cell lines, towards the development of an antiparasitic product against the gastrointestinal nematode Haemonchus contortus. Frontiers in Cellular and Infection Microbiology 12:958741 doi: 10.3389/fcimb.2022.958741
CrossRef Google Scholar
|
[85]
|
Abrahamian P, Hammond RW, Hammond J. 2020. Plant virus-derived vectors: applications in agricultural and medical biotechnology. Annual Review of Virology 7:513−35 doi: 10.1146/annurev-virology-010720-054958
CrossRef Google Scholar
|
[86]
|
Varanda CM, Felix MDR, Campos MD, Patanita M, Materatski P. 2021. Plant viruses: from targets to tools for CRISPR. Viruses 13:141 doi: 10.3390/v13010141
CrossRef Google Scholar
|
[87]
|
Oh Y, Kim H, Kim SG. 2021. Virus-induced plant genome editing. Current Opinion in Plant Biology 60:101992 doi: 10.1016/j.pbi.2020.101992
CrossRef Google Scholar
|
[88]
|
Tuo D, Shen W, Yan P, Li X, Zhou P. 2015. Rapid construction of stable infectious full-length cDNA clone of Papaya leaf distortion mosaic virus using In-Fusion cloning. Viruses 7:6241−50 doi: 10.3390/v7122935
CrossRef Google Scholar
|
[89]
|
Tuo DC, Yan P, Zhao GY, Li XY, Zhou P, et al. 2018. Two agroinfection-compatible fluorescent protein-tagged infectious cDNA clones of papaya leaf distortion mosaic virus facilitate the tracking of virus infection. Acta Virologica 62:202−7 doi: 10.4149/av_2018_213
CrossRef Google Scholar
|
[90]
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. 2019. Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany 70:757−70 doi: 10.1093/jxb/ery411
CrossRef Google Scholar
|
[91]
|
Tuo D, Yan P, Zhao G, Cui H, Zhu G, et al. 2021. An efficient papaya leaf distortion mosaic potyvirus vector for virus-induced gene silencing in papaya. Horticulture Research 8:144 doi: 10.1038/s41438-021-00579-y
CrossRef Google Scholar
|
[92]
|
Osakabe K, Osakabe Y, Toki S. 2010. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America 107:12034−39 doi: 10.1073/pnas.1000234107
CrossRef Google Scholar
|
[93]
|
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology 29:143−48 doi: 10.1038/nbt.1755
CrossRef Google Scholar
|
[94]
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97 doi: 10.1146/annurev-arplant-050718-100049
CrossRef Google Scholar
|
[95]
|
Wada N, Osakabe K, Osakabe Y. 2022. Expanding the plant genome editing toolbox with recently developed CRISPR−Cas systems. Plant Physiology 188:1825−37 doi: 10.1093/plphys/kiac027
CrossRef Google Scholar
|
[96]
|
Puchta H, Dujon B, Hohn B. 1996. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America 93:5055−60 doi: 10.1073/pnas.93.10.5055
CrossRef Google Scholar
|
[97]
|
Puchta H. 2005. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. Journal of Experimental Botany 56:1−14 doi: 10.1093/jxb/eri123
CrossRef Google Scholar
|
[98]
|
Bleuyard JY, Gallego ME, White CI. 2006. Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair 5:1−12 doi: 10.1016/j.dnarep.2005.08.017
CrossRef Google Scholar
|
[99]
|
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015 doi: 10.1105/tpc.16.00124
CrossRef Google Scholar
|
[100]
|
Nelson-Vasilchik K, Hague J, Mookkan M, Zhang ZJ, Kausch A. 2018. Transformation of recalcitrant sorghum varieties facilitated by Baby boom and Wuschel2. Current Protocols in Plant Biology 3:e20076 doi: 10.1002/cppb.20076
CrossRef Google Scholar
|
[101]
|
Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, et al. 2020. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers of Plant Science 11:572319 doi: 10.3389/fpls.2020.572319
CrossRef Google Scholar
|
[102]
|
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−9 doi: 10.1038/s41587-020-0703-0
CrossRef Google Scholar
|
[103]
|
Cody JP, Maher MF, Nasti RA, Starker CG, Chamness JC, Voytas DF. 2023. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols 18:81−107 doi: 10.1038/s41596-022-00749-9
CrossRef Google Scholar
|
[104]
|
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology 38:84−89 doi: 10.1038/s41587-019-0337-2
CrossRef Google Scholar
|
[105]
|
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345 doi: 10.1016/j.xinn.2022.100345
CrossRef Google Scholar
|
[106]
|
Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, et al. 2021. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. Nature Nanotechnology 16:243−50 doi: 10.1038/s41565-021-00854-y
CrossRef Google Scholar
|
[107]
|
Bao A, Burritt DJ, Chen H, Zhou X, Cao D, et al. 2019. The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology 39:321−36 doi: 10.1080/07388551.2018.1554621
CrossRef Google Scholar
|
[108]
|
Manghwar H, Lindsey K, Zhang X, Jin S. 2019. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends in Plant Science 24:1102−25 doi: 10.1016/j.tplants.2019.09.006
CrossRef Google Scholar
|
[109]
|
Hua K, Han P, Zhu JK. 2022. Improvement of base editors and prime editors advances precision genome engineering in plants. Plant Physiology 188:1795−810 doi: 10.1093/plphys/kiab591
CrossRef Google Scholar
|
[110]
|
Gürel F, Zhang Y, Sretenovic S, Qi Y. 2020. CRISPR-Cas nucleases and base editors for plant genome editing. aBIOTECH 1:74−87 doi: 10.1007/s42994-019-00010-0
CrossRef Google Scholar
|
[111]
|
Sprink T, Wilhelm R, Hartung F. 2022. Genome editing around the globe: an update on policies and perceptions. Plant Physiology 190:1579−87 doi: 10.1093/plphys/kiac359
CrossRef Google Scholar
|
[112]
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, et al. 2021. An outlook on global regulatory landscape for genome-edited crops. International Journal of Molecular Sciences 22:11753 doi: 10.3390/ijms222111753
CrossRef Google Scholar
|
[113]
|
Gu X, Liu L, Zhang H. 2021. Transgene-free genome editing in plants. Frontiers in Genome Editing 3:805317 doi: 10.3389/fgeed.2021.805317
CrossRef Google Scholar
|
[114]
|
He Y, Zhao Y. 2020. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH 1:88−96 doi: 10.1007/s42994-019-00013-x
CrossRef Google Scholar
|
[115]
|
Gong Z, Cheng M, Botella JR. 2021. Non-GM genome editing approaches in crops. Frontiers in Genome Editing 3:817279 doi: 10.3389/fgeed.2021.817279
CrossRef Google Scholar
|