-
This study was conducted in the University of Florida/IFAS Plant Science Research and Education Unit in Citra, FL, USA with five different biostimulants for tomato (Solanum lycopersicum L., 'Phoenix') production. The biostimulant treatments were comprised of CP1, CP2, CP2+BS, BS, Competitor, and water as the control. The application rates of the biostimulants were 450 ml ha-1, 900 ml ha−1, 900 ml ha−1 + 1 kg ha−1, 1 kg ha−1, and 1,169 ml ha−1, for CP1, CP2, CP2+BS, BS, Competitor, respectively. The main active ingredients in these biostimulants were N (0−7%), P (0−3%), K (0−7%), EDTA-chelated Mn (0−0.10%), and EDTA-chelated Zn (0−0.10%) (ICL Specialty Fertilizers, Dublin, OH, USA). The plot size was 5.58 m2 (3.05 m × 1.83 m). The spacing was 1.83 m between rows and 0.61 m between plants. There were five seedlings planted in each of the plots. The Randomized Complete Block Design (RCBD) was used with four replications. The pre-mixed fertilizer (224 kg ha−1 N, 196 kg ha−1 P, 224 kg ha−1 K) was provided by ICL Specialty Fertilizers, OH, USA. The biostimulants were foliar applied at three growth stages: pre-bloom, fruit set, and fruit color change. Hand-held sprayers were used for the application. The plants were irrigated with drip irrigation. Cultural practices including pest, disease, and weed management and irrigation were done timely to ensure the growing conditions appropriate for the tomato growth[23,24]. Plant height and stem diameter were measured using a ruler and Haglof Aluminum Tree Calipers (Ben Meadows, Jacksonville, WI, USA), respectively, 56 days after planting.
Leaf greenness was determined by using a SPAD meter (SPAD-502, Konica Minolta Sensing, Inc. Japan). For SPAD measurement, 30 leaves per replicate were used. Photosynthetic activity was measured using the Li-Cor (LI-6400, LI-COR, Lincoln, Nebraska, USA) from three fully developed leaves from the upper, middle, and lower portions of the plant one week after biostimulant application on 3/9/2017, 3/30/2017 and 4/13/2017 in fruiting, flowering, and fruit color change stage between 8 am to 10 am, respectively. Nitrate concentration in the plants was monitored by the petiole sap testing method and petioles were collected on the same day when SPAD reading was taken as mentioned above. Thirty leaf samples were taken from each plot and put in 15 by 20 cm zip lock bags. Petioles were separated from the leaves, cut into small pieces (2 mm) in length and manually mixed. A lemon squeezer was used to squeeze the sap from the petiole pieces. Nitrate concentration in the sap was measured using LAQUA Twin Nitrate Meter (Spectrum, Inc. USA) on the next day after SPAD readings i.e., 3/10/2017, 3/31/2017 and 4/14/2017. The nitrate meter was calibrated with standard solutions (300 and 2,000 mg l−1), and then samples were used for nitrate measurements.
Nitrate reductase activity (NRA) was determined following the protocol of Sym[25] while nitrite reductase activity (NiRA) was calculated from leaf samples harvested on the day of SPAD reading mentioned above stored at −80 oC and NRA activity was carried out after 4 days i.e., 3/14/2017, 4/6/2017 and 4/20/2017 following the method of Waterer[14]. For the determination of Ca, K, Mg, and P, dried plant material (0.5 g) from leaves and roots was ground and digested with concentrated sulfuric acid (H2SO4, 5 ml) and hydrogen peroxide H2O2 (35%, 0.5 ml per digestion tube) as described by Wolf[15]. The digested samples were then analyzed for P and K by a flame photometer (Jenway PFP-7; Keison Products, Chelmsford, UK). A graded series of standards (ranging from 10 to 100 mg l−1) of P and K were prepared, and standard curves were calculated. The values of P and K from the flame photometer were compared with the standard curves, and sample concentrations were computed. Calcium and Mg were determined titrimetrically using an EDTA solution (0.01 N) as a standard solution and Eriochrome Black T and Calcon as indicators as described by Bower & Hatcher[26].
Fruit quality attributes were evaluated at the Postharvest Physiology and Technology Lab, Horticultural Sciences Department, University of Florida, FL, USA. Fruit quality parameters tested were firmness, soluble solids concentration (SSC), total titratable acidity (TTA), and citric acid, malic acid, and tartaric acid content. Selected fruit samples were homogenized and centrifuged at 12,000 rpm for 20 min at 4 °C. The supernatant was filtered through cheesecloth and the juice was used to assess SSC and TTA. Soluble solids concentration was determined by placing two drops of juice on the prism of a digital handheld refractometer (model AR200, Reichert Analytical Instruments, Depew, NY, USA) and reported as Brix. Citric acid, malic acid, and total titratable acidity were determined with an automatic titrator (model 719 S Titrino; Metrohm, Herisau, Switzerland). The TTA was determined by diluting 6 g of tomato juice with 50 ml deionized water, and then titrating with 0.1 N sodium hydroxide (NaOH) to an endpoint of pH 8.2 and expressed as percent citric acid. The fruit firmness was measured by a fruit texture analyzer (TA HD Plus, Texture Technologies Corp, NY, USA).
There were three harvests in total. The three- harvests took place 60, 75, and 85 days after planting, respectively. Fruits were handpicked, put in plastic trays, graded through a tomato grader, and weighed with a digital scale. The number of fruits and total fruit weight were recorded for each plant.
The results of each of the variables were all statistically analyzed using STATISTICA 9.0 (Stat-Soft, Inc., Tulsa, OK, USA) by employing one-way ANOVA method. SigmaPlot 11 (Systat Software, Inc. CA, USA) was used to make the graphics.
-
About this article
Cite this article
Shahid MA, Liu G. 2022. Application of biostimulants to improve tomato yield in Florida. Vegetable Research 2:6 doi: 10.48130/VR-2022-0006
Application of biostimulants to improve tomato yield in Florida
- Received: 06 January 2022
- Accepted: 19 April 2022
- Published online: 25 May 2022
Abstract: Biostimulants are shown to increase crop production. This study was conducted to investigate the effects of individual biostimulants on tomato ('Phoenix') growth and yield. Five biostimulants: CP1, CP2, BS, CP2+BS, Competitor, and Water (control) were foliar applied at three different stages: pre-blooming, fruit setting, and color changing. The concentration of calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P) in leaves and roots were also determined. The results showed that plants treated with biostimulants had greater concentrations of Ca, K, Mg, and P compared to those treated with water only. Competitor and CP2+BS significantly increased yield, plant height, and stem diameter by 76% and 41%, 42% and 34%, and 29% and 24%. Likewise, leaf greenness, net photosynthetic rate (Pn), relative water content (RWC), nitrate level in petiole sap, and fruit quality (citric acid, malic acid, tartaric acid, soluble solid concentration, and fruit firmness) were also improved by Competitor. In addition, enzymatic activities of nitrate reductase (NR) and nitrite reductase (NiR) were significantly increased by biostimulants compared to the control. Statistically, Competitor and CP2+BS showed the greatest augmentation in plant height, stem diameter, leaf greenness, PN, RWC, nitrate level in petiole sap, and fruit yield and quality. Similarly, Competitor-treated plants also increased NR, NiR, leaf Ca, leaf K, leaf Mg, and leaf P by 34%, 70%, 22%, 26%, 27%, and 45%, respectively. Based on the findings of this study, application of Competitor or CP2+BS showed promising results and may be used as a BMP tool for tomato production in Florida.
-
Key words:
- Biostimulants /
- Photosynthesis /
- Relative water contents /
- Nutrient contents