[1]
|
Fang XD, Qiao JH, Zang Y, Gao Q, Xu WY, et al. 2022. Developing reverse genetics systems of northern cereal mosaic virus to reveal superinfection exclusion of two cytorhabdoviruses in barley plants. Molecular Plant Pathology 23:749−56 doi: 10.1111/mpp.13188
CrossRef Google Scholar
|
[2]
|
Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, et al. 2019. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 15:407−22 doi: 10.1080/15548627.2018.1520547
CrossRef Google Scholar
|
[3]
|
Yariuchi Y, Okamoto T, Noutoshi Y, Takahashi T. 2021. Responses of polyamine-metabolic genes to polyamines and plant stress hormones in Arabidopsis seedlings. Cells 10:3283 doi: 10.3390/cells10123283
CrossRef Google Scholar
|
[4]
|
Lin S, Alariqi M, Yi Z, et al. 2018. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. The Crop Journal 6:366−76 doi: 10.1016/j.cj.2018.05.002
CrossRef Google Scholar
|
[5]
|
Polturak G, Aharoni A. 2019. Advances and future directions in betalain metabolic engineering. New Phytologist 224:1472−78 doi: 10.1111/nph.15973
CrossRef Google Scholar
|
[6]
|
D'Ambrosio C, Stigliani AL, Giorio G. 2018. CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Research 27:367−78 doi: 10.1007/s11248-018-0079-9
CrossRef Google Scholar
|
[7]
|
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172:249−261.E12 doi: 10.1016/j.cell.2017.12.019
CrossRef Google Scholar
|
[8]
|
Butelli E, Titta L, Giorgio M, Mock HP, Matros A, et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26:1301−8 doi: 10.1038/nbt.1506
CrossRef Google Scholar
|
[9]
|
Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, et al. 2017. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proceedings of the National Academy of Sciences of the United States of America 114:9062−67 doi: 10.1073/pnas.1707176114
CrossRef Google Scholar
|
[10]
|
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9:1963−71 doi: 10.1105/tpc.9.11.1963
CrossRef Google Scholar
|
[11]
|
He Y, Zhang T, Sun H, Zhan H, Zhao Y. 2020. A reporter for noninvasively monitoring gene expression and plant transformation. Horticulture Research 7:152 doi: 10.1038/s41438-020-00390-1
CrossRef Google Scholar
|
[12]
|
Deikman J, Xu R, Kneissl ML, Ciardi JA, Kim KN, Pelah D. 1998. Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5'-flanking region of the ripening-related E8 gene. Plant Molecular Biology 37:1001−11 doi: 10.1023/A:1006091928367
CrossRef Google Scholar
|
[13]
|
Hiwasa-Tanase K, Kuroda H, Hirai T, Aoki K, Takane K, et al. 2012. Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development. Plant Cell Reports 31(8):1415−24 doi: 10.1007/s00299-012-1257-5
CrossRef Google Scholar
|
[14]
|
Akiyama R, Nakayasu M, Umemoto N, Kato J, Kobayashi M, et al. 2021. Tomato E8 encodes a C-27 hydroxylase in metabolic detoxification of α-tomatine during fruit ripening. Plant and Cell Physiology 62:775−83 doi: 10.1093/pcp/pcab080
CrossRef Google Scholar
|
[15]
|
Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H. 2011. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Research 20:1285−92 doi: 10.1007/s11248-011-9495-9
CrossRef Google Scholar
|
[16]
|
Kesanakurti D, Kolattukudy PE, Kirti PB. 2012. Fruit-specific overexpression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage. Physiologia Plantarum 146(2):136−48 doi: 10.1111/j.1399-3054.2012.01626.x
CrossRef Google Scholar
|
[17]
|
Kurepa J, Smalle JA. 2022. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Sciences 23:1933 doi: 10.3390/ijms23041933
CrossRef Google Scholar
|
[18]
|
Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG. 2010. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. The Plant Journal 64:740−52 doi: 10.1111/j.1365-313X.2010.04365.x
CrossRef Google Scholar
|
[19]
|
Pattison RJ, Catalá C. 2012. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal 70(4):585−98 doi: 10.1111/j.1365-313X.2011.04895.x
CrossRef Google Scholar
|
[20]
|
Spicer R, Tisdale-Orr T, Talavera C. 2013. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. PLoS One 8:e72499 doi: 10.1371/journal.pone.0072499
CrossRef Google Scholar
|
[21]
|
Luo J, Butelli E, Hill L, Parr A, Niggeweg R, et al. 2008. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. The Plant Journal 56(2):316−26 doi: 10.1111/j.1365-313X.2008.03597.x
CrossRef Google Scholar
|
[22]
|
Scarano A, Butelli E, De Santis S, Cavalcanti E, Hill L, et al. 2017. Combined dietary anthocyanins, flavonols, and stilbenoids alleviate inflammatory bowel disease symptoms in mice. Frontiers in Nutrition 4:75 doi: 10.3389/fnut.2017.00075
CrossRef Google Scholar
|
[23]
|
Sun C, Deng L, Du M, Zhao J, Chen Q, et al. 2020. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant 13:42−58 doi: 10.1016/j.molp.2019.10.010
CrossRef Google Scholar
|