[1]
|
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology 18:607−21 doi: 10.1038/s41579-020-0412-1
CrossRef Google Scholar
|
[2]
|
Asiegbu FO, Kovalchuk A. 2021. An introduction to forest biome and associated microorganisms. In Forest Microbiology, volume 1, eds Asiegbu FO, Kovalchuk A. US: Academic press. pp. 3−16. https://doi.org/10.1016/B978-0-12-822542-4.00009-7
|
[3]
|
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytologist 206:1196−206 doi: 10.1111/nph.13312
CrossRef Google Scholar
|
[4]
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, et al. 2023. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. Physiologia Plantarum 175:e14133 doi: 10.1111/ppl.14133
CrossRef Google Scholar
|
[5]
|
Ali S, Tyagi A, Bae H. 2023. Plant microbiome: an ocean of possibilities for improving disease resistance in plants. Microorganisms 11:392 doi: 10.3390/microorganisms11020392
CrossRef Google Scholar
|
[6]
|
Wang L, Wang S, Zhang Q, He C, Fu C, et al. 2022. The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine 3:30 doi: 10.1186/s43556-022-00091-2
CrossRef Google Scholar
|
[7]
|
Simon JC, Marchesi JR, Mougel C, Selosse MA. 2019. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7:5 doi: 10.1186/s40168-019-0619-4
CrossRef Google Scholar
|
[8]
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103 doi: 10.1186/s40168-020-00875-0
CrossRef Google Scholar
|
[9]
|
Hacquard S, Wang E, Slater H, Martin F. 2022. Impact of global change on the plant microbiome. New Phytologist 234:1907−09 doi: 10.1111/nph.18187
CrossRef Google Scholar
|
[10]
|
Sellappan R, Krishnan A, Thangavel K. 2022. Role of plant microbiome in carbon sequestration for sustainable agriculture. In Core Microbiome, eds Parray JA, Shameem N, Abd-Allah EF, Mir MY. US: John Wiley & Sons, Inc. pp. 190−205. https://doi.org/10.1002/9781119830795.ch11
|
[11]
|
de Bary A. 1879. Die Erscheinung der Symbiose. Vortrag, Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783111471839
|
[12]
|
Wilson D. 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274−76 doi: 10.2307/3545919
CrossRef Google Scholar
|
[13]
|
Petrini O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves, eds Andrews JH, Hirano SS. NY: Springer New York. pp. 179–97. https://doi.org/10.1007/978-1-4612-3168-4_9
|
[14]
|
Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43:895−914 doi: 10.1139/m97-131
CrossRef Google Scholar
|
[15]
|
Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, et al. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79:293−320 doi: 10.1128/MMBR.00050-14
CrossRef Google Scholar
|
[16]
|
Zhang W, Xia K, Feng Z, Qin Y, Zhou Y, et al. 2024. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiology and Biochemistry 208:108478 doi: 10.1016/j.plaphy.2024.108478
CrossRef Google Scholar
|
[17]
|
Chen Y, Fu Y, Xia Y, Miao Y, Shao J, et al. 2024. Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling. Cell Reports 43:114030 doi: 10.1016/j.celrep.2024.114030
CrossRef Google Scholar
|
[18]
|
Zhan X, Wang R, Zhang M, Li Y, Sun T, et al. 2024. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. Pest Management Science 80:1039−52 doi: 10.1002/ps.7835
CrossRef Google Scholar
|
[19]
|
Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D. 2016. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiology Ecology 92:fiw144 doi: 10.1093/femsec/fiw144
CrossRef Google Scholar
|
[20]
|
Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO. 2019. Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health. Forests 10:42 doi: 10.3390/f10010042
CrossRef Google Scholar
|
[21]
|
Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S. 2015. Plant-endophyte symbiosis, an ecological perspective. Journal of Applied Microbiology and Biotechnology 99:2955−65 doi: 10.1007/s00253-015-6487-3
CrossRef Google Scholar
|
[22]
|
Stergiopoulos I, Gordon TR. 2014. Cryptic fungal infections: the hidden agenda of plant pathogens. Frontiers in Plant Science 5:506 doi: 10.3389/fpls.2014.00506
CrossRef Google Scholar
|
[23]
|
Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, et al. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97:1−136 doi: 10.1007/s13225-019-00430-9
CrossRef Google Scholar
|
[24]
|
Rashmi M, Kushveer JS, Sarma VV. 2019. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10:798−1079 doi: 10.5943/mycosphere/10/1/19
CrossRef Google Scholar
|
[25]
|
Jia Q, Qu J, Mu H, Sun H, Wu C. 2020. Foliar endophytic fungi: Diversity in species and functions in forest ecosystems. Symbiosis 80:103−32 doi: 10.1007/s13199-019-00663-x
CrossRef Google Scholar
|
[26]
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, et al. 2019. Systems biology of plant-microbiome interactions. Molecular Plant 12:804−21 doi: 10.1016/j.molp.2019.05.006
CrossRef Google Scholar
|
[27]
|
Carroll G. 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2−9 doi: 10.2307/1943154
CrossRef Google Scholar
|
[28]
|
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, et al. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology 55:61−83 doi: 10.1146/annurev-phyto-080516-035641
CrossRef Google Scholar
|
[29]
|
Lamichhane JR, Venturi V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science 6:385 doi: 10.3389/fpls.2015.00385
CrossRef Google Scholar
|
[30]
|
Hiruma K, Gerlach N, Sacristan S, Nakano RT, Hacquard S, et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464−74 doi: 10.1016/j.cell.2016.02.028
CrossRef Google Scholar
|
[31]
|
Sasse J, Martinoia E, Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science 23:25−41 doi: 10.1016/j.tplants.2017.09.003
CrossRef Google Scholar
|
[32]
|
Gagic M, Faville MJ, Zhang W, Forester NT, Rolston MP, et al. 2018. Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Frontiers in Plant Science 9:1580 doi: 10.3389/fpls.2018.01580
CrossRef Google Scholar
|
[33]
|
Toti L, Chapela IH, Petrini O. 1992. Morphometric evidence for host-specific strain formation in Discula umbrinella. Mycological Research 96:420−24 doi: 10.1016/S0953-7562(09)81085-X
CrossRef Google Scholar
|
[34]
|
Kandel SL, Joubert PM, Doty SL. 2017. Bacterial endophyte colonization and distribution within plants. Microorganisms 5:77 doi: 10.3390/microorganisms5040077
CrossRef Google Scholar
|
[35]
|
Suárez-Moreno ZR, Devescovi G, Myers M, Hallack L, Mendonça-Previato L, et al. 2010. Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated Burkholderia species cluster. Applied and Environmental Microbiology 76:4302−17 doi: 10.1128/AEM.03086-09
CrossRef Google Scholar
|
[36]
|
Ayob FW, Simarani K. 2016. Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharmaceutical Journal 24:273−78 doi: 10.1016/j.jsps.2016.04.019
CrossRef Google Scholar
|
[37]
|
Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, et al. 2018. Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews 32:62−85 doi: 10.1016/j.fbr.2017.12.001
CrossRef Google Scholar
|
[38]
|
Wawra S, Fesel P, Widmer H, Timm M, Seibel J, et al. 2016. The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nature Communications 7:13188 doi: 10.1038/ncomms13188
CrossRef Google Scholar
|
[39]
|
Yan L, Zhu J, Zhao X, Shi J, Jiang C, et al. 2019. Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology 103:3327−40 doi: 10.1007/s00253-019-09713-2
CrossRef Google Scholar
|
[40]
|
Vurukonda SSKP, Giovanardi D, Stefani E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19:952 doi: 10.3390/ijms19040952
CrossRef Google Scholar
|
[41]
|
Aly AH, Debbab A, Kjer J, Proksch P. 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity 41:1−16 doi: 10.1007/s13225-010-0034-4
CrossRef Google Scholar
|
[42]
|
Torres-Mendoza D, Ortega HE, Cubilla-Rios L. 2020. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. Journal of Fungi 6:58 doi: 10.3390/jof6020058
CrossRef Google Scholar
|
[43]
|
Omomowo IO, Amao JA, Abubakar A, Ogundola AF, Ezediuno LO, et al. 2023. A review on the trends of endophytic fungi bioactivities. Scientific African 20:e01594 doi: 10.1016/j.sciaf.2023.e01594
CrossRef Google Scholar
|
[44]
|
Chutulo EC, Chalannavar RK. 2018. Endophytic mycoflora and their bioactive compounds from Azadirachta indica: a comprehensive review. Journal of Fungi 4:42 doi: 10.3390/jof4020042
CrossRef Google Scholar
|
[45]
|
Gong A, Zhou T, Xiao C, Jiang W, Zhou Y, et al. 2019. Association between dipsacus saponin VI level and diversity of endophytic fungi in roots of Dipsacus asperoides. World Journal of Microbiology and Biotechnology 35:42 doi: 10.1007/s11274-019-2616-y
CrossRef Google Scholar
|
[46]
|
Lubna, Asaf S, Hamayun M, Gul H, Lee IJ, et al. 2018. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions 13:100−11 doi: 10.1080/17429145.2018.1436199
CrossRef Google Scholar
|
[47]
|
Manganyi MC, Ateba CN. 2020. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8:1934 doi: 10.3390/microorganisms8121934
CrossRef Google Scholar
|
[48]
|
Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE. 2013. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS One 8:e73132 doi: 10.1371/journal.pone.0073132
CrossRef Google Scholar
|
[49]
|
Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, et al. 2016. Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207 doi: 10.1371/journal.pone.0158207
CrossRef Google Scholar
|
[50]
|
Attia MS, Hashem AH, Badawy AA, Abdelaziz AM. 2022. Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. Botanical Studies 63:26 doi: 10.1186/s40529-022-00357-6
CrossRef Google Scholar
|
[51]
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. 2021. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorganisms 9:197 doi: 10.3390/microorganisms9010197
CrossRef Google Scholar
|
[52]
|
Guo N, Zhu YW, Jiang YW, Li HK, Liu ZM, et al. 2020. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Industrial Crops and Products 148:112287 doi: 10.1016/j.indcrop.2020.112287
CrossRef Google Scholar
|
[53]
|
Ayer WA, Cruz ER. 1993. The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. The Journal of Organic Chemistry 58:7529−34 doi: 10.1021/jo00078a035
CrossRef Google Scholar
|
[54]
|
Klaiklay S, Rukachaisirikul V, Phongpaichit S, Buatong J, Preedanon S, et al. 2013. Flavodonfuran: a new difuranylmethane derivative from the mangrove endophytic fungus Flavodon flavus PSU-MA201. Natural Product Research 27:1722−26 doi: 10.1080/14786419.2012.750315
CrossRef Google Scholar
|
[55]
|
Rukachaisirikul V, Rodglin A, Phongpaichit S, Buatong J, Sakayaroj J. 2012. α-Pyrone and seiricuprolide derivatives from the mangrove-derived fungi Pestalotiopsis spp. PSU-MA92 and PSU-MA119. Phytochemistry Letters 5:13−17 doi: 10.1016/j.phytol.2011.08.008
CrossRef Google Scholar
|
[56]
|
Kouipou Toghueo RM, Boyom FF. 2019. Endophytic fungi from Terminalia species: a comprehensive review. Journal of Fungi 5:43 doi: 10.3390/jof5020043
CrossRef Google Scholar
|
[57]
|
Nicoletti R, Di Vaio C, Cirillo C. 2020. Endophytic fungi of olive tree. Microorganisms 8:1321 doi: 10.3390/microorganisms8091321
CrossRef Google Scholar
|
[58]
|
Singh B, Satyanarayana T. 2011. Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants 17:93−103 doi: 10.1007/s12298-011-0062-x
CrossRef Google Scholar
|
[59]
|
Govinda Rajulu MB, Suryanarayanan TS, Murali TS, Thirunavukkarasu N, Venkatesan G. 2021. Minor species of foliar fungal endophyte communities: do they matter? Mycological Progress 20:1353−63 doi: 10.1007/s11557-021-01740-6
CrossRef Google Scholar
|
[60]
|
Paolinelli-Alfonso M, Villalobos-Escobedo JM, Rolshausen P, Herrera-Estrella A, Galindo-Sánchez C, et al. 2016. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 17:615 doi: 10.1186/s12864-016-2952-3
CrossRef Google Scholar
|
[61]
|
Babu AG, Shea PJ, Oh BT. 2014. Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Science of the Total Environment 476–477:561−67 doi: 10.1016/j.scitotenv.2013.12.119
CrossRef Google Scholar
|
[62]
|
Christian N, Herre EA, Clay K. 2019. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytologist 222:1573−83 doi: 10.1111/nph.15693
CrossRef Google Scholar
|
[63]
|
Lacercat-Didier L, Berthelot C, Foulon J, Errard A, Martino E, et al. 2016. New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza 26:657−71 doi: 10.1007/s00572-016-0699-y
CrossRef Google Scholar
|
[64]
|
Cheng X, Xie M, Li Y, Liu B, Liu C, et al. 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology 170:104308 doi: 10.1016/j.apsoil.2021.104308
CrossRef Google Scholar
|
[65]
|
Wang M, Xiang L, Tang W, Chen X, Li C, et al. 2024. Improving apple orchard health: the role of arbuscular mycorrhizal fungi in alleviating replant disease and strengthening soil microbial communities. Applied Soil Ecology 196:105278 doi: 10.1016/j.apsoil.2024.105278
CrossRef Google Scholar
|
[66]
|
Que Y, Xie W, Fang X, Xu H, Ye S, et al. 2024. Transcriptome analysis reveals the response of Cryptomeria japonica to feeding stress of Dendrolimus houi Lajonquière larvae. Forests 15:85 doi: 10.3390/f15010085
CrossRef Google Scholar
|
[67]
|
Martínez-Arias C, Sobrino-Plata J, Ormeño-Moncalvillo S, Gil L, Rodríguez-Calcerrada J, et al. 2021. Endophyte inoculation enhances Ulmus minor resistance to Dutch elm disease. Fungal Ecology 50:101024 doi: 10.1016/j.funeco.2020.101024
CrossRef Google Scholar
|
[68]
|
Quiring D, Adams G, McCartney A, Edwards S, Miller JD. 2020. A foliar endophyte of white spruce reduces survival of the eastern spruce budworm and tree defoliation. Forests 11:659 doi: 10.3390/f11060659
CrossRef Google Scholar
|
[69]
|
Quiring D, Adams G, Flaherty L, McCartney A, Miller JD, et al. 2019. Influence of a foliar endophyte and budburst phenology on survival of wild and laboratory-reared eastern spruce budworm, Choristoneura fumiferana on white spruce (Picea glauca). Forests 10:503 doi: 10.3390/f10060503
CrossRef Google Scholar
|
[70]
|
Tanney JB, McMullin DR, Miller JD. 2018. Toxigenic foliar endophytes from the Acadian forest. In Endophytes of Forest Trees, vol 86, eds Pirttilä A, Frank A. Cham: Springer. pp. 343–81. https://doi.org/10.1007/978-3-319-89833-9_15
|
[71]
|
McMullin DR, Nguyen HDT, Daly GJ, Menard BS, Miller JD. 2018. Detection of foliar endophytes and their metabolites in Picea and Pinus seedling needles. Fungal Ecology 31:1−8 doi: 10.1016/j.funeco.2017.09.003
CrossRef Google Scholar
|
[72]
|
Liu J, Ridgway HJ, Jones EE. 2020. Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectria ditissima. Journal of Applied Microbiology 128:1735−53 doi: 10.1111/jam.14587
CrossRef Google Scholar
|
[73]
|
Sumarah MW, Walker AK, Seifert KA, Todorov A, Miller JD. 2015. Screening of fungal endophytes isolated from eastern white pine needles. In The Formation, Structure and Activity of Phytochemicals, vol 45, ed. Jetter R. Cham: Springer. pp. 195–206. https://doi.org/10.1007/978-3-319-20397-3_8
|
[74]
|
Blumenstein K, Albrectsen BR, Martín JA, Hultberg M, Sieber TN, et al. 2015. Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl 60:655−67 doi: 10.1007/s10526-015-9668-1
CrossRef Google Scholar
|
[75]
|
Morrison EW, Kasson MT, Heath JJ, Garnas JR. 2021. Pathogen and endophyte assemblages co-vary with beech bark disease progression, tree decline, and regional climate. Frontiers in Forests and Global Change 4:673099 doi: 10.3389/ffgc.2021.673099
CrossRef Google Scholar
|
[76]
|
Vaz ABM, Fonseca PLC, Badotti F, Skaltsas D, Tomé LMR, et al. 2018. A multiscale study of fungal endophyte communities of the foliar endosphere of native rubber trees in Eastern Amazon. Scientific Reports 8:16151 doi: 10.1038/s41598-018-34619-w
CrossRef Google Scholar
|
[77]
|
Christian N, Herre EA, Mejia LC, Clay K. 2017. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B 284:20170641 doi: 10.1098/rspb.2017.0641
CrossRef Google Scholar
|
[78]
|
Mejía LC, Herre EA, Sparks JP, Winter K, García MN, et al. 2014. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology 5:479 doi: 10.3389/fmicb.2014.00479
CrossRef Google Scholar
|
[79]
|
Martínez-Arias C, Macaya-Sanz D, Witzell J, Martín JA. 2019. Enhancement of Populus alba tolerance to Venturia tremulae upon inoculation with endophytes showing in vitro biocontrol potential. European Journal of Plant Pathology 153:1031−42 doi: 10.1007/s10658-018-01618-6
CrossRef Google Scholar
|
[80]
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. 2023. Deep discovery informs difficult deployment in plant microbiome science. Cell 186:4496−513 doi: 10.1016/j.cell.2023.08.035
CrossRef Google Scholar
|
[81]
|
Zheng J, Xie X, Li C, Wang H, Yu Y, et al. 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. International Journal of Phytoremediation 25:1596−613 doi: 10.1080/15226514.2023.2176466
CrossRef Google Scholar
|
[82]
|
Pan X, Qin Y, Yuan Z. 2018. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis 76:109−16 doi: 10.1007/s13199-018-0541-8
CrossRef Google Scholar
|
[83]
|
Thiem D, Piernik A, Hrynkiewicz K. 2018. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis 75:17−28 doi: 10.1007/s13199-017-0512-5
CrossRef Google Scholar
|
[84]
|
Zhang F, Liu Z, Gulijimila M, Wang Y, Fan H, et al. 2016. Functional analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene of the biocontrol fungus Trichoderma asperellum ACCC30536. Canadian Journal of Plant Science 96:265−75 doi: 10.1139/cjps-2014-0265
CrossRef Google Scholar
|
[85]
|
Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, et al. 2016. Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One 11:e0169089 doi: 10.1371/journal.pone.0169089
CrossRef Google Scholar
|
[86]
|
Ruotsalainen AL, Kauppinen M, Wäli PR, Saikkonen K, Helander M, et al. 2022. Dark septate endophytes: mutualism from by-products? Trends in Plant Science 27:247−54 doi: 10.1016/j.tplants.2021.10.001
CrossRef Google Scholar
|
[87]
|
Akhtar N, Wani AK, Dhanjal DS, Mukherjee S. 2022. Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World Journal of Microbiology and Biotechnology 38:79 doi: 10.1007/s11274-022-03264-x
CrossRef Google Scholar
|
[88]
|
Zuo Y, Su F, He X, Li M. 2020. Colonization by dark septate endophytes improves the growth of Hedysarum scoparium under multiple inoculum levels. Symbiosis 82:201−14 doi: 10.1007/s13199-020-00713-9
CrossRef Google Scholar
|
[89]
|
Terhonen E, Sipari N, Asiegbu FO. 2016. Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biological Control 99:53−63 doi: 10.1016/j.biocontrol.2016.04.006
CrossRef Google Scholar
|
[90]
|
Wen Z, Terhonen E, Asiegbu FO. 2022. The dark septate endophyte Phialocephala sphaeroides confers growth fitness benefits and mitigates pathogenic effects of Heterobasidion on Norway spruce. Tree Physiology 42:891−906 doi: 10.1093/treephys/tpab147
CrossRef Google Scholar
|
[91]
|
Marfuah DS, Hamim H, Sulistyaningsih YC, Surono S, Setyaningsih L, et al. 2024. Dark septate endophyte inoculation improved Pb phytoremediation of Jatropha curcas and Reutealis trisperma on gold mine tailings. Bioremediation Journal 28:325−42 doi: 10.1080/10889868.2023.2279194
CrossRef Google Scholar
|
[92]
|
Li X, He X, Hou L, Ren Y, Wang S, et al. 2018. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Scientific Reports 8:7896 doi: 10.1038/s41598-018-26183-0
CrossRef Google Scholar
|
[93]
|
Liu Y, Wei X. 2019. Dark septate endophyte improves drought tolerance of Ormosia hosiei Hemsley & E. H. Wilson by modulating root morphology, ultrastructure, and the ratio of root hormones. Forests 10:830 doi: 10.3390/f10100830
CrossRef Google Scholar
|
[94]
|
Liu Y, Wei X. 2021. Dark septate endophyte improves the drought-stress resistance of Ormosia hosiei seedlings by altering leaf morphology and photosynthetic characteristics. Plant Ecology 222:761−71 doi: 10.1007/s11258-021-01135-3
CrossRef Google Scholar
|
[95]
|
Al Husnain L, Alajlan L, AlKahtani MDF, orfali R, Ameen F. 2023. Avicennia marina endophytic fungi shows antagonism against tomato pathogenic fungi. Journal of the Saudi Society of Agricultural Sciences 22:214−22 doi: 10.1016/j.jssas.2022.12.001
CrossRef Google Scholar
|
[96]
|
Terhonen E, Kovalchuk A, Zarsav A, Asiegbu FO. 2018. Biocontrol potential of forest tree endophytes. In Endophytes of Forest Trees: Biology and Applications, vol 86, eds Pirttilä AM, Frank AC. Cham: Springer International Publishing. pp. 283–318. https://doi.org/10.1007/978-3-319-89833-9_13
|