[1]
|
Mganga KZ, Kaindi E, Ndathi AJN, Bosma L, Kioko T, et al. 2021. Morphoecological characteristics of grasses used to restore degraded semi-arid African rangelands. Ecological Solutions and Evidence 2:e12078 doi: 10.1002/2688-8319.12078
CrossRef Google Scholar
|
[2]
|
Flint SA, Shaw RG, Jordan NR. 2021. Effects of selection regime on invasive characteristics in an emerging biomass crop, Switchgrass (Panicum virgatum L.). Sustainability 13:5045 doi: 10.3390/su13095045
CrossRef Google Scholar
|
[3]
|
Lee D, Owens VN, Boe A, Koo BC. 2009. Biomass and seed yields of big bluestem, switchgrass, and intermediate wheatgrass in response to manure and harvest timing at two topographic positions. GCB Bioenergy 1:171−79 doi: 10.1111/j.1757-1707.2009.01008.x
CrossRef Google Scholar
|
[4]
|
Hong CO, Owens VN, Lee DK, Boe A. 2013. Switchgrass, big bluestem, and indiangrass monocultures and their two- and three-way mixtures for bioenergy in the Northern Great Plains. BioEnergy Research 6:229−39 doi: 10.1007/s12155-012-9252-9
CrossRef Google Scholar
|
[5]
|
Smart AJ, Moser LE, Vogel KP. 2004. Morphological characteristics of big bluestem and switchgrass plants divergently selected for seedling tiller number. Crop Science 44:607−13 doi: 10.2135/cropsci2004.6070
CrossRef Google Scholar
|
[6]
|
Clusella-Trullas S, Garcia RA. 2017. Impacts of invasive plants on animal diversity in South Africa: a synthesis. Bothalia 47:a2166 doi: 10.4102/abc.v47i2.2166
CrossRef Google Scholar
|
[7]
|
Shabbir A, Dhileepan K, O'Donnell C, Adkins SW. 2013. Complementing biological control with plant suppression: implications for improved management of parthenium weed (Parthenium hysterophorus L.). Biological Control 64:270−75 doi: 10.1016/j.biocontrol.2012.11.014
CrossRef Google Scholar
|
[8]
|
Blumenthal DM, Jordan NR, Svenson EL. 2005. Effects of prairie restoration on weed invasions. Agriculture, Ecosystems & Environment 107:221−30 doi: 10.1016/j.agee.2004.11.008
CrossRef Google Scholar
|
[9]
|
Cherniavskih VI, Dumacheva EV, Marinich MN, Sajfutdinova LD. 2021. The role of perennial grasses in the accumulation of organic matter in soil-saving agriculture. IOP Conference Series: Earth and Environmental Science 901:012056 doi: 10.1088/1755-1315/901/1/012056
CrossRef Google Scholar
|
[10]
|
Boschma SP. 2010. Tropical perennial grasses - the role of fertilisers and nitrogen. Primefacts 1050:1−3
Google Scholar
|
[11]
|
Wedin DA, Tilman D. 1990. Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433−41 doi: 10.1007/BF00328157
CrossRef Google Scholar
|
[12]
|
Kosolapov VM, Cherniavskih VI, Dumacheva EV, Marinich MN, Sajfutdinova LD, et al. 2021. The role of perennial grasses in the protection of soil resources of erosive ecosystems with active development of linear erosion IOP Conference Series: Earth and Environmental Science. 901:012007 doi: 10.1088/1755-1315/901/1/012007
CrossRef Google Scholar
|
[13]
|
Lodge GM. 1994. The role and future use of perennial native grasses for temperate pastures in Australia. New Zealand Journal of Agricultural Research 37:419−26 doi: 10.1080/00288233.1994.9513079
CrossRef Google Scholar
|
[14]
|
Devin S, Beisel JN. 2007. Biological and ecological characteristics of invasive species: a gammarid study. Biological Invasions 9:13−24 doi: 10.1007/s10530-006-9001-0
CrossRef Google Scholar
|
[15]
|
Ojija F, Petruzzellis F, Bacaro G. 2024. Review of Invasive plant functional traits and management using remote sensing in Sub-Saharan Africa. International Journal of Plant Biology 15:358−74 doi: 10.3390/ijpb15020029
CrossRef Google Scholar
|
[16]
|
Gaskin JF, Espeland E, Johnson CD, Larson DL, Mangold JM, et al. 2021. Managing invasive plants on Great Plains grasslands: a discussion of current challenges. Rangeland Ecology & Management 78:235−49 doi: 10.1016/j.rama.2020.04.003
CrossRef Google Scholar
|
[17]
|
Petruzzellis F, Tordoni E, Tomasella M, Savi T, Tonet V, et al. 2021. Functional differentiation of invasive and native plants along a leaf efficiency/safety trade-off. Environmental and Experimental Botany 188:104518 doi: 10.1016/j.envexpbot.2021.104518
CrossRef Google Scholar
|
[18]
|
Keller RP, Geist J, Jeschke JM, Kühn I. 2011. Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe 23:23 doi: 10.1186/2190-4715-23-23
CrossRef Google Scholar
|
[19]
|
Diagne C, Turbelin AJ, Moodley D, Novoa A, Leroy B, et al. 2021. The economic costs of biological invasions in Africa: a growing but neglected threat? NeoBiota 67:11−51 doi: 10.3897/neobiota.67.59132
CrossRef Google Scholar
|
[20]
|
Ojija F, Lutambi LP. 2022. An invasive plant Parthenium hysterophorus reduces native forage cover. East African Journal of Environment and Natural Resources 5:318−26 doi: 10.37284/eajenr.5.1.862
CrossRef Google Scholar
|
[21]
|
Boy G, Witt A. 2013. Invasive alien plants and their management in Africa, vol 1. Nairobi: CABI Africa. 184 pp. www.cabi.org/Uploads/CABI/publishing/promotional-materials/african-invasives-book.pdf
|
[22]
|
Reichmann LG, Schwinning S, Polley HW, Fay PA. 2016. Traits of an invasive grass conferring an early growth advantage over native grasses. Journal of Plant Ecology 9:672−81 doi: 10.1093/jpe/rtw014
CrossRef Google Scholar
|
[23]
|
Dyderski MK, Jagodziński AM. 2020. Impact of invasive tree species on natural regeneration species composition, diversity, and density. Forests 11:456 doi: 10.3390/f11040456
CrossRef Google Scholar
|
[24]
|
Kohli RK, Batish DR, Singh HP, Dogra KS. 2006. Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biological Invasions 8:1501−10 doi: 10.1007/s10530-005-5842-1
CrossRef Google Scholar
|
[25]
|
Weidenhamer JD, Callaway RM. 2010. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology 36:59−69 doi: 10.1007/s10886-009-9735-0
CrossRef Google Scholar
|
[26]
|
Schantz M, Sheley R, Hardegree S. 2019. Restoring perennial grasses in Medusahead habitat: role of tilling, fire, herbicides, and seeding rate. Rangeland Ecology & Management 72:249−59 doi: 10.1016/j.rama.2018.10.012
CrossRef Google Scholar
|
[27]
|
Munishi LK, Ngondya IB. 2022. Realizing UN decade on ecosystem restoration through a nature-based approach: a case review of management of biological invasions in protected area. PLOS Sustain Transform 1:e0000027 doi: 10.1371/journal.pstr.0000027
CrossRef Google Scholar
|
[28]
|
Kideghesho JR, Rija AA, Mwamende KA, Selemani IS. 2013. Emerging issues and challenges in conservation of biodiversity in the rangelands of Tanzania. Nature Conservation 6:1−29 doi: 10.3897/natureconservation.6.5407
CrossRef Google Scholar
|
[29]
|
Mng'ong'o ME, Ojija F, Aloo BN. 2023. The role of Rhizobia toward food production, food and soil security through microbial agro-input utilization in developing countries. Case Studies in Chemical and Environmental Engineering 8:100404 doi: 10.1016/j.cscee.2023.100404
CrossRef Google Scholar
|
[30]
|
De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, et al. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711−13 doi: 10.1038/nature01548
CrossRef Google Scholar
|
[31]
|
Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, et al. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42:S3−S15 doi: 10.1016/j.ejsobi.2006.10.002
CrossRef Google Scholar
|
[32]
|
Bardgett RD, Van Der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature 515:505−11 doi: 10.1038/nature13855
CrossRef Google Scholar
|
[33]
|
Aloo BN, Tripathi V, Makumba BA, Mbega ER. 2022. Plant growth-promoting rhizobacterial biofertilizers for crop production: the past, present, and future. Frontiers in Plant Science 13:1002448 doi: 10.3389/fpls.2022.1002448
CrossRef Google Scholar
|
[34]
|
Arif MS, Riaz M, Shahzad SM, Yasmeen T, Akhtar MJ, et al. 2016. Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa QS40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of aridisol. Applied Soil Ecology 108:238−47 doi: 10.1016/j.apsoil.2016.08.016
CrossRef Google Scholar
|
[35]
|
Gonzalez VH, Cobos ME, Jaramillo J, Ospina R. 2021. Climate change will reduce the potential distribution ranges of Colombia's most valuable pollinators. Perspectives in Ecology and Conservation 19:195−206 doi: 10.1016/j.pecon.2021.02.010
CrossRef Google Scholar
|
[36]
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, et al. 2023. Scientists' warning on climate change and insects. Ecological Monographs 93:e1553 doi: 10.1002/ecm.1553
CrossRef Google Scholar
|
[37]
|
Steiner JL, Lin X, Cavallaro N, Basso G, Sassenrath G. 2023. Climate change impacts on soil, water, and biodiversity conservation. Journal of Soil and Water Conservation 78:27A−32A doi: 10.2489/jswc.2023.0208A
CrossRef Google Scholar
|
[38]
|
Bezerra ADM, Pacheco Filho AJS, Bomfim IGA, Smagghe G, Freitas BM. 2019. Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems 169:49−57 doi: 10.1016/j.agsy.2018.12.002
CrossRef Google Scholar
|
[39]
|
Schuster MJ, Wragg PD, Reich PB. 2018. Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology 55:2362−73 doi: 10.1111/1365-2664.13195
CrossRef Google Scholar
|
[40]
|
Chang J, Ciais P, Gasser T, Smith P, Herrero M, et al. 2021. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications 12:118 doi: 10.1038/s41467-020-20406-7
CrossRef Google Scholar
|
[41]
|
Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37−42 doi: 10.1038/nature01286
CrossRef Google Scholar
|
[42]
|
Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. 2021. The impact of climate change on agricultural insect pests. Insects 12:440 doi: 10.3390/insects12050440
CrossRef Google Scholar
|
[43]
|
Giles ME, Caul S, King D, Mitchell S, Sim A, et al. 2023. Grass variety selection of microbial community composition is associated with differences in soil CO2 emissions. Applied Soil Ecology 190:104968 doi: 10.1016/j.apsoil.2023.104968
CrossRef Google Scholar
|
[44]
|
Carlier L, Rotar I, Vlahova M, Vidican R. 2009. Importance and functions of grasslands. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:25−30
Google Scholar
|
[45]
|
Wang R, Mattox CM, Phillips CL, Kowalewski AR. 2022. Carbon sequestration in turfgrass–soil systems. Plants 11:2478 doi: 10.3390/plants11192478
CrossRef Google Scholar
|
[46]
|
Phillips CL, Wang R, Mattox C, Trammell TLE, Young J, et al. 2023. High soil carbon sequestration rates persist several decades in turfgrass systems: a meta-analysis. Science of The Total Environment 858:159974 doi: 10.1016/j.scitotenv.2022.159974
CrossRef Google Scholar
|
[47]
|
Daehler CC. 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics 34:183−211 doi: 10.1146/annurev.ecolsys.34.011802.132403
CrossRef Google Scholar
|
[48]
|
Maron JL, Marler M. 2008. Effects of native species diversity and resource additions on invader impact. The American Naturalist 172:S18−S33 doi: 10.1086/588303
CrossRef Google Scholar
|
[49]
|
Glover JD, Reganold JP, Cox CM. 2012. Plant perennials to save Africa's soils. Nature 489:359−61 doi: 10.1038/489359a
CrossRef Google Scholar
|
[50]
|
Dhakal D, Islam M. 2018. Grass-legume mixtures for improved soil health in cultivated agroecosystem. Sustainability 10:2718 doi: 10.3390/su10082718
CrossRef Google Scholar
|
[51]
|
Tilman D, Reich PB, Knops JMH. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629−32 doi: 10.1038/nature04742
CrossRef Google Scholar
|
[52]
|
Horrocks CA, Arango J, Arevalo A, Nuñez J, Cardoso JA, et al. 2019. Smart forage selection could significantly improve soil health in the tropics. Science of The Total Environment 688:609−21 doi: 10.1016/j.scitotenv.2019.06.152
CrossRef Google Scholar
|
[53]
|
Braun RC, Bremer DJ. 2018. Nitrous oxide emissions in turfgrass systems: a review. Agronomy Journal 110:2222−32 doi: 10.2134/agronj2018.02.0133
CrossRef Google Scholar
|
[54]
|
Smith J, Potts S, Eggleton P. 2008. The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems. Agriculture, Ecosystems & Environment 127:119−25 doi: 10.1016/j.agee.2008.03.008
CrossRef Google Scholar
|
[55]
|
Ikoyi I, Grange G, Finn JA, Brennan FP. 2023. Plant diversity enhanced nematode-based soil quality indices and changed soil nematode community structure in intensively-managed agricultural grasslands. European Journal of Soil Biology 118:103542 doi: 10.1016/j.ejsobi.2023.103542
CrossRef Google Scholar
|
[56]
|
Mathieu J, Grimaldi M, Jouquet P, Rouland C, Lavelle P, et al. 2009. Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biology and Biochemistry 41:586−93 doi: 10.1016/j.soilbio.2008.12.020
CrossRef Google Scholar
|
[57]
|
Yang Y, Reilly EC, Jungers JM, Chen J, Smith TM. 2019. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1:434−45 doi: 10.1016/j.oneear.2019.11.011
CrossRef Google Scholar
|
[58]
|
Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623−27 doi: 10.1126/science.1097396
CrossRef Google Scholar
|
[59]
|
Conant RT, Paustian K, Elliott ET. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications 11:343−55 doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
CrossRef Google Scholar
|
[60]
|
Skersiene A, Slepetiene A, Stukonis V, Norkeviciene E. 2024. Contributions of different perennial grass species and their roots' characteristics to soil organic carbon accumulation. Sustainability 16:6037 doi: 10.3390/su16146037
CrossRef Google Scholar
|
[61]
|
DeLuca TH, Zabinski CA. 2011. Prairie ecosystems and the carbon problem. Frontiers in Ecology and the Environment 9:407−13 doi: 10.1890/100063
CrossRef Google Scholar
|
[62]
|
Yang G, Roy J, Veresoglou SD, Rillig MC. 2021. Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist 229:2945−56 doi: 10.1111/nph.17065
CrossRef Google Scholar
|
[63]
|
Robertson GP, Vitousek PM. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources 34:97−125 doi: 10.1146/annurev.environ.032108.105046
CrossRef Google Scholar
|
[64]
|
Lv J, Wang H, Chang N, Li H, Shi C. 2023. Effects of Datura stramonium L. invasion into different habitats on native plant functional traits and soil carbon, nitrogen and phosphorus stoichiometric characteristics. Biology 12:1497 doi: 10.3390/biology12121497
CrossRef Google Scholar
|
[65]
|
Nyasembe VO, Cheseto X, Kaplan F, Foster WA, Teal PEA, et al. 2015. The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS ONE 10:e0137836 doi: 10.1371/journal.pone.0137836
CrossRef Google Scholar
|
[66]
|
Gannon JJ, Grant TA, Vacek SC, Dixon CS, Moore CT. 2024. Crisis on the prairies revisited: implementation of the native prairie adaptive management program. Ecological Restoration 42:64−76 doi: 10.3368/er.42.1.64
CrossRef Google Scholar
|
[67]
|
Quinn LD, Holt JS. 2009. Restoration for resistance to invasion by Giant Reed (Arundo donax). Invasive Plant Science and Management 2:279−91 doi: 10.1614/IPSM-09-001.1
CrossRef Google Scholar
|
[68]
|
Jordan NR, Larson DL, Huerd SC. 2008. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biological Invasions 10:177−90 doi: 10.1007/s10530-007-9121-1
CrossRef Google Scholar
|
[69]
|
Stromberg JC, Lite SJ, Marler R, Paradzick C, Shafroth PB, et al. 2007. Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography 16:381−93 doi: 10.1111/j.1466-8238.2007.00297.x
CrossRef Google Scholar
|