[1]
|
Wang J, Atolia E, Hua B, Savir Y, Escalante-Chong R, et al. 2015. Natural variation in preparation for nutrient depletion reveals a cost–benefit tradeoff. PLoS Biology 13:e1002041 doi: 10.1371/journal.pbio.1002041
CrossRef Google Scholar
|
[2]
|
Johnston M, Flick JS, Pexton T. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Molecular and Cellular Biology 14:3834−41 doi: 10.1128/mcb.14.6.3834-3841.1994
CrossRef Google Scholar
|
[3]
|
Escalante-Chong R, Savir Y, Carroll SM, Ingraham JB, Wang J, et al. 2015. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proceedings of the National Academy of Sciences of the United States of America 112:1636−41 doi: 10.1073/pnas.1418058112
CrossRef Google Scholar
|
[4]
|
Wang X, Xia K, Yang X, Tang C. 2019. Growth strategy of microbes on mixed carbon sources. Nature Communications 10:1279 doi: 10.1038/s41467-019-09261-3
CrossRef Google Scholar
|
[5]
|
Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, et al. 2017. Combinatorial signal perception in the BMP pathway. Cell 170:1184−1196. e24
Google Scholar
|
[6]
|
Boles E, Hollenberg CP. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiology Reviews 21:85−111 doi: 10.1111/j.1574-6976.1997.tb00346.x
CrossRef Google Scholar
|
[7]
|
Tschopp JF, Emr SD, Field C, Schekman R. 1986. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. Journal of Bacteriology 166:313−18 doi: 10.1128/jb.166.1.313-318.1986
CrossRef Google Scholar
|
[8]
|
Torchia TE, Hamilton RW, Cano CL, Hopper JE. 1984. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Molecular and Cellular Biology 4:1521−27 doi: 10.1128/mcb.4.8.1521-1527.1984
CrossRef Google Scholar
|
[9]
|
Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, et al. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377−91 doi: 10.1093/genetics/150.4.1377
CrossRef Google Scholar
|
[10]
|
Torchia TE, Hopper JE. 1986. Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics 113:229−46 doi: 10.1093/genetics/113.2.229
CrossRef Google Scholar
|
[11]
|
Wyman C. 1996. Handbook on bioethanol. production and utilization. Boca Raton, Florida, United States: CRC press.
|
[12]
|
Ostergaard S, Roca C, Rønnow B, Nielsen J, Olsson L. 2000. Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnology and Bioengineering 68:252 doi: 10.1002/(SICI)1097-0290(20000505)68:3<252::AID-BIT3>3.0.CO;2-K
CrossRef Google Scholar
|
[13]
|
Suzuki-Fujimoto T, Fukuma M, Yano KI, Sakurai H, Vonika A, et al. 1996. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Molecular and Cellular Biology 16:2504−8 doi: 10.1128/mcb.16.5.2504
CrossRef Google Scholar
|
[14]
|
Yano K, Fukasawa T. 1997. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 94:1721−26 doi: 10.1073/pnas.94.5.1721
CrossRef Google Scholar
|
[15]
|
Leuther KK, Johnston SA. 1992. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333−35 doi: 10.1126/science.1598579
CrossRef Google Scholar
|
[16]
|
Wu Y, Reece RJ, Ptashne M. 1996. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. The EMBO Journal 15:3951−63 doi: 10.1002/j.1460-2075.1996.tb00769.x
CrossRef Google Scholar
|
[17]
|
Lohr D, Venkov P, Zlatanova J. 1995. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 9:777−87 doi: 10.1096/fasebj.9.9.7601342
CrossRef Google Scholar
|
[18]
|
Oh D, Hopper JE. 1990. Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Molecular and Cellular Biology 10:1415−22 doi: 10.1128/mcb.10.4.1415-1422.1990
CrossRef Google Scholar
|
[19]
|
Pilauri V, Bewley M, Diep C, Hopper J. 2005. Gal80 dimerization and the yeast GAL gene switch. Genetics 169:1903−14 doi: 10.1534/genetics.104.036723
CrossRef Google Scholar
|
[20]
|
Turcotte B, Liang XB, Robert F, Soontorngun N. 2009. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Research 10:2−13 doi: 10.1111/j.1567-1364.2009.00555.x
CrossRef Google Scholar
|
[21]
|
DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680−86 doi: 10.1126/science.278.5338.680
CrossRef Google Scholar
|
[22]
|
Roberts GG, Hudson AP. 2006. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Molecular Genetics and Genomics 276:170−86 doi: 10.1007/s00438-006-0133-9
CrossRef Google Scholar
|
[23]
|
Gasmi N, Jacques PE, Klimova N, Guo X, Ricciardi A, et al. 2014. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor. Genetics 198:547−60 doi: 10.1534/genetics.114.168609
CrossRef Google Scholar
|
[24]
|
Timson DJ, Ross HC, Reece RJ. 2002. Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1: 1 stoichiometry. The Biochemical Journal 363:515−20 doi: 10.1042/0264-6021:3630515
CrossRef Google Scholar
|
[25]
|
Duan SF, Shi JY, Yin Q, Zhang RP, Han PJ, et al. 2019. Reverse evolution of a classic gene network in yeast offers a competitive advantage. Current Biology 29:1126−36. e5 doi: 10.1016/j.cub.2019.02.038
CrossRef Google Scholar
|
[26]
|
Melcher K, Xu HE. 2001. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. The EMBO Journal 20:841−51 doi: 10.1093/emboj/20.4.841
CrossRef Google Scholar
|
[27]
|
SGD. GAL80 / YML051W Overview. www.yeastgenome.org/locus/S000004515
|
[28]
|
Peng G, Hopper JE. 2002. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proceedings of the National Academy of Sciences of the United States of America 99:8548−53 doi: 10.1073/pnas.142100099
CrossRef Google Scholar
|
[29]
|
Bhat PJ, Hopper JE. 1992. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Molecular and Cellular Biology 12:2701−7 doi: 10.1128/mcb.12.6.2701-2707.1992
CrossRef Google Scholar
|
[30]
|
Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, et al. 2009. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137:172−81 doi: 10.1016/j.cell.2009.01.055
CrossRef Google Scholar
|
[31]
|
St John TP, Davis RW. 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. Journal of Molecular Biology 152:285−315 doi: 10.1016/0022-2836(81)90244-8
CrossRef Google Scholar
|
[32]
|
Yocum RR, Hanley S, West R Jr., Ptashne M. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Molecular and Cellular Biology 4:1985−98 doi: 10.1128/mcb.4.10.1985-1998.1984
CrossRef Google Scholar
|
[33]
|
Johnston M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiological Reviews 51:458−76 doi: 10.1128/mr.51.4.458-476.1987
CrossRef Google Scholar
|
[34]
|
West RW, Chen SM, Putz H, Butler G, Banerjee M. 1987. GAL1-GAL10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating sequences. Genes & Development 1:1118−31 doi: 10.1101/gad.1.10.1118
CrossRef Google Scholar
|
[35]
|
Guarente L, Yocum RR, Gifford P. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proceedings of the National Academy of Sciences of the United States of America 79:7410−14 doi: 10.1073/pnas.79.23.7410
CrossRef Google Scholar
|
[36]
|
Giniger E, Varnum SM, Ptashne M. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767−74 doi: 10.1016/0092-8674(85)90336-8
CrossRef Google Scholar
|
[37]
|
Brent R, Ptashne M. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729−36 doi: 10.1016/0092-8674(85)90246-6
CrossRef Google Scholar
|
[38]
|
Lue NF, Chasman DI, Buchman AR, Kornberg RD. 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Molecular and Cellular Biology 7:3446−51 doi: 10.1128/mcb.7.10.3446-3451.1987
CrossRef Google Scholar
|
[39]
|
Finley RL Jr., West RW Jr. 1989. Differential repression of GAL4 and adjacent transcription activators by operators in the yeast GAL upstream activating sequence. Molecular and Cellular Biology 9:4282−90 doi: 10.1128/mcb.9.10.4282-4290.1989
CrossRef Google Scholar
|
[40]
|
Struhl K. 1985. Negative control at a distance mediates catabolite repression in yeast. Nature 317:822−24 doi: 10.1038/317822a0
CrossRef Google Scholar
|
[41]
|
Lohr D, Hopper JE. 1985. The relationship of regulatory proteins and DNase I hypersensitive sites in the yeast GAL1-10 genes. Nucleic Acids Research 13:8409−23 doi: 10.1093/nar/13.23.8409
CrossRef Google Scholar
|
[42]
|
Ramos J, Szkutnicka K, Cirillo VP. 1989. Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. Journal of Bacteriology 171:3539−44 doi: 10.1128/jb.171.6.3539-3544.1989
CrossRef Google Scholar
|
[43]
|
Matsumoto K, Yoshimatsu T, Oshima Y. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. Journal of Bacteriology 153:1405−14 doi: 10.1128/jb.153.3.1405-1414.1983
CrossRef Google Scholar
|
[44]
|
Matern H, Holzer H. 1977. Catabolite inactivation of the galactose uptake system in yeast. The Journal of Biological Chemistry 252:6399−402 doi: 10.1016/S0021-9258(17)39971-4
CrossRef Google Scholar
|
[45]
|
Finley RL Jr, Chen S, Ma J, Byrne P, West RW Jr. 1990. Opposing regulatory functions of positive and negative elements in UASg control transcription of the yeast GAL genes. Molecular and Cellular Biology 10:5663−70 doi: 10.1128/mcb.10.11.5663-5670.1990
CrossRef Google Scholar
|
[46]
|
Klar AJS, Halvorson HO. 1974. Studies on the positive regulatory gene, GAL4, in regulation of galactose catabolic enzymes in Saccharomyces cerevisiae. Molecular and General Genetics MGG 135:203−12 doi: 10.1007/BF00268616
CrossRef Google Scholar
|
[47]
|
Schjerling P, Holmberg S. 1996. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Research 24:4599−607 doi: 10.1093/nar/24.23.4599
CrossRef Google Scholar
|
[48]
|
Perlman D, Hopper JE. 1979. Constitutive synthesis of the GAL4 protein, a galactose pathway regulator in Saccharomyces cerevisiae. Cell 16:89−95 doi: 10.1016/0092-8674(79)90190-9
CrossRef Google Scholar
|
[49]
|
Douglas HC, Hawthorne CD. 1972. Uninducible mutants in the gal i locus of Saccharomyces cerevisiae. Journal of Bacteriology 109:1139−43 doi: 10.1128/jb.109.3.1139-1143.1972
CrossRef Google Scholar
|
[50]
|
Adams BG. 1972. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. Journal of Bacteriology 111:308−15 doi: 10.1128/jb.111.2.308-315.1972
CrossRef Google Scholar
|
[51]
|
Johnston M, Davis RW. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Molecular and Cellular Biology 4:1440−48 doi: 10.1128/mcb.4.8.1440-1448.1984
CrossRef Google Scholar
|