[1]
|
Douki T, von Koschembahr A, Cadet J. 2017. Insight in DNA repair of UV-induced pyrimidine dimers by chromatographic methods. Photochemistry and Photobiology 93:207−15 doi: 10.1111/php.12685
CrossRef Google Scholar
|
[2]
|
Peng L, Yan Y, Liu WX, Wan FH, Wang JJ. 2010. Counter-defense mechanisms of phytophagous insects towards plant defense. Acta Entomologica Sinica 53:572−80 doi: 10.16380/j.kcxb.2010.05.014
CrossRef Google Scholar
|
[3]
|
Duan XF, Wang XQ, Li PW, Peng P. 2015. Research progress on the effects of several environmental factors on adaptability of insects. Chinese Agricultural Science Bulletin 31(14):79−82
Google Scholar
|
[4]
|
Xia MD, Geng HP, Yang LQ, Zhang QM, Gao BJ. 2010. Molecular strategies of insect adaption under environmental stress. Hebei Journal of Forestry and Orchard Research 25(2):177−80
Google Scholar
|
[5]
|
Zhang XS, Wang YQ, Yu QJ, Gao BJ. 2012. Research of adapting protein during the counter-defensive process of phytophagous insects. Hebei Journal of Forestry and Orchard Resarch 27:414−17
Google Scholar
|
[6]
|
Zhu-Salzman K, Zeng RS. 2015. Insect Response to Plant Defensive Protease Inhibitors. Annual Review of Entomology 60:233−52 doi: 10.1146/annurev-ento-010814-020816
CrossRef Google Scholar
|
[7]
|
Cheng Y, Li FL, Jin JX, Li WH. 2015. Resistance of Plutella xylostella lines against abamectin, beta-cypermethrin and their mixture. Guizhou Agricultural Sciences 43:47−49 doi: 10.3969/j.issn.1001-3601.2015.02.014
CrossRef Google Scholar
|
[8]
|
Li J, Zhao HY, Zhao XD. 2005. Effects of different intensities of ultraviolet light on ecological characteristics and related enzyme activities of aphids. Journal of Northwest A&F University (Natural Science) 33(4):61−64 doi: 10.3321/j.issn:1671-9387.2005.04.015
CrossRef Google Scholar
|
[9]
|
Tian CB. 2019. Effects of UV-B radiation on bio–ecology and antioxidant enzymes of Neoseiulus barkeri (Hughes). Master Thesis. Southwest University, Chongqing.
|
[10]
|
Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL. 2009. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. Journal of Insect Physiology 55:588−92 doi: 10.1016/j.jinsphys.2009.03.003
CrossRef Google Scholar
|
[11]
|
Wu YQ, Duan Y, Jiang YL. 2009. Reviews on Lighting for Insect-pests Control. Reviews on Lighting for Insect-pests Control 2009(9):127−30 doi: 10.3969/j.issn.1004-3268.2009.09.031
CrossRef Google Scholar
|
[12]
|
Xu JX, Yang HY, Wu JC. 2006. Effects of elevated solar UV-B radiation on herbivorous insects. Chinese Journal of Ecology 25(7):845−50
Google Scholar
|
[13]
|
Barnes PW, Flint SD, Caldwell MM. 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. American Journal of Botany 77(10):1354−60 doi: 10.1002/j.1537-2197.1990.tb11387.x
CrossRef Google Scholar
|
[14]
|
Runger TM, Kappes UP. 2008. Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatology, Photoimmunology & Photomedicine 24:2−10 doi: 10.1111/j.1600-0781.2008.00319.x
CrossRef Google Scholar
|
[15]
|
Yang ZM, Yan JY, Wang CH. 1995. Effects of increased ultraviolet radiation on organisms. Bulletin of Biology 5:17−18
Google Scholar
|
[16]
|
Cronin TW, Bok MJ. 2016. Photoreception and vision in the ultraviolet. Journal of Experimental Biology 219:2790−801 doi: 10.1242/jeb.128769
CrossRef Google Scholar
|
[17]
|
Yang XF, Wei GS, Ma AH, Ran HF, Li JC, et al. 2022. Research advances in ultraviolet vision in insects. Journal of Plant Protection 49(1):131−45 doi: 10.13802/j.cnki.zwbhxb.2022.2022816
CrossRef Google Scholar
|
[18]
|
Jiang YL, Guo YY, Wu YQ, Duan Y, Miao J, et al. 2012. Advances on response and perception mechanisms of insects to polarized light. Journal of Environmental Entomology 55:226−32 doi: 10.16380/j.kcxb.2012.02.014
CrossRef Google Scholar
|
[19]
|
Ben-Yakir D, Fereres A. 2016. The effects of UV radiation on arthropods: a review of recent publications (2010−2015). Acta Horticulturae 1134:335−42 doi: 10.17660/ActaHortic.2016.1134.44
CrossRef Google Scholar
|
[20]
|
Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, et al. 2012. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiologia Plantarum 145:565−81 doi: 10.1111/j.1399-3054.2011.01553.x
CrossRef Google Scholar
|
[21]
|
Briscoe AD, Chittka L. 2001. The evolution of color vision in insects. Annual Review of Entomology 46:471−510 doi: 10.1146/annurev.ento.46.1.471
CrossRef Google Scholar
|
[22]
|
Lunau K. 2014. Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of Comparative Physiology A 200:497−512 doi: 10.1007/s00359-014-0895-1
CrossRef Google Scholar
|
[23]
|
Veteli TO, Tegelberg R, Pusenius J, Sipura M, Julkunen-Tiitto R, et al. 2003. Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation. Oecologia 137:312−20 doi: 10.1007/s00442-003-1298-0
CrossRef Google Scholar
|
[24]
|
Wang BY, Zhang JG, Son XM, Yuan AL, Zhang WL, Zhao JF. 2004. Effects of ultraviolet irradiation on storage of red blood cell. Journal of Xi' an Jiaotong University (Medical Sciences) 25(4):372−74
Google Scholar
|
[25]
|
Zhang CY, Meng JY, Zhou LJ, Sang W, Lei CL. 2012. Effects of ultraviolet light stress on juvenile hormone in Helicoverpa armigera adults. Plant Protection 38(6):72−76 doi: 10.3969/j.issn.0529-1542.2012.06.015
CrossRef Google Scholar
|
[26]
|
Zhou D. 2015. Effects of long-trem UV-B stress on ecological parameters and protectction enzyme activity of the aphid sitobion avenae (Fabricius) Hemiptrea: Aphididae. Thesis. Northwest A&F University, China.
|
[27]
|
Zhao B. 2019. Effects on population parameters, epidermis and chitin synthase of Sitobion avenae (Fabricius) exposed to long-term UV-B stress. Master Thesis. Northwest A&F University, Yangling, Shannxi.
|
[28]
|
Zhang YJ, Liang JY, Zeng MH. 2013. Effect of ultraviolet irradiation on lifespan and offspring physiology of male Drosophila melanogaster. Tianjin Agricultural Sciences 19(7):75−78 doi: 10.3969/j.issn.1006-6500.2013.07.019
CrossRef Google Scholar
|
[29]
|
Du EX, Guo JW, Zhao HY. 2006. UV-induced DNA mutation of peach aphid. Chinese Journal of Applied Ecology 17(7):1245−49
Google Scholar
|
[30]
|
Zhou D, Du YM, Yang J, Zhang L, Zhao HY, et al. 2014. Effects of UV-B radiation in successive generations on the activities of protective enzymes in the grain aphid, Sitobion avenae (Hemiptera: Aphididae). Acta Entomologica Sinica 57(7):762−68 doi: 10.16380/j.kcxb.2014.07.002
CrossRef Google Scholar
|
[31]
|
Cadet J, Sage E, Douki T. 2005. Ultraviolet radiation-mediated damage to cellular DNA. Mutation research 571:3−17 doi: 10.1016/j.mrfmmm.2004.09.012
CrossRef Google Scholar
|
[32]
|
Ravanat JL, Douki T, Cadet J. 2001. Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology. B, Biology 63:88−102 doi: 10.1016/S1011-1344(01)00206-8
CrossRef Google Scholar
|
[33]
|
Che WY. 2018. Effect on sequence and enzyme activity of GST, population dynamics of offspring of sitobion avenae under long term UV-B stress. Northwest A&F University, China.
|
[34]
|
Wang FF, Wang Y, Chen YC, Liu YM, Guo SH, et al. 2020. Phototaxis of Diaphorina citri Kuwayama (Hemiptera: Liviidae) to LED lights. Journal of Environmental Entomology 42:187−92
Google Scholar
|
[35]
|
Baik LS, Au DD, Nave C, Foden AJ, Enrriquez-Villalva WK, et al. 2019. Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting. Proceedings of the National Academy of Sciences of the United States of America 116:23339−44 doi: 10.1073/pnas.1905023116
CrossRef Google Scholar
|
[36]
|
Chen Z, Liu CQ, Sun H, Niu Y. 2020. The ultraviolet colour component enhances the attractiveness of red flowers of a bee-pollinated plant. Journal of Plant Ecology 13:354−60 doi: 10.1093/jpe/rtaa023
CrossRef Google Scholar
|
[37]
|
Huq M, Bhardwaj S, Monteiro A. 2019. Male Bicyclus anynana butterflies choose females on the basis of their ventral UV-reflective eyespot centers. Journal of Insect Science 19:25 doi: 10.1093/jisesa/iez014
CrossRef Google Scholar
|
[38]
|
Obara Y, Koshitaka H, Arikawa K. 2008. Better mate in the shade: enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. The Journal of experimental biology 211:3698−702 doi: 10.1242/jeb.021980
CrossRef Google Scholar
|
[39]
|
Xu J, Yang XB, Lin Y, Zang LS, Tian CY, et al. 2016. Effect of fertilized, unfertilized, and UV-irradiated hosts on parasitism and suitability for Trichogramma parasitoids. Entomologia Experimentalis Et Applicata 161:50−56 doi: 10.1111/eea.12485
CrossRef Google Scholar
|
[40]
|
Olofsson M, Vallin A, Jakobsson S, Wiklund C. 2010. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS One 5:e10798 doi: 10.1371/journal.pone.0010798
CrossRef Google Scholar
|
[41]
|
Zhu GP, Yang J, Zhang L, Zhao HY. 2012. Ecological effects on the aphid Sitobion avenae (Fabricius) exposed to UV-B radiation for several successive generations. Acta Agriculturae Boreali occidentalis Sinica 21(8):63−67
Google Scholar
|
[42]
|
Yuan WN. 2016. Research on the effects of ultraviolet-B stress on pea aphid Acyrthosiphon pisum Harris. Thesis. Gansu Agricultural University, Lanzhou.
|
[43]
|
Tariq K, Noor M, Saeed S, Zhang H. 2015. The effect of ultraviolet-a radiation exposure on the reproductive ability, longevity, and development of the Dialeurodes citri (Homoptera: Aleyrodidae) F1 generation. Environmental Entomology 44:1614−18 doi: 10.1093/ee/nvv133
CrossRef Google Scholar
|
[44]
|
Zhao HY, Du EX, Guo JW, Zhang GS, Wang CP, et al. 2010. Preliminary study on molecular ecology of gene expression of Myzus persicae under UV-B stress. Journal of Northwest A&F University (Natural Science) 38:132−38 doi: 10.13207/j.cnki.jnwafu.2010.03.012
CrossRef Google Scholar
|
[45]
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, et al. 2017. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 17:1600383 doi: 10.1002/pmic.201600383
CrossRef Google Scholar
|
[46]
|
Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, et al. 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148:1−5 doi: 10.1016/j.cbpc.2008.02.003
CrossRef Google Scholar
|
[47]
|
Li XL, Qi YX, Lu YY. 2022. Advances for the metabolic detoxification genes in major Tephritidae species. Journal of Plant Protection 49:351−65 doi: 10.13802/j.cnki.zwbhxb.2022.2022832
CrossRef Google Scholar
|
[48]
|
Nordberg J, Arnér ES. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology & Medicine 31:1287−312 doi: 10.1016/s0891-5849(01)00724-9
CrossRef Google Scholar
|
[49]
|
Wang RL, Xia QQ, Baerson SR, Ren Y, Wang J, et al. 2015. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera Noctuidae) and its potential role in plant allelochemical detoxification. Journal of Insect Physiology 75:54−62 doi: 10.1016/j.jinsphys.2015.02.013
CrossRef Google Scholar
|
[50]
|
Wang LJ, Ye CL, Zheng MH, Huang L, Zhang LF, et al. 2019. Research Advances in Drosophila Drug Resistance Mediated by Cytochrome P450. Genomics and Applied Biology 38:1304−09 doi: 10.13417/j.gab.038.001304
CrossRef Google Scholar
|
[51]
|
Wang BQ, Cheng LH, Fang Y, Li WW, Liu JN. 2022. Effects of plant secondary metabolites on detoxification enzyme activity and related gene expression of Spodoptera frugiperda. Jiangsu Agricultural Sciences 50:11−15 doi: 10.15889/j.issn.1002-1302.2022.08.003
CrossRef Google Scholar
|
[52]
|
Wang Y, Song X, Cheng P, Gong MQ. 2019. Research advances in mosquito resistance to insecticides mediated by cytochrome P450. Chinese Journal of Vector Biology and Control 30(5):589−92 doi: 10.11853/j.issn.1003.8280.2019.05.027
CrossRef Google Scholar
|
[53]
|
Yuan XX, Dong SQ, Wang XH, Guo XR, Wang GP, et al. 2022. Spatio-temporal expression and function of cytochrome P450 gene CYP4G113 in Conogethes punctiferalis. Chinese Journal of Biological and Control 38(1):196−204 doi: 10.16409/j.cnki.2095-039x.2021.03.023
CrossRef Google Scholar
|
[54]
|
Meng JY. 2013. A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. Thesis. Huazhong Agricultural University, China.
|
[55]
|
Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL. 2012. The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. Journal of Insect Physiology 58:830−36 doi: 10.1016/j.jinsphys.2012.03.007
CrossRef Google Scholar
|
[56]
|
Wei YD, Bergander L, Rannug U, Rannug A. 2000. Regulation of CYP1A1 transcription via the metabolism of the tryptophan-derived 6-formylindolo[3,2-b] carbazole. Archives of Biochemistry and Biophysics 383:99−107 doi: 10.1006/abbi.2000.2037
CrossRef Google Scholar
|
[57]
|
Liang P, Gao X, Zheng B, Dai H. 2001. Stuy on resistance machanisms and cross-resistance of abamectin in Diamondback Moth Plutella oxylostella (L.). Chinese Journal of Pesticide Science 1:41−45 doi: 10.3321/j.issn:1008-7303.2001.01.008
CrossRef Google Scholar
|
[58]
|
Gao XW, Zhou X, Wang J, Zheng B. 1998. Distribution and partial purification of acetylcholinesterase (AChE) from Helicoverpa armigera. Acta Entomologica Sinica 41(S1):21−27
Google Scholar
|
[59]
|
Peng Y, Wang YC, Han ZJ, Chen CK, Li GQ. 2002. Distribution and purification of acetylcholinesterase in Chilo suppressalis. Acta Entomologica Sinica 45(2):209−14 doi: 10.16380/j.kcxb.2002.02.011
CrossRef Google Scholar
|
[60]
|
Meng JY, Zhang CY, Lei CL. 2012. Effects of UV Light Stress on Acetylcholinesterase and Carboxylesterase in Helicoverpa armigera Adults. Guizhou Agricultural Sciences 40(4):107−9 doi: 10.3969/j.issn.1001-3601.2012.04.031
CrossRef Google Scholar
|
[61]
|
Wu QJ, Zhang YJ, Xu BY, Zhang WJ. 2011. The defending enzymes in abamectin resistant Plutella xylostella. Chinese Journal of Applied Entomology 48(2):291−95
Google Scholar
|
[62]
|
Zheng J. 2012. Effect of UVA radiation on biological fitness and antioxidant system of fruit fly, Drosophila melanogaster. Thesis. Huazhong Agricultural University, China.
|
[63]
|
Wang W, Gao C, Ren L, Luo Y. 2020. The effect of longwave ultraviolet light radiation on Dendrolimus tabulaeformis antioxidant and detoxifying enzymes. Insects 11:1 doi: 10.3390/insects11010001
CrossRef Google Scholar
|
[64]
|
Dryer SE, Dryer RL, Autor AP. 1980. Enhancement of mitochondrial, cyanide-resistant superoxide dismutase in the livers of rats treated with 2,4-dinitrophenol. The Journal of Biological Chemistry 255:1054−57 doi: 10.1016/S0021-9258(19)86140-9
CrossRef Google Scholar
|
[65]
|
Chelikani P, Ramana T, Radhakrishnan TM. 2005. Catalase: A repertoire of unusual features. Indian journal of clinical biochemistry 20:131−35 doi: 10.1007/BF02867412
CrossRef Google Scholar
|
[66]
|
Li Q, Wu L, Yang G, Kuang J, Feng C, et al. 2012. Effects of temperature stress and ultraviolet radiation stress on antioxidant systems of Locusta migratoria tibetensis Chen. Acta Ecologica Sinica 32:3189−97 doi: 10.5846/stxb201104260552
CrossRef Google Scholar
|
[67]
|
Ali A, Rashid MA, Huang QY, Lei CL. 2017. Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae). Environmental Science and Pollution Research 24:8392−98 doi: 10.1007/s11356-017-8514-7
CrossRef Google Scholar
|
[68]
|
Karthi S, Sankari R, Shivakumar MS. 2014. Ultraviolet-B light induced oxidative stress: Effects on antioxidant response of Spodoptera litura. Journal of Photochemistry and Photobiology B: Biology 135:1−6 doi: 10.1016/j.jphotobiol.2014.04.008
CrossRef Google Scholar
|
[69]
|
Wang ZY, Wang FF, He WC, Qiu BL, Lei CL, et al. 2022. Biological effects of ultraviolet light on insects. Chinese Journal of Applied Entomology 59:16−28 doi: 10.7679/j.issn.2095-1353.2022.002
CrossRef Google Scholar
|
[70]
|
Zhang HL, Zhou ZX. 2015. Influence of ultraviolet on the number of haemocytes and superoxide influence of ultraviolet on the number of haemocytes and superoxide dismutase activity from Helicoverpa assulta. Guizhou Agricultural Sciences 43(5):98−100 doi: 10.3969/j.issn.1001-3601.2015.05.026
CrossRef Google Scholar
|
[71]
|
Harman D. 1992. Free radical theory of aging. Mutation research 275:257−66 doi: 10.1016/0921-8734(92)90030-S
CrossRef Google Scholar
|
[72]
|
Schauen M, Hornig-Do H-T, Schomberg S, Herrmann G, Wiesner RJ. 2007. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radical Biology & Medicine 42:499−509 doi: 10.1016/j.freeradbiomed.2006.11.016
CrossRef Google Scholar
|
[73]
|
Fridovich I. 1997. Superoxide anion radical (O2−), superoxide dismutases, and related matters. The Journal of Biological Chemistry 272:18515−17 doi: 10.1074/jbc.272.30.18515
CrossRef Google Scholar
|
[74]
|
Li Y, Gong H. 1998. Research progress of antioxidant system in insects. Chinese Bulletin of Life Sciences 10(5):240−243+21
Google Scholar
|
[75]
|
Felton GW, Summers CB. 1995. Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology 29:187−97 doi: 10.1002/arch.940290208
CrossRef Google Scholar
|
[76]
|
Missirlis F, Phillips JP, Jäckle H. 2001. Cooperative action of antioxidant defense systems in Drosophila. Current Biology 11:1272−77 doi: 10.1016/S0960-9822(01)00393-1
CrossRef Google Scholar
|
[77]
|
Valdez LB, Lores Arnaiz S, Bustamante J, Alvarez S, Costa LE, et al. 2000. Free radical chemistry in biological systems. Biological Research 33(2):65−70 doi: 10.4067/S0716-97602000000200005
CrossRef Google Scholar
|
[78]
|
Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL. 2008. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology 38:796−804 doi: 10.1016/j.ibmb.2008.05.006
CrossRef Google Scholar
|
[79]
|
Halliwell B. 1999. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Research 31:261−72 doi: 10.1080/10715769900300841
CrossRef Google Scholar
|
[80]
|
Sinha RP, Häder DP. 2002. UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1:225−36 doi: 10.1039/b201230h
CrossRef Google Scholar
|
[81]
|
van der Leun JC, de Gruijl FR, Tevini M, Worrest RC. 1993. Ultraviolet carcinogenesis: environmental effects of ozone depletion. In Skin Carcinogenesis in Man and in Experimental Models. Recent results in cancer research, eds. Hecker E, Jung EG, Marks F, Tilgen W. vol. 128. Berlin, Heidelberg: Springer. pp. 263−67. https://doi.org/10.1007/978-3-642-84881-0_19
|
[82]
|
Yang TB, Mei SJ. 1994. Stress response and antioxidant enzymes. Space Medicine and Medical Engineering 7(1):75−78
Google Scholar
|
[83]
|
Su L. 2021. Molecular mechanism of Ostrinia furnacalis (Guenée) in response to UV stress. Thesis. Guizhou University, China.
|
[84]
|
Sang W. 2017. Response mechanisms of Tribolium castaneum and Callosobruchus maculatus exposure to physical agents. Thesis. Huazhong Agricultural University, Wuhan.
|
[85]
|
Yao MS, Meng JY, Yang CL, Zhang CY. 2020. cDNA cloning and expression profiling of the heat shock prote in Hsc70 gene and its response to different environmental stresses in fall armyworm Spodoptera frugiperda. Journal of Plant Protection 47(4):797−806 doi: 10.13802/j.cnki.zwbhxb.2020.2020816
CrossRef Google Scholar
|
[86]
|
Yang CL. 2022. Molecular mechanism of Myzus persicae (Hemiptera: Aphididae) in response to UV-B stress. Guizhou University, Guiyang.
|
[87]
|
Zhou L, Meng JY, Yang CL, Li J, Hu CX, et al. 2020. Cloning of heat shock protein gene SfHsp90 and its expression under high and low temperature and UV-A stresses in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomologica Sinica 63:533−44 doi: 10.16380/j.kcxb.2020.05.002
CrossRef Google Scholar
|
[88]
|
Liu JY, Qian L, Jiang XC, He SQ, Li ZY, et al. 2014. Effects of elevated CO2 concentration on the activities of detoxifying enzymes and protective enzymes in adults of Frankliniella occidentalis and F. intonsa (Thysanoptera: Thripidae). Acta Entomologica Sinica 57:754−61 doi: 10.16380/j.kcxb.2014.07.007
CrossRef Google Scholar
|
[89]
|
Lou D, Li X, Xue XQ, Wang P, Liu YH. 2023. Effects of elevated CO2 concentration on detoxification enzyme and protective enzyme activities of Trabala vishnou gigantina Yang. Hubei Agricultural Sciences 62:82−85+151 doi: 10.14088/j.cnki.issn0439-8114.2023.06.015
CrossRef Google Scholar
|
[90]
|
Zhang XY. 2011. Effects of high tempertaure on acetylcholinesterase and detexification enzymes in several insects in vegetable fields. Thesis. Fujian Agriculture and Forestry University, Fuzhou.
|
[91]
|
Li WZ. 2021. Changes of biological characteristics and protective enzyme activities of Neoseiulus barkeri under short-term heat stress. Thesis. Gansu Agricultural University, Lanzhou.
|
[92]
|
Yang BL. 2015. Effects of high temperature on protective enzyme in resistant and susceptible Plutella xylostella. Thesis. Fujian Agriculture and Forestry University, Fuzhou.
|
[93]
|
Wang CQ. 2021. Effects of high temperature on biology, detoxification enzymes and resistance of Tetrarcychus urticae (Koch). Thesis. Gansu Agricultural University, Lanzhou.
|