[1]
|
Good SP, Noone D, Bowen G. 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349:175−77 doi: 10.1126/science.aaa59
CrossRef Google Scholar
|
[2]
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, et al. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554 doi: 10.3389/fpls.2019.01554
CrossRef Google Scholar
|
[3]
|
Zhu Y, Zhu G, Xu R, Jiao Z, Yang J, et al. 2023. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnology Journal 21:1033−43 doi: 10.1111/pbi.14016
CrossRef Google Scholar
|
[4]
|
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94 doi: 10.1038/s41580-022-00479-6
CrossRef Google Scholar
|
[5]
|
Ku Y, Sintaha M, Cheung M, Lam H. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19:3206 doi: 10.3390/ijms19103206
CrossRef Google Scholar
|
[6]
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74 doi: 10.1007/s11427-020-1683-x
CrossRef Google Scholar
|
[7]
|
Yuan F, Yang H, Xue Y, Kong D, Ye R, et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367−71 doi: 10.1038/nature13593
CrossRef Google Scholar
|
[8]
|
Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029
CrossRef Google Scholar
|
[9]
|
Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734−37 doi: 10.1038/nature02027
CrossRef Google Scholar
|
[10]
|
Tyerman SD. 2002. Nonselective cation channels. Multiple functions and commonalities. Plant Physiology 128:327−28 doi: 10.1104/pp.900021
CrossRef Google Scholar
|
[11]
|
Kruse E, Uehlein N, Kaldenhoff R. 2006. The aquaporins. Genome Biology 7:206 doi: 10.1186/gb-2006-7-2-206
CrossRef Google Scholar
|
[12]
|
Shivaraj SM, Sharma Y, Chaudhary J, Rajora N, Sharma S, et al. 2021. Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany 184:104367 doi: 10.1016/j.envexpbot.2020.104367
CrossRef Google Scholar
|
[13]
|
Li R, Wang J, Li S, Zhang L, Qi C, et al. 2016. Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato. Scientific Reports 6:31814 doi: 10.1038/srep31814
CrossRef Google Scholar
|
[14]
|
Chong L, Hsu CC, Zhu Y. 2022. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. Journal of Experimental Botany 73:6547−57 doi: 10.1093/jxb/erac324
CrossRef Google Scholar
|
[15]
|
Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73 doi: 10.1146/annurev.arplant.53.091401.143329
CrossRef Google Scholar
|
[16]
|
Zhang J, Jia W, Yang J, Ismail AM. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97:111−19 doi: 10.1016/j.fcr.2005.08.018
CrossRef Google Scholar
|
[17]
|
Ali A, Pardo JM, Yun DJ. 2020. Desensitization of ABA-signaling: the swing from activation to degradation. Frontiers in Plant Science 11:379 doi: 10.3389/fpls.2020.00379
CrossRef Google Scholar
|
[18]
|
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235−38 doi: 10.1038/s41586-018-0009-2
CrossRef Google Scholar
|
[19]
|
Chen X, Ding Y, Yang Y, Song C, Wang B, et al. 2021. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology 63:53−78 doi: 10.1111/jipb.13061
CrossRef Google Scholar
|
[20]
|
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68 doi: 10.1126/science.1172408
CrossRef Google Scholar
|
[21]
|
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068−71 doi: 10.1126/science.1173041
CrossRef Google Scholar
|
[22]
|
Liu S, Lv Z, Liu Y, Li L, Zhang L. 2018. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genetics and Molecular Biology 41:624−37 doi: 10.1590/1678-4685-gmb-2017-0229
CrossRef Google Scholar
|
[23]
|
Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, et al. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America 103:18822−27 doi: 10.1073/pnas.0605639103
CrossRef Google Scholar
|
[24]
|
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, Transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290:998−1009 doi: 10.1006/bbrc.2001.6299
CrossRef Google Scholar
|
[25]
|
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18:1292−309 doi: 10.1105/tpc.105.035881
CrossRef Google Scholar
|
[26]
|
Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, et al. 2010. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiology 153:716−27 doi: 10.1104/pp.110.154617
CrossRef Google Scholar
|
[27]
|
Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, et al. 2011. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology 52:2136−46 doi: 10.1093/pcp/pcr143
CrossRef Google Scholar
|
[28]
|
Fujii H, Zhu JK. 2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America 106:8380−85 doi: 10.1073/pnas.0903144106
CrossRef Google Scholar
|
[29]
|
Zhu Y, Huang P, Guo P, Chong L, Yu G, et al. 2020. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. New Phytologist 228:1573−90 doi: 10.1111/nph.16787
CrossRef Google Scholar
|
[30]
|
Chong L, Xu R, Ku L, Zhu Y. 2022. Beyond stress response: OST1 opening doors for plants to grow. Stress Biology 2:44 doi: 10.1007/s44154-022-00069-8
CrossRef Google Scholar
|
[31]
|
Chong L, Xu R, Huang P, Guo P, Zhu M, et al. 2022. The tomato OST1-VOZ1 module regulates drought-mediated flowering. The Plant Cell 34:2001−18 doi: 10.1093/plcell/koac026
CrossRef Google Scholar
|
[32]
|
Chen Q, Hu T, Li X, Song C, Zhu J, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77 doi: 10.1038/s41477-021-01040-7
CrossRef Google Scholar
|
[33]
|
De Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science 21:677−85 doi: 10.1016/j.tplants.2016.04.004
CrossRef Google Scholar
|
[34]
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances 32:40−52 doi: 10.1016/j.biotechadv.2013.09.006
CrossRef Google Scholar
|
[35]
|
Yu J, Kang L, Li Y, Wu C, Zheng C, et al. 2021. RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in Arabidopsis. Journal of Integrative Plant Biology 63:484−93 doi: 10.1111/jipb.13019
CrossRef Google Scholar
|
[36]
|
Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP. 2012. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiology 158:363−75 doi: 10.1104/pp.111.189738
CrossRef Google Scholar
|
[37]
|
Wang L, Zhao R, Li R, Yu W, Yang M, et al. 2018. Enhanced drought tolerance in tomato plants by overexpression of SlMAPK1. Plant Cell, Tissue and Organ Culture (PCTOC) 133:27−38 doi: 10.1007/s11240-017-1358-5
CrossRef Google Scholar
|
[38]
|
Wang L, Chen L, Li R, Zhao R, Yang M, et al. 2017. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry 65:8674−82 doi: 10.1021/acs.jafc.7b02745
CrossRef Google Scholar
|
[39]
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, et al. 2021. Histidine kinases: diverse functions in plant development and responses to environmental conditions. Annual Review of Plant Biology 72:297−323 doi: 10.1146/annurev-arplant-080720-093057
CrossRef Google Scholar
|
[40]
|
Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, et al. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. The Plant Cell 16:1365−77 doi: 10.1105/tpc.021477
CrossRef Google Scholar
|
[41]
|
Mushtaq N, Wang Y, Fan J, Li Y, Ding J. 2022. Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plants 11:154 doi: 10.3390/plants11020154
CrossRef Google Scholar
|
[42]
|
Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, et al. 2018. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnology Journal 16:354−66 doi: 10.1111/pbi.12776
CrossRef Google Scholar
|
[43]
|
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, et al. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell 17:3470−88 doi: 10.1105/tpc.105.035659
CrossRef Google Scholar
|
[44]
|
Gilroy S, Read ND, Trewavas AJ. 1990. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769−71 doi: 10.1038/346769a0
CrossRef Google Scholar
|
[45]
|
Murata Y, Pei ZM, Mori IC, Schroeder J. 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. The Plant Cell 13:2513−23 doi: 10.1105/tpc.010210
CrossRef Google Scholar
|
[46]
|
Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell 14:3089−99 doi: 10.1105/tpc.007906
CrossRef Google Scholar
|
[47]
|
Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, et al. 2015. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell & Environment 38:35−49 doi: 10.1111/pce.12351
CrossRef Google Scholar
|
[48]
|
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 149:88−95 doi: 10.1104/pp.108.129791
CrossRef Google Scholar
|
[49]
|
Wang Z, Liu L, Cheng C, Ren Z, Xu S, et al. 2020. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. International Journal of Molecular Sciences 21:819 doi: 10.3390/ijms21030819
CrossRef Google Scholar
|
[50]
|
Li Q, Wang C, Jiang L, Li S, Sun S, et al. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5:ra72 doi: 10.1126/scisignal.2002908
CrossRef Google Scholar
|
[51]
|
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61:672−85 doi: 10.1111/j.1365-313X.2009.04092.x
CrossRef Google Scholar
|
[52]
|
Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895 doi: 10.3389/fpls.2015.00895
CrossRef Google Scholar
|
[53]
|
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6:84 doi: 10.3389/fpls.2015.00084
CrossRef Google Scholar
|
[54]
|
Nie S, Huang S, Wang S, Mao Y, Liu J, et al. 2019. Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. Plant Physiology and Biochemistry 138:36−47 doi: 10.1016/j.plaphy.2019.02.014
CrossRef Google Scholar
|
[55]
|
Mahesh K, Balaraju P, Ramakrishna B, Rao S. 2013. Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. American Journal of Plant Sciences 4:2305−13 doi: 10.4236/ajps.2013.412285
CrossRef Google Scholar
|
[56]
|
Behnamnia M, Kalantari M, Rezanejad F. 2009. Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology 35:22−34
Google Scholar
|
[57]
|
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27 doi: 10.1111/j.1399-3054.2012.01635.x
CrossRef Google Scholar
|
[58]
|
Wang H, Tang J, Liu J, Hu J, Liu J, et al. 2018. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant 11:315−25 doi: 10.1016/j.molp.2017.12.013
CrossRef Google Scholar
|
[59]
|
Wang Q, Yu F, Xie Q. 2020. Balancing growth and adaptation to stress: crosstalk between brassinosteroid and abscisic acid signaling. Plant, Cell & Environment 43:2325−35 doi: 10.1111/pce.13846
CrossRef Google Scholar
|
[60]
|
Zhao W, Huang H, Wang J, Wang X, Xu B, et al. 2023. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. The Plant Journal 113:546−61 doi: 10.1111/tpj.16067
CrossRef Google Scholar
|
[61]
|
Huang H, Qiao H, Ma X, Zhao W, Sun L, et al. 2023. Roles of jasmonates in tomato growth, development and defense. Vegetable Research 3:14 doi: 10.48130/VR-2023-0014
CrossRef Google Scholar
|
[62]
|
Yao G, Li F, Nie Z, Bi M, Jiang H, et al. 2021. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Plant, Cell & Environment 44:399−411 doi: 10.1111/pce.13934
CrossRef Google Scholar
|
[63]
|
Gu X, Smaill SJ, Wang B, Liu Z, Xu X, et al. 2022. Reducing plant-derived ethylene concentrations increases the resistance of temperate grassland to drought. Science of The Total Environment 846:157408 doi: 10.1016/j.scitotenv.2022.157408
CrossRef Google Scholar
|
[64]
|
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, et al. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31:349−60 doi: 10.1007/s00299-011-1170-3
CrossRef Google Scholar
|
[65]
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, et al. 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40:1305−29 doi: 10.1007/s00299-021-02683-8
CrossRef Google Scholar
|
[66]
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771 doi: 10.3390/genes10100771
CrossRef Google Scholar
|
[67]
|
Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell 25:4708−24 doi: 10.1105/tpc.113.119099
CrossRef Google Scholar
|
[68]
|
Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, et al. 2014. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports 33:1851−63 doi: 10.1007/s00299-014-1662-z
CrossRef Google Scholar
|
[69]
|
Jian W, Zheng Y, Yu T, Cao H, Chen Y, et al. 2021. SlNAC6, A NAC transcription factor, is involved in drought stress response and reproductive process in tomato. Journal of Plant Physiology 264:153483 doi: 10.1016/j.jplph.2021.153483
CrossRef Google Scholar
|
[70]
|
Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P. 2008. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology 18:656−60 doi: 10.1016/j.cub.2008.04.034
CrossRef Google Scholar
|
[71]
|
Cao Y, Li K, Li Y, Zhao X, Wang L. 2020. MYB transcription factors as regulators of secondary metabolism in plants. Biology 9:61 doi: 10.3390/biology9030061
CrossRef Google Scholar
|
[72]
|
Cui J, Jiang N, Zhou X, Hou X, Yang G, et al. 2018. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta 248:1487−503 doi: 10.1007/s00425-018-2987-6
CrossRef Google Scholar
|
[73]
|
Chen Y, Feng P, Zhang X, Xie Q, Chen G, et al. 2022. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. Plant Physiology and Biochemistry 193:139−52 doi: 10.1016/j.plaphy.2022.10.026
CrossRef Google Scholar
|
[74]
|
Chen Y, Li L, Tang B, Wu T, Chen G, et al. 2022. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato. Plant Science 316:111166 doi: 10.1016/j.plantsci.2021.111166
CrossRef Google Scholar
|
[75]
|
Feng K, Hou X, Xing G, Liu J, Duan A, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76 doi: 10.1080/07388551.2020.1768509
CrossRef Google Scholar
|
[76]
|
Ohme-Takagi M, Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell 7:173−82 doi: 10.1105/tpc.7.2.173
CrossRef Google Scholar
|
[77]
|
Li Z, Tian Y, Xu J, Fu X, Gao J, et al. 2018. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiology and Biochemistry 132:683−95 doi: 10.1016/j.plaphy.2018.08.022
CrossRef Google Scholar
|
[78]
|
Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK. 2010. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports 37:1125 doi: 10.1007/s11033-009-9885-8
CrossRef Google Scholar
|
[79]
|
Maqsood H, Munir F, Amir R, Gul A. 2022. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Frontiers in Plant Science 13:1031679 doi: 10.3389/fpls.2022.1031679
CrossRef Google Scholar
|
[80]
|
Li J, Sima W, Ouyang B, Wang T, Ziaf K, et al. 2012. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany 63:6407−20 doi: 10.1093/jxb/ers295
CrossRef Google Scholar
|
[81]
|
Zhao Y, Zheng Y, Jiang L, Niu Y, Yang Y, et al. 2022. Identification of stress-related characteristics of the WRKY gene family: a case study of Dendrobium catenatum. Ornamental Plant Research 2:21 doi: 10.48130/OPR-2022-0021
CrossRef Google Scholar
|
[82]
|
Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3 doi: 10.48130/BPR-2021-0003
CrossRef Google Scholar
|
[83]
|
Ahammed GJ, Li X, Mao Q, Wan H, Zhou G, et al. 2021. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiologia Plantarum 172:885−95 doi: 10.1111/ppl.13243
CrossRef Google Scholar
|
[84]
|
Gao Z, Bao Y, Wang Z, Sun X, Zhao T, et al. 2022. Gene silencing of SLZF57 reduces drought stress tolerance in tomato. Plant Cell, Tissue and Organ Culture (PCTOC) 150:97−104 doi: 10.1007/s11240-022-02247-y
CrossRef Google Scholar
|
[85]
|
Rai AC, Singh M, Shah K. 2013. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44−50 doi: 10.1016/j.phytochem.2012.09.007
CrossRef Google Scholar
|
[86]
|
Shah K, Singh M, Rai AC. 2013. Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109−17 doi: 10.1016/j.phytochem.2013.07.026
CrossRef Google Scholar
|
[87]
|
Zhu M, Meng X, Cai J, Li G, Dong T, et al. 2018. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biology 18:83 doi: 10.1186/s12870-018-1299-0
CrossRef Google Scholar
|
[88]
|
Pan Y, Hu X, Li C, Xu X, Su C, et al. 2017. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance. Genes 8:402 doi: 10.3390/genes8120402
CrossRef Google Scholar
|
[89]
|
Bao Y, Song W, Wang P, Yu X, Li B, et al. 2020. COST1 regulates autophagy to control plant drought tolerance. Proceedings of the National Academy of Sciences of the United States of America 117:7482−93 doi: 10.1073/pnas.1918539117
CrossRef Google Scholar
|
[90]
|
Bao Y, Bassham DC. 2020. COST1 balances plant growth and stress tolerance via attenuation of autophagy. Autophagy 16:1157−58 doi: 10.1080/15548627.2020.1752981
CrossRef Google Scholar
|
[91]
|
Christmann A, Grill E. 2018. Peptide signal alerts plants to drought. Nature 556:178−79 doi: 10.1038/d41586-018-03872-4
CrossRef Google Scholar
|
[92]
|
Asano T, Hayashi N, Kikuchi S, Ohsugi R. 2012. CDPK-mediated abiotic stress signaling. Plant Signaling & Behavior 7:817−21 doi: 10.4161/psb.20351
CrossRef Google Scholar
|
[93]
|
Bi Z, Wang Y, Li P, Sun C, Qin T, et al. 2021. Evolution and expression analysis of CDPK genes under drought stress in two varieties of potato. Biotechnology Letters 43:511−21 doi: 10.1007/s10529-020-03037-2
CrossRef Google Scholar
|
[94]
|
Dekomah SD, Wang Y, Qin T, Xu D, Sun C, et al. 2022. Identification and expression analysis of Calcium-dependent protein kinases gene family in potato under drought stress. Frontiers in Genetics 13:874397 doi: 10.3389/fgene.2022.874397
CrossRef Google Scholar
|
[95]
|
Candar-Cakir B, Arican E, Zhang B. 2016. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Plant Biotechnology Journal 14:1727−46 doi: 10.1111/pbi.12533
CrossRef Google Scholar
|
[96]
|
Li Q, Shen H, Yuan S, Dai X, Yang C. 2022. miRNAs and lncRNAs in tomato: roles in biotic and abiotic stress responses. Frontiers in Plant Science 13:1094459 doi: 10.3389/fpls.2022.1094459
CrossRef Google Scholar
|
[97]
|
Chen L, Meng J, Luan Y. 2019. miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochemical and Biophysical Research Communications 508:597−602 doi: 10.1016/j.bbrc.2018.11.165
CrossRef Google Scholar
|
[98]
|
Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, et al. 2011. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters 33:403−9 doi: 10.1007/s10529-010-0436-0
CrossRef Google Scholar
|
[99]
|
Li N, Wang Y, Zheng R, Song X. 2022. Research progress on biological functions of lncRNAs in major vegetable crops. Vegetable Research 2:14 doi: 10.48130/VR-2022-0014
CrossRef Google Scholar
|
[100]
|
Chong L, Zhu Y. 2022. Mass spectrometry-based proteomics for abiotic stress studies. Trends in Plant Science 27:729−30 doi: 10.1016/j.tplants.2021.12.013
CrossRef Google Scholar
|