[1]
|
Borsch T, Löhne C, Wiersema J. 2008. Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. TAXON 57:1052−4E doi: 10.1002/tax.574004
CrossRef Google Scholar
|
[2]
|
Les DH, Garvin DK, Wimpee CF. 1991. Molecular evolutionary history of ancient aquatic angiosperms. PNAS 88:10119−23 doi: 10.1073/pnas.88.22.10119
CrossRef Google Scholar
|
[3]
|
Saarela JM, Rai HS, Doyle JA, Endress PK, Mathews S, et al. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312−15 doi: 10.1038/nature05612
CrossRef Google Scholar
|
[4]
|
Yu C, Qiao G, Qiu W, Yu D, Zhou S, et al. 2018. Molecular breeding of water lily: engineering cold stress tolerance into tropical water lily. Horticulture Research 5:73 doi: 10.1038/s41438-018-0086-2
CrossRef Google Scholar
|
[5]
|
Schneider E, Tucker SC, Williamson PS. 2003. Floral Development in the Nymphaeales. International Journal of Plant Sciences 164:S279−S292 doi: 10.1086/376883
CrossRef Google Scholar
|
[6]
|
Friis EM, Pedersen KR, Crane PR. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410:357−60 doi: 10.1038/35066557
CrossRef Google Scholar
|
[7]
|
Friedman WE. 2008. Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94−97 doi: 10.1038/nature06733
CrossRef Google Scholar
|
[8]
|
Pellicer J, Kelly LJ, Magdalena C, Leitch IJ. 2013. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56:437−49 doi: 10.1139/gen-2013-0039
CrossRef Google Scholar
|
[9]
|
Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84 doi: 10.1038/s41586-019-1852-5
CrossRef Google Scholar
|
[10]
|
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111:E4859−E4868 doi: 10.1073/pnas.1323926111
CrossRef Google Scholar
|
[11]
|
Schimpf M, Ulmer T, Hiller H, Barbuto AF. 2021. Toxicity from blue lotus (Nymphaea caerulea) after ingestion or inhalation: A case series. Military Medicine 11:usab328 doi: 10.1093/milmed/usab328
CrossRef Google Scholar
|
[12]
|
Devi SA, Thongam B, Handique PJ. 2015. Nymphaea rubra Roxb. ex Andrews cultivated as an ornamental, food and vegetable in the North Eastern region of India. Genetic Resources and Crop Evolution 62:315−20 doi: 10.1007/s10722-014-0177-3
CrossRef Google Scholar
|
[13]
|
Liu X, He Z, Yin Y, Xu X, Wu W, et al. 2018. Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genomics 19:343 doi: 10.1186/s12864-018-4707-9
CrossRef Google Scholar
|
[14]
|
Dash BK, Sen MK, Alam K, Hossain K, Islam R, et al. 2013. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Annals of Clinical Microbiology and Antimicrobials 12:27 doi: 10.1186/1476-0711-12-27
CrossRef Google Scholar
|
[15]
|
Hsu CL, Fang SC, Yen GC. 2013. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & Function 4:1216−22 doi: 10.1039/c3fo60041f
CrossRef Google Scholar
|
[16]
|
Fajemiroye JO, Adam K, Jordan KZ, Alves CE, Aderoju AA. 2018. Evaluation of Anxiolytic and Antidepressant-like Activity of Aqueous Leaf Extract of Nymphaea Lotus Linn. in Mice. Iranian Journal of Pharmaceutical Research 17:613−26
Google Scholar
|
[17]
|
Harris JC. 2007. The Water-lily pond-symphony in green. Archives of General Psychiatry 64:1347 doi: 10.1001/archpsyc.64.12.1347
CrossRef Google Scholar
|
[18]
|
Lavid N, Schwartz A, Yarden O, Tel-Or E. 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323−31 doi: 10.1007/s004250000400
CrossRef Google Scholar
|
[19]
|
The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105−21 doi: 10.1111/j.1095-8339.2009.00996.x
CrossRef Google Scholar
|
[20]
|
Zhang LS. 2019. Advance of Horticultural Plant Genomes. Hortic Plant J 5:229−30 doi: 10.1016/j.hpj.2019.12.002
CrossRef Google Scholar
|
[21]
|
Chen F, Liu X, Yu C, Chen Y, Tang H, et al. 2017. Water lilies as emerging models for Darwin's abominable mystery. Horticulture Research 4:17051 doi: 10.1038/hortres.2017.51
CrossRef Google Scholar
|
[22]
|
Dong S, Zhao C, Chen F, Liu Y, Zhang S, et al. 2018. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 19:614 doi: 10.1186/s12864-018-4991-4
CrossRef Google Scholar
|
[23]
|
Lyu J. 2020. Encoding beauty. Nature Plants 6:50 doi: 10.1038/s41477-019-0587-5
CrossRef Google Scholar
|
[24]
|
Chen F, Zhang X, Liu X, Zhang L. 2017. Evolutionary Analysis of MIKCC-Type MADS-Box Genes in Gymnosperms and Angiosperms. Frontiers in Plant Science 8:895 doi: 10.3389/fpls.2017.00895
CrossRef Google Scholar
|
[25]
|
Chen F, Hu Y, Vannozzi A, Wu K, Cai H, et al. 2017. The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences 36:311−35 doi: 10.1080/07352689.2018.1441103
CrossRef Google Scholar
|
[26]
|
Xu M, Chen F, Qi S, Zhang L, Wu S. 2018. Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora. Horticulture Research 5:42 doi: 10.1038/s41438-018-0048-8
CrossRef Google Scholar
|
[27]
|
Povilus RA, DaCosta JM, Grassa C, Satyaki PRV, Moeglein M, et al. 2020. Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. PNAS 117:8649−56 doi: 10.1073/pnas.1922873117
CrossRef Google Scholar
|
[28]
|
Yang Y, Sun P, Lv L, Wang D, Ru D, et al. 2020. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants 6:215−22 doi: 10.1038/s41477-020-0594-6
CrossRef Google Scholar
|
[29]
|
Takuno S, Ran JH, Gaut BS. 2016. Evolutionary patterns of genic DNA methylation vary across land plants. Nature Plants 2:15222 doi: 10.1038/nplants.2015.222
CrossRef Google Scholar
|
[30]
|
Ke M, Gao Z, Chen J, Qiu Y, Zhang L, et al. 2018. Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology 18:143 doi: 10.1186/s12870-018-1357-7
CrossRef Google Scholar
|
[31]
|
Li Z, Zhou W, Wang P, Chen Y, Huo S, et al. 2021. Transcriptome analysis reveals the senescence process controlling the flower opening and closure rhythm in the waterlilies (Nymphaea L.). Frontiers in Plant Science 12:701633 doi: 10.3389/fpls.2021.701633
CrossRef Google Scholar
|
[32]
|
Dias O, Tungare K, Palamthodi S, Bhori M. 2021. Nymphaea nouchali burm. f. flowers as a potential food additiveand revitalizer: A biochemico-toxicological insight. Journal of Food Processing and Preservation 45:e15045 doi: 10.1111/jfpp.15405
CrossRef Google Scholar
|
[33]
|
Acharya J, De B. 2016. Bioactivity-guided fractionation to identify β-glucuronidase inhibitors in Nymphaea pubescens flower extract. Cogent Food & Agriculture 2:1134379 doi: 10.1080/23311932.2015.1134379
CrossRef Google Scholar
|
[34]
|
Acharya J, Dutta M, Chaudhury K, De B. 2018. Metabolomics and chemometric study for identification of acetylcholinesterase inhibitor(s) from the flower extracts of Nymphaea pubescens. Journal of Food Biochemistry 42:e12575 doi: 10.1111/jfbc.12575
CrossRef Google Scholar
|
[35]
|
Maia ACD, de Lima CT, Navarro DMAF, Chartier M, Giulietti AM, et al. 2014. The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. Phytochemistry 103:67−75 doi: 10.1016/j.phytochem.2014.04.007
CrossRef Google Scholar
|
[36]
|
Bakr RO, El-Naa MM, Zaghloul SS, Omar MM. 2017. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti- inflammatory activity. BMC Complementary and Alternative Medicine 17:52 doi: 10.1186/s12906-017-1561-2
CrossRef Google Scholar
|
[37]
|
Zhao Y, Zhou W, Chen Y, Li Z, Song X, et al. 2021. Metabolite analysis in Nymphaea 'Blue Bird' petals reveal the roles of flavonoids in color formation, stress amelioration, and bee orientation. Plant Science 312:11025 doi: 10.1016/j.plantsci.2021.111025
CrossRef Google Scholar
|
[38]
|
Yuan R, Li S, Zheng X, Wu Q, Zhang H, et al. 2014. Determination of Volatiles in Water Lily Flowers Using Gas Chromatography-Mass Spectrometry. Analytical Letters 47:1541−51 doi: 10.1080/00032719.2013.878840
CrossRef Google Scholar
|
[39]
|
Smith LT, Magdalena C, Przelomska NAS, et al. 2022. Revised species delimitation in the giant water lily genus Victoria (Nymphaeaceae) confirms a new species and has implications for its conservation. Frontiers in Plant Science 13:883151
|
[40]
|
Jiang Y, Liu G, Zhang W, Zhang C, Chen X, et al. 2021. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoria cruziana. Phytochemistry 191:112899 doi: 10.1016/j.phytochem.2021.112899
CrossRef Google Scholar
|
[41]
|
Zhu M, Zheng X, Shu Q, Li H, Zhong P, et al. 2012. Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars. PLoS One 7:e34335 doi: 10.1371/journal.pone.0034335
CrossRef Google Scholar
|
[42]
|
Wu Q, Wu J, Li S, Zhang H, Feng C, et al. 2016. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics 17:897 doi: 10.1186/s12864-016-3226-9
CrossRef Google Scholar
|
[43]
|
Wu Q, Li P, Zhang H, Feng C, Li S, et al. 2018. Relationship between the flavonoid composition and flower colour variation in Victoria. Plant Biology 20:674−81 doi: 10.1111/plb.12835
CrossRef Google Scholar
|
[44]
|
Wu P, Liu A, Li L. 2021. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Molecular Genetics and Genomics 296:953−70 doi: 10.1007/s00438-021-01790-1
CrossRef Google Scholar
|
[45]
|
Su Q, Tian M, Li C, Li X, Lu J, et al. 2021. Transcriptome sequencing analysis of leaf vivipary in water lily. Chinese Journal of Tropical Crops 42:3443−50 doi: 10.3969/j.issn.1000-2561.2021.12.009
CrossRef Google Scholar
|
[46]
|
Grob V, Moline P, Pfeifer E, Novelo AR, Rutishauser R. 2006. Developmental morphology of branching flowers in Nymphaea prolifera. Journal of Plant Research 119:561−70 doi: 10.1007/s10265-006-0021-8
CrossRef Google Scholar
|
[47]
|
Manimaran P, Ghosh S, Priyanka R. 2017. Bulb size and growth regulators on the growth and performance of bulbous ornamental crops − A review. Chemical Science Review and Letters 6:1277−84
Google Scholar
|
[48]
|
Zhang L, Wu S, Chang X, Wang X, Zhao Y, et al. 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell & Environment 43:2847−56 doi: 10.1111/pce.13898
CrossRef Google Scholar
|
[49]
|
Caruana JC, Sittmann JW, Wang W, Liu Z. 2018. Suppressor of Runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Molecular Plant 11:230−33 doi: 10.1016/j.molp.2017.11.001
CrossRef Google Scholar
|
[50]
|
Dąbrowska MA, Rola K, Volkova P, Suda J, Zalewska-Gałosz J. 2015. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae) species from Eastern Europe and temperate Asia. Acta Societatis Botanicorum Poloniae 84:277−86 doi: 10.5586/asbp.2015.016
CrossRef Google Scholar
|
[51]
|
Pan Q, Fu Y, Gu J, Sheng Y, Li Q, et al. 2021. Analysis of phenotypic diversity of Nymphaea L. in Hainan, China. Chinese Journal of Tropical Crops 42:2777−88 doi: 10.3969/j.issn.1000-2561.2021.10.005
CrossRef Google Scholar
|
[52]
|
Vialette-Guiraud ACM, Alaux M, Legeai F, Finet C, Chambrier P, et al. 2011. Cabomba as a model for studies of early angiosperm evolution. Annals of Botany 108:589−98 doi: 10.1093/aob/mcr088
CrossRef Google Scholar
|
[53]
|
Tuckett RE, Merritt DJ, Rudall PJ, Hay F, Hopper SD, et al. 2010. A new type of specialized morphophysiological dormancy and seed storage behaviour in Hydatellaceae, an early-divergent angiosperm family. Annals of Botany 105:1053−61 doi: 10.1093/aob/mcq062
CrossRef Google Scholar
|