[1]
|
Bartels SF, Chen HYH. 2013. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. Journal of Vegetation Science 24:543−52 doi: 10.1111/j.1654-1103.2012.01479.x
CrossRef Google Scholar
|
[2]
|
Balandier P, Gobin R, Prévosto B, Korboulewsky N. 2022. The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis. European Journal of Forest Research 141:979−97 doi: 10.1007/s10342-022-01505-0
CrossRef Google Scholar
|
[3]
|
Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, et al. 2019. The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology 25:3625−41 doi: 10.1111/gcb.14756
CrossRef Google Scholar
|
[4]
|
Huffman DW, Laughlin DC, Pearson KM, Pandey S. 2009. Effects of vertebrate herbivores and shrub characteristics on arthropod assemblages in a northern Arizona forest ecosystem. Forest Ecology and Management 258:616−25 doi: 10.1016/j.foreco.2009.04.025
CrossRef Google Scholar
|
[5]
|
Barbier S, Gosselin F, Balandier P. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved–a critical review for temperate and boreal forests. Forest Ecology and Management 254:1−15 doi: 10.1016/j.foreco.2007.09.038
CrossRef Google Scholar
|
[6]
|
Wan S, Zhang C, Chen Y, Zhao J, Wang X, et al. 2014. The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere 5:art51 doi: 10.1890/ES14-00017.1
CrossRef Google Scholar
|
[7]
|
Barnes PW, Archer S. 1999. Tree-shrub interactions in a subtropical savanna parkland: competition or facilitation? Journal of Vegetation Science 10:525−36 doi: 10.2307/3237187
CrossRef Google Scholar
|
[8]
|
Mudrák O, Hermová M, Tesnerová C, Rydlová J, Frouz J. 2016. Above-ground and below-ground competition between the willow Salix caprea and its understorey. Journal of Vegetation Science 27:156−64 doi: 10.1111/jvs.12330
CrossRef Google Scholar
|
[9]
|
Balandier P, Mårell A, Prévosto B, Vincenot L. 2022. Tamm review: Forest understorey and overstorey interactions: So much more than just light interception by trees. Forest Ecology and Management 526:120584 doi: 10.1016/j.foreco.2022.120584
CrossRef Google Scholar
|
[10]
|
Willms J, Bartuszevige A, Schwilk DW, Kennedy PL. 2017. The effects of thinning and burning on understory vegetation in North America: A meta-analysis. Forest Ecology and Management 392:184−94 doi: 10.1016/j.foreco.2017.03.010
CrossRef Google Scholar
|
[11]
|
Li X, Li Y, Zhang J, Peng S, Chen Y, et al. 2020. The effects of forest thinning on understory diversity in China: A meta-analysis. Land Degradation & Development 31:1225−40 doi: 10.1002/ldr.3540
CrossRef Google Scholar
|
[12]
|
Thrippleton T, Bugmann H, Folini M, Snell RS. 2018. Overstorey–understorey interactions intensify after drought-induced forest die-off: long-term effects for forest structure and composition. Ecosystems 21:723−39 doi: 10.1007/s10021-017-0181-5
CrossRef Google Scholar
|
[13]
|
Giuggiola A, Zweifel R, Feichtinger LM, Vollenweider P, Bugmann H, et al. 2018. Competition for water in a xeric forest ecosystem – Effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. Forest Ecology and Management 409:241−9 doi: 10.1016/j.foreco.2017.11.002
CrossRef Google Scholar
|
[14]
|
De Lombaerde E, Baeten L, Verheyen K, Perring MP, Ma S, et al. 2021. Understorey removal effects on tree regeneration in temperate forests: A meta-analysis. Journal of Applied Ecology 58:9−20 doi: 10.1111/1365-2664.13792
CrossRef Google Scholar
|
[15]
|
Elliott KJ, Vose JM, Knoepp JD, Clinton BD, Kloeppel BD. 2015. Functional role of the herbaceous layer in eastern deciduous forest ecosystems. Ecosystems 18:221−36 doi: 10.1007/s10021-014-9825-x
CrossRef Google Scholar
|
[16]
|
Spicer ME, Mellor H, Carson WP. 2020. Seeing beyond the trees: a comparison of tropical and temperate plant growth-forms and their vertical distribution. Ecology 101:e02974 doi: 10.1002/ecy.2974
CrossRef Google Scholar
|
[17]
|
Gimbel KF, Felsmann K, Baudis M, Puhlmann H, Gessler A, et al. 2015. Drought in forest understory ecosystems – a novel rainfall reduction experiment. Biogeosciences 12:961−75 doi: 10.5194/bg-12-961-2015
CrossRef Google Scholar
|
[18]
|
Chen HYH, Légaré S, Bergeron Y. 2004. Variation of the understory composition and diversity along a gradient of productivity in Populus tremuloides stands of northern British Columbia, Canada. Canadian Journal of Botany 82:1314−23 doi: 10.1139/b04-086
CrossRef Google Scholar
|
[19]
|
Wasof S, Lenoir J, Gallet-Moron E, Jamoneau A, Brunet J, et al. 2013. Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe. Global Ecology and Biogeography 22:1130−40 doi: 10.1111/geb.12073
CrossRef Google Scholar
|
[20]
|
Gilliam FS. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57:845−58 doi: 10.1641/B571007
CrossRef Google Scholar
|
[21]
|
Valladares F, Laanisto L, Niinemets Ü, Zavala MA. 2016. Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology & Diversity 9:237−51 doi: 10.1080/17550874.2016.1210262
CrossRef Google Scholar
|
[22]
|
Costa FRC, Magnusson WE, Luizao RC. 2005. Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. Journal of Ecology 93:863−78 doi: 10.1111/j.1365-2745.2005.01020.x
CrossRef Google Scholar
|
[23]
|
Hubbell SP. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:1387−98 doi: 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2
CrossRef Google Scholar
|
[24]
|
Gravel D, Canham CD, Beaudet M, Messier C. 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters 9:399−409 doi: 10.1111/j.1461-0248.2006.00884.x
CrossRef Google Scholar
|
[25]
|
Chesson P. 2000. Mechanisms of maintenance of species diversity. Annual review of Ecology and Systematics 31:343−66 doi: 10.1146/annurev.ecolsys.31.1.343
CrossRef Google Scholar
|
[26]
|
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43:227−48 doi: 10.1146/annurev-ecolsys-110411-160411
CrossRef Google Scholar
|
[27]
|
Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104:501−28 doi: 10.1086/282687
CrossRef Google Scholar
|
[28]
|
Connell JH. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of numbers in populations, eds. Boer PJ, Gradwell GR. Wageningen: PUDOC. pp. 298−312
|
[29]
|
Hülsmann L, Chisholm RA, Hartig F. 2021. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends in Ecology & Evolution 36:151−63 doi: 10.1016/j.tree.2020.10.003
CrossRef Google Scholar
|
[30]
|
Bai X, Queenborough SA, Wang X, Zhang J, Li B, et al. 2012. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia 170:755−65 doi: 10.1007/s00442-012-2348-2
CrossRef Google Scholar
|
[31]
|
Bagchi R, Press MC, Scholes JD. 2010. Evolutionary history and distance dependence control survival of dipterocarp seedlings. Ecology Letters 13:51−59 doi: 10.1111/j.1461-0248.2009.01397.x
CrossRef Google Scholar
|
[32]
|
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, et al. 2014. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology 102:845−56 doi: 10.1111/1365-2745.12232
CrossRef Google Scholar
|
[33]
|
Johnson DJ, Beaulieu WT, Bever JD, Clay K. 2012. Conspecific negative density dependence and forest diversity. Science 336:904−7 doi: 10.1126/science.1220269
CrossRef Google Scholar
|
[34]
|
LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, et al. 2017. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389−92 doi: 10.1126/science.aam5678
CrossRef Google Scholar
|
[35]
|
Hille Ris Lambers J, Clark JS, Beckage B. 2002. Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417:732 doi: 10.1038/nature00809
CrossRef Google Scholar
|
[36]
|
LaManna JA, Walton ML, Turner BL, Myers JA. 2016. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecology Letters 19:657−67 doi: 10.1111/ele.12603
CrossRef Google Scholar
|
[37]
|
Uriarte M, Muscarella R, Zimmerman JK. 2018. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global Change Biology 24:e692−e704 doi: 10.1111/gcb.14000
CrossRef Google Scholar
|
[38]
|
Tedersoo L, Bahram M, Zobel M. 2020. How mycorrhizal associations drive plant population and community biology. Science 367:eaba1223 doi: 10.1126/science.aba1223
CrossRef Google Scholar
|
[39]
|
Brown AJ, Payne CJ, White PS, Peet RK. 2020. Shade tolerance and mycorrhizal type may influence sapling susceptibility to conspecific negative density dependence. Journal of Ecology 108:325−36 doi: 10.1111/1365-2745.13237
CrossRef Google Scholar
|
[40]
|
Zhu Y, Queenborough SA, Condit R, Hubbell SP, Ma KP, et al. 2018. Density-dependent survival varies with species life-history strategy in a tropical forest. Ecology Letters 21:506−15 doi: 10.1111/ele.12915
CrossRef Google Scholar
|
[41]
|
Chen L, Swenson NG, Ji N, Mi X, Ren H, et al. 2019. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366:124−28 doi: 10.1126/science.aau1361
CrossRef Google Scholar
|
[42]
|
Forrister DL, Endara MJ, Younkin GC, Coley PD, Kursar TA. 2019. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363:1213−16 doi: 10.1126/science.aau9460
CrossRef Google Scholar
|
[43]
|
Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, et al. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85−88 doi: 10.1038/nature12911
CrossRef Google Scholar
|
[44]
|
Endara MJ, Coley PD. 2011. The resource availability hypothesis revisited: a meta-analysis. Functional Ecology 25:389−98 doi: 10.1111/j.1365-2435.2010.01803.x
CrossRef Google Scholar
|
[45]
|
Coley PD, Bryant JP, Chapin FS. 1985. Resource availability and plant antiherbivore defense. Science 230:895−99 doi: 10.1126/science.230.4728.895
CrossRef Google Scholar
|
[46]
|
Umaña MN, Arellano G, Swenson NG, Zambrano J. 2021. Tree seedling trait optimization and growth in response to local-scale soil and light variability. Ecology 102(4):e03252 doi: 10.1002/ecy.3252
CrossRef Google Scholar
|
[47]
|
De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, et al. 2022. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist 233:219−35 doi: 10.1111/nph.17803
CrossRef Google Scholar
|
[48]
|
Song X, Yang J, Cao M, Lin L, Sun Z, et al. 2021. Traits mediate a trade-off in seedling growth response to light and conspecific density in a diverse subtropical forest. Journal of Ecology 109:703−13 doi: 10.1111/1365-2745.13497
CrossRef Google Scholar
|
[49]
|
Record S, Kobe RK, Vriesendorp CF, Finley AO. 2016. Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest. Ecology 97:2406−15 doi: 10.1002/ecy.1458
CrossRef Google Scholar
|
[50]
|
Su X, Zheng G, Chen HYH. 2022. Understory diversity are driven by resource availability rather than resource heterogeneity in subtropical forests. Forest Ecology and Management 503:119781 doi: 10.1016/j.foreco.2021.119781
CrossRef Google Scholar
|
[51]
|
Bartels SF, Chen HYH. 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 91:1931−38 doi: 10.1890/09-1376.1
CrossRef Google Scholar
|
[52]
|
Hart SA, Chen HYH. 2008. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecological Monographs 78:123−40 doi: 10.1890/06-2140.1
CrossRef Google Scholar
|
[53]
|
Landuyt D, Perring MP, Seidl R, Taubert F, Verbeeck H, Verheyen K. 2018. Modelling understorey dynamics in temperate forests under global change–Challenges and perspectives. Perspectives in Plant Ecology, Evolution and Systematics 31:44−54 doi: 10.1016/j.ppees.2018.01.002
CrossRef Google Scholar
|
[54]
|
Dai J, Roberts DA, Stow DA, An L, Hall SJ, et al. 2020. Mapping understory invasive plant species with field and remotely sensed data in Chitwan, Nepal. Remote Sensing of Environment 250:112037 doi: 10.1016/j.rse.2020.112037
CrossRef Google Scholar
|
[55]
|
Cheng N, Fan Z, Loewenstein N, Gitzen R, Yang S. 2021. Post-fire invasion risk of Chinese tallow (Triadica sebifera) in a slash pine flatwood ecosystem in the Gulf of Mexico Coastal Plain, United States: mechanisms and contributing factors at the community level. Forestry Research 1:2 doi: 10.48130/fr-2021-0002
CrossRef Google Scholar
|
[56]
|
Tng DYP, Apgaua DMG, Paz CP, Dempsey RW, Cernusak LA, et al. 2022. Drought reduces the growth and health of tropical rainforest understory plants. Forest Ecology and Management 511:120128 doi: 10.1016/j.foreco.2022.120128
CrossRef Google Scholar
|
[57]
|
De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G, et al. 2013. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences 110:18561−65 doi: 10.1073/pnas.1311190110
CrossRef Google Scholar
|
[58]
|
Fraterrigo JM, Pearson SM, Turner MG. 2009. The response of understory herbaceous plants to nitrogen fertilization in forests of different land-use history. Forest Ecology and Management 257:2182−88 doi: 10.1016/j.foreco.2009.02.036
CrossRef Google Scholar
|
[59]
|
Eskelinen A, Harpole WS, Jessen MT, Virtanen R, Hautier Y. 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611:301−5 doi: 10.1038/s41586-022-05383-9
CrossRef Google Scholar
|
[60]
|
Ribbens E, Silander JA Jr., Pacala SW. 1994. Seedling recruitment in forests-calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794−806 doi: 10.2307/1939638
CrossRef Google Scholar
|
[61]
|
Zhu J, Matsuzaki T, Lee F, Gonda Y. 2003. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management 182:339−54 doi: 10.1016/S0378-1127(03)00094-X
CrossRef Google Scholar
|
[62]
|
Wang Z, Jiang L, Gao J, Qing S, Pan C, et al. 2022. The influence of microhabitat factors on the regeneration and species composition of understory woody plants in Pinus tabuliformis plantations on the Loess Plateau. Forest Ecology and Management 509:120080 doi: 10.1016/j.foreco.2022.120080
CrossRef Google Scholar
|
[63]
|
Royo AA, Carson WP. 2022. Stasis in forest regeneration following deer exclusion and understory gap creation: A 10-year experiment. Ecological Applications 32:e2569 doi: 10.1002/eap.2569
CrossRef Google Scholar
|
[64]
|
Szefer P, Molem K, Sau A, Novotny V. 2020. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. Journal of Ecology 108:1978−88 doi: 10.1111/1365-2745.13374
CrossRef Google Scholar
|
[65]
|
Högberg P, Högberg MN. 2022. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections? Forest Ecology and Management 516:120252 doi: 10.1016/j.foreco.2022.120252
CrossRef Google Scholar
|
[66]
|
Merges D, Bálint M, Schmitt I, Manning P, Neuschulz EL. 2020. High throughput sequencing combined with null model tests reveals specific plant-fungi associations linked to seedling establishment and survival. Journal of Ecology 108:574−85 doi: 10.1111/1365-2745.13291
CrossRef Google Scholar
|
[67]
|
Zhang T, Yan Q, Wang J, Zhu J. 2018. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. Forest Ecology and Management 429:267−77 doi: 10.1016/j.foreco.2018.07.025
CrossRef Google Scholar
|
[68]
|
Zhu J, Zhu C, Lu D, Wang GG, Zheng X, et al. 2021. Regeneration and succession: A 50-year gap dynamic in temperate secondary forests, Northeast China. Forest Ecology and Management 484:118943 doi: 10.1016/j.foreco.2021.118943
CrossRef Google Scholar
|
[69]
|
Zhang C, Zou CJ, Peltola H, Wang KY, Xu WD. 2013. The effects of gap size and age on natural regeneration of Picea mongolica in the semi-arid region of Northern China. New Forests 44:297−310 doi: 10.1007/s11056-012-9318-8
CrossRef Google Scholar
|
[70]
|
Wang J, Yan Q, Zhang T, Lu D, Xie J, et al. 2018. Converting larch plantations to Larch-Walnut mixed Stands: effects of spatial distribution pattern of Larch plantations on the rodent-mediated seed dispersal of Juglans mandshurica. Forests 9:716 doi: 10.3390/f9110716
CrossRef Google Scholar
|
[71]
|
Vilhar U, Roženbergar D, Simončič P, Diaci J. 2015. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Annals of Forest Science 72:253−66 doi: 10.1007/s13595-014-0424-y
CrossRef Google Scholar
|
[72]
|
Lu D, Zhu J, Sun Y, Hu L, Zhang G. 2015. Gap closure process by lateral extension growth of canopy trees and its effect on woody species regeneration in a temperate secondary forest, Northeast China. Silva Fennica 49:1310 doi: 10.14214/sf.1310
CrossRef Google Scholar
|
[73]
|
Annighöfer P. 2018. Stress relief through gap creation? Growth response of a shade tolerant species (Fagus sylvatica L.) to a changed light environment Forest Ecology and Management 415:139−47 doi: 10.1016/j.foreco.2018.02.027
CrossRef Google Scholar
|
[74]
|
Lee CS, Kim JH, Yi H, You YH. 2004. Seedling establishment and regeneration of Korean red pine (Pinus densiflora S. et Z.) forests in Korea in relation to soil moisture. Forest Ecology and Management 199:423−32 doi: 10.1016/j.foreco.2004.05.053
CrossRef Google Scholar
|
[75]
|
Robson TM, Rodríguez-Calcerrada J, Sánchez-Gómez D, Aranda I. 2009. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Tree Physiology 29:249−59 doi: 10.1093/treephys/tpn023
CrossRef Google Scholar
|
[76]
|
Kothari S, Montgomery RA, Cavender-Bares J. 2021. Physiological responses to light explain competition and facilitation in a tree diversity experiment. Journal of Ecology 109:2000−18 doi: 10.1111/1365-2745.13637
CrossRef Google Scholar
|
[77]
|
Song X, Hogan JA, Lin L, Wen H, Cao M, Yang J. 2018. Canopy openness and topographic habitat drive tree seedling recruitment after snow damage in an old-growth subtropical forest. Forest Ecology and Management 429:493−502 doi: 10.1016/j.foreco.2018.07.038
CrossRef Google Scholar
|
[78]
|
Hartikainen SM, Pieristè M, Lassila J, Robson TM. 2020. Seasonal patterns in spectral irradiance and leaf UV-A Absorbance under forest canopies. Frontiers in Plant Science 10:1762 doi: 10.3389/fpls.2019.01762
CrossRef Google Scholar
|
[79]
|
Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB, et al. 2016. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences 113:14864−69 doi: 10.1073/pnas.1607695114
CrossRef Google Scholar
|
[80]
|
Xia Q, Ando M, Seiwa K. 2016. Interaction of seed size with light quality and temperature regimes as germination cues in 10 temperate pioneer tree species. Functional Ecology 30:866−74 doi: 10.1111/1365-2435.12584
CrossRef Google Scholar
|
[81]
|
Tissot N, Ulm R. 2020. Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nature Communications 11:1323 doi: 10.1038/s41467-020-15133-y
CrossRef Google Scholar
|
[82]
|
Wang QW, Robson TM, Pieriste M, Oguro M, Oguchi R, et al. 2020. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. Journal of Ecology 108:1923−40 doi: 10.1111/1365-2745.13384
CrossRef Google Scholar
|
[83]
|
Ranade SS, García-Gil MR. 2013. Ecotypic variation in response to light spectra in Scots pine (Pinus sylvestris L.). Tree Physiology 33:195−201 doi: 10.1093/treephys/tps131
CrossRef Google Scholar
|
[84]
|
Li W, Liu S, Ma J, Liu H, Han F, et al. 2020. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings. Plant Physiology 182:658−68 doi: 10.1104/pp.19.00954
CrossRef Google Scholar
|
[85]
|
Ranade SS, Seipel G, Gorzsás A, García-Gil MR. 2022. Adaptive strategies of Scots pine under shade: Increase in lignin synthesis and ecotypic variation in defense-related gene expression. Physiologia Plantarum 174:e13792 doi: 10.1111/ppl.13792
CrossRef Google Scholar
|
[86]
|
Razzak A, Ranade SS, Strand Å, García-Gil MR. 2017. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light. Plant, Cell & Environment 40:1332−40 doi: 10.1111/pce.12921
CrossRef Google Scholar
|
[87]
|
Riikonen J, Kettunen N, Gritsevich M, Hakala T, Sarkka L, Särkkä L, et al. 2016. Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany 121:112−20 doi: 10.1016/j.envexpbot.2015.06.006
CrossRef Google Scholar
|
[88]
|
Niglas A, Papp K, Sękiewicz M, Sellin A. 2017. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). Tree Physiology 37:1218−28 doi: 10.1093/treephys/tpx087
CrossRef Google Scholar
|
[89]
|
Ma J, Wang Y, Chang L, Deng J, Zhou W, et al. 2022. Effects of canopy spectral composition on growth and photosynthetic fluorescence characteristics of Pinus koraiensis and Quercus mongolica seedlings. Chinese Journal of Applied Ecology 33:2314−20 doi: 10.13287/j.1001-9332.202209.006
CrossRef Google Scholar
|
[90]
|
Wang Q, Liu C, Robson TM, Hikosaka K, Kurokawa H. 2021. Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. Physiologia Plantarum 173:698−708 doi: 10.1111/ppl.13512
CrossRef Google Scholar
|
[91]
|
Gilliam FS. 2016. Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist 212:871−87 doi: 10.1111/nph.14255
CrossRef Google Scholar
|
[92]
|
Neale RE, Barnes PW, Robson TM, Neale PJ, Williamson CE, et al. 2021. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical & Photobiological Sciences 20:275−301 doi: 10.1007/s43630-020-00001-x
CrossRef Google Scholar
|
[93]
|
Chen TW, Stützel H, Kahlen K. 2018. High light aggravates functional limitations of cucumber canopy photosynthesis under salinity. Annals of Botany 121:797−807 doi: 10.1093/aob/mcx100
CrossRef Google Scholar
|
[94]
|
Way DA, Pearcy RW. 2012. Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology 32:1066−81 doi: 10.1093/treephys/tps064
CrossRef Google Scholar
|
[95]
|
Guo Q, Ren H. 2014. Productivity as related to diversity and age in planted versus natural forests. Global Ecology and Biogeography 23:1461−71 doi: 10.1111/geb.12238
CrossRef Google Scholar
|
[96]
|
He Y, Peng S, Liu Y, Li X, Wang K, et al. 2020. Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology 26:1474−84 doi: 10.1111/gcb.14816
CrossRef Google Scholar
|
[97]
|
Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, et al. 2011. Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography 20:744−54 doi: 10.1111/j.1466-8238.2010.00645.x
CrossRef Google Scholar
|
[98]
|
Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, et al. 2013. Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. Forest Ecology and Management 289:38−47 doi: 10.1016/j.foreco.2012.10.026
CrossRef Google Scholar
|
[99]
|
Jin Y, Liu C, Qian S, Luo Y, Zhou R, et al. 2022. Large-scale patterns of understory biomass and its allocation across China's forests. Science of the Total Environment 804:150169 doi: 10.1016/j.scitotenv.2021.150169
CrossRef Google Scholar
|
[100]
|
Nyirambangutse B, Zibera E, Uwizeye FK, Nsabimana D, Bizuru E, et al. 2017. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. Biogeosciences 14:1285−303 doi: 10.5194/bg-14-1285-2017
CrossRef Google Scholar
|
[101]
|
Conti G, Gorné LD, Zeballos SR, Lipoma ML, Gatica G, et al. 2019. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Global Ecology and Biogeography 28:961−75 doi: 10.1111/geb.12907
CrossRef Google Scholar
|
[102]
|
Sah JP, Ross MS, Koptur S, Snyder JR. 2004. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. Forest Ecology and Management 203:319−29 doi: 10.1016/j.foreco.2004.07.059
CrossRef Google Scholar
|
[103]
|
Dickinson YL, Zenner EK. 2010. Allometric Equations for the Aboveground Biomass of Selected Common Eastern Hardwood Understory Species. Northern Journal of Applied Forestry 27:160−65 doi: 10.1093/njaf/27.4.160
CrossRef Google Scholar
|
[104]
|
Zeng H, Liu Q, Feng Z, Ma Z. 2009. Biomass equations for four shrub species in subtropical China. Journal of Forest Research 15:83−90 doi: 10.1007/s10310-009-0150-8
CrossRef Google Scholar
|
[105]
|
Jin Y, Bao W. 2014. Relationships of the understory biomass with stand structure across the Sichuan cypress plantation forests in Sichuan Basin, China. Acta Ecologica Sinica 34:5849−59 doi: 10.5846/stxb201301210127
CrossRef Google Scholar
|
[106]
|
Muukkonen P, Mäkipää R. 2006. Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes. Boreal Environment Research 11:355−69
Google Scholar
|
[107]
|
Zhang Y, Chen HYH, Taylor AR. 2016. Aboveground biomass of understorey vegetation has a negligible or negative association with overstorey tree species diversity in natural forests. Global Ecology and Biogeography 25:141−50 doi: 10.1111/geb.12392
CrossRef Google Scholar
|
[108]
|
Chastain RA Jr., Currie WS, Townsend PA. 2006. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. Forest Ecology and Management 231:63−77 doi: 10.1016/j.foreco.2006.04.040
CrossRef Google Scholar
|
[109]
|
Ma SH, He F, Tian D, Zou DT, Yan ZB, et al. 2018. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences 15:693−702 doi: 10.5194/bg-15-693-2018
CrossRef Google Scholar
|
[110]
|
Liu S, Luo D, Liu Q, Zhang L, Yang H, et al. 2017. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta Ecologica Sinica 37:1074−83 doi: 10.5846/stxb201604150688
CrossRef Google Scholar
|
[111]
|
Zhang J, Guo Y, Sun J, Liu X, Ding F. 2015. Nutrient contents of vegetation and their allocation characteristics in main forests of Guizhou Province. Journal of Beijing Forestry University 37:48−55 doi: 10.13332/j.1000-1522.20130523
CrossRef Google Scholar
|
[112]
|
Landuyt D, Maes SL, Depauw L, Ampoorter E, Blondeel H, et al. 2020. Drivers of above-ground understorey biomass and nutrient stocks in temperate deciduous forests. Journal of Ecology 108:982−97 doi: 10.1111/1365-2745.13318
CrossRef Google Scholar
|
[113]
|
Wen Z, Jiang Z, Zheng H, Ouyang Z. 2022. Tropical forest strata shifts in plant structural diversity-aboveground carbon relationships along altitudinal gradients. Science of the Total Environment 838:155907 doi: 10.1016/j.scitotenv.2022.155907
CrossRef Google Scholar
|
[114]
|
Givnish TJ. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15:63−92 doi: 10.1071/PP9880063
CrossRef Google Scholar
|
[115]
|
Hikosaka K, Terashima I. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant, Cell & Environment 18:605−18 doi: 10.1111/j.1365-3040.1995.tb00562.x
CrossRef Google Scholar
|
[116]
|
Muller RN. 2003. Nutrient relations of the herbaceous layer in deciduous forest ecosystems. In The herbaceous layer in forests of eastern North America, eds. Gilliam FS, Roberts MR. New York: Oxford University Press. pp.15−37
|
[117]
|
Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, et al. 2016. Recovery of trees from drought depends on belowground sink control. Nature Plants 2:16111 doi: 10.1038/nplants.2016.111
CrossRef Google Scholar
|
[118]
|
De Frenne P, Rodríguez-Sánchez F, De Schrijver A, Coomes DA, Hermy M, et al. 2015. Light accelerates plant responses to warming. Nature Plants 1:15110 doi: 10.1038/nplants.2015.110
CrossRef Google Scholar
|
[119]
|
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, et al. 2020. Forest microclimate dynamics drive plant responses to warming. Science 368:772−5 doi: 10.1126/science.aba6880
CrossRef Google Scholar
|
[120]
|
Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, et al. 2014. High CO2 concentration increases relative leaf carbon gain under dynamic light in Dipterocarpus sublamellatus seedlings in a tropical rain forest, Malaysia. Tree Physiology 34:944−54 doi: 10.1093/treephys/tpu066
CrossRef Google Scholar
|
[121]
|
Byeon S, Kim K, Hong J, Kim S, Kim S, et al. 2021. Down-regulation of photosynthesis to elevated CO2 and N fertilization in understory Fraxinus rhynchophylla Seedlings. Forests 12:1197 doi: 10.3390/f12091197
CrossRef Google Scholar
|
[122]
|
DeLucia EH, Thomas RB. 2000. Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia 122:11−19 doi: 10.1007/PL00008827
CrossRef Google Scholar
|
[123]
|
Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB. 2003. Nitrogen and climate change. Science 302:1512−13 doi: 10.1126/science.1091390
CrossRef Google Scholar
|
[124]
|
Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 New Phytologist 165:351−72 doi: 10.1111/j.1469-8137.2004.01224.x
CrossRef Google Scholar
|
[125]
|
Li Y, Zhang Y, Zhang X, Korpelainen H, Berninger F, et al. 2013. Effects of elevated CO2 and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. Physiologia Plantarum 148:261−72 doi: 10.1111/j.1399-3054.2012.01705.x
CrossRef Google Scholar
|
[126]
|
De Frenne P, Lenoir J, Luoto M, Scheffers BR, Zellweger F, et al. 2021. Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology 27:2279−97 doi: 10.1111/gcb.15569
CrossRef Google Scholar
|
[127]
|
Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, et al. 2019. The global soil community and its influence on biogeochemistry. Science 365:eaav0550 doi: 10.1126/science.aav0550
CrossRef Google Scholar
|
[128]
|
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, et al. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences 108:9508−12 doi: 10.1073/pnas.1018189108
CrossRef Google Scholar
|
[129]
|
Giorio P, Sorrentino G, d’Andria R. 1999. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environmental and Experimental Botany 42:95−104 doi: 10.1016/S0098-8472(99)00023-4
CrossRef Google Scholar
|
[130]
|
McDowell NG. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology 155:1051−59 doi: 10.1104/pp.110.170704
CrossRef Google Scholar
|
[131]
|
Geβler A, Keitel C, Nahm M, Rennenberg H. 2004. Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biology 6:289−98 doi: 10.1055/s-2004-820878
CrossRef Google Scholar
|
[132]
|
Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386−94 doi: 10.1890/06-0219
CrossRef Google Scholar
|
[133]
|
Powers MD, Pregitzer KS, Palik BJ, Webster CR. 2009. Water relations of pine seedlings in contrasting overstory environments. Forest Ecology and Management 258:1442−48 doi: 10.1016/j.foreco.2009.06.040
CrossRef Google Scholar
|
[134]
|
Zhang Y, Niu S, Xu W, Han Y. 2008. Species-specific response of photosynthesis to burning and nitrogen fertilization. Journal of Integrative Plant Biology 50:565−74 doi: 10.1111/j.1744-7909.2008.00658.x
CrossRef Google Scholar
|
[135]
|
Montgomery RA, Givnish TJ. 2008. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia 155:455−67 doi: 10.1007/s00442-007-0936-3
CrossRef Google Scholar
|
[136]
|
Tang S, Zhang L, Lambers H, Ren W, Lu X, et al. 2021. Addition of nitrogen to canopy versus understorey has different effects on leaf traits of understorey plants in a subtropical evergreen broad-leaved forest. Journal of Ecology 109:692−702 doi: 10.1111/1365-2745.13496
CrossRef Google Scholar
|
[137]
|
Mao Q, Lu X, Wang C, Zhou K, Mo J. 2017. Responses of understory plant physiological traits to a decade of nitrogen addition in a tropical reforested ecosystem. Forest Ecology and Management 401:65−74 doi: 10.1016/j.foreco.2017.06.047
CrossRef Google Scholar
|
[138]
|
Gilliam FS, Billmyer JH, Walter CA, Peterjohn WT. 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmospheric Environment 146:261−70 doi: 10.1016/j.atmosenv.2016.04.007
CrossRef Google Scholar
|
[139]
|
Huo X, Wang D, Luo J, Lv X, Li P. 2022. Increased survival rate of Quercus aliena var. Acuteserrata seedlings via nitrogen addition for the succession of pine and pine-oak mixed forests to oak forest. Forest Ecology and Management 508:120051 doi: 10.1016/j.foreco.2022.120051
CrossRef Google Scholar
|
[140]
|
Fan Z. 2021. Scale effects on the prediction of rare events in mature second-growth oak forests: a simulation study of cavity trees. Forestry Research 1:15 doi: 10.48130/fr-2021-0015
CrossRef Google Scholar
|
[141]
|
Zhu F, Lu X, Mo J. 2014. Phosphorus limitation on photosynthesis of two dominant understory species in a lowland tropical forest. Journal of Plant Ecology 7:526−34 doi: 10.1093/jpe/rtu001
CrossRef Google Scholar
|
[142]
|
Tang S, Liu J, Lambers H, Zhang L, Liu Z, et al. 2021. Increase in leaf organic acids to enhance adaptability of dominant plant species in karst habitats. Ecology and Evolution 11:10277−89 doi: 10.1002/ece3.7832
CrossRef Google Scholar
|
[143]
|
Lambers H, Poorter H. 1992. Inherent variation in growth-rate between higher-plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:187−261
Google Scholar
|
[144]
|
Palmroth S, Bach LH, Nordin A, Palmqvist K. 2014. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia 175:457−70 doi: 10.1007/s00442-014-2923-9
CrossRef Google Scholar
|
[145]
|
Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, et al. 2002. Atmospheric CO2 enrichment of alpine treeline conifers. New Phytologist 156:363−75 doi: 10.1046/j.1469-8137.2002.00537.x
CrossRef Google Scholar
|
[146]
|
Namizaki H, Iwasaki Y, Wang R. 2022. Effects of elevated CO2 levels on the growth and yield of summer-grown cucumbers cultivated under different day and night temperatures. Agronomy 12:1872 doi: 10.3390/agronomy12081872
CrossRef Google Scholar
|
[147]
|
Jochum GM, Mudge KW, Thomas RB. 2007. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany 94:819−26 doi: 10.3732/ajb.94.5.819
CrossRef Google Scholar
|
[148]
|
Vanneste T, Van Den Berge S, Brunet J, Hedwall PO, Verheyen K, et al. 2021. Temperature effects on forest understorey plants in hedgerows: a combined warming and transplant experiment. Annals of botany 128:315−27 doi: 10.1093/aob/mcab064
CrossRef Google Scholar
|
[149]
|
Zhu J, Zhu H, Cao Y, Li J, Zhu Q, et al. 2020. Effect of simulated warming on leaf functional traits of urban greening plants. BMC Plant Biology 20:139 doi: 10.1186/s12870-020-02359-7
CrossRef Google Scholar
|
[150]
|
Farnsworth EJ, Nunez-Farfan J, Careaga SA, Bazzaz FA. 1995. Phenology and growth of three temperate forest life forms in response to artificial soil warming. Journal of Ecology 83:967−77 doi: 10.2307/2261178
CrossRef Google Scholar
|
[151]
|
Li Y, Xu Y, Chen Y, Ling L, Jiang Y, et al. 2020. Effects of drought regimes on growth and physiological traits of a typical shrub species in subtropical China. Global Ecology and Conservation 24:e01269 doi: 10.1016/j.gecco.2020.e01269
CrossRef Google Scholar
|
[152]
|
Hui D, Yu CL, Deng Q, Dzantor EK, Zhou S, et al. 2018. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment. PloS One 13:e0192555 doi: 10.1371/journal.pone.0192555
CrossRef Google Scholar
|
[153]
|
Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, et al. 2017. Effects of extreme drought on specific leaf area of grassland species: A meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Global Change Biology 23:2473−81 doi: 10.1111/gcb.13662
CrossRef Google Scholar
|
[154]
|
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320:889−92 doi: 10.1126/science.1136674
CrossRef Google Scholar
|
[155]
|
Gilliam FS, Welch NT, Phillips AH, Billmyer JH, Peterjohn WT, et al. 2016. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7:e01250 doi: 10.1002/ecs2.1250
CrossRef Google Scholar
|
[156]
|
Mao Q, Lu X, Mo H, Gundersen P, Mo J. 2018. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment 610−611:555−62 doi: 10.1016/j.scitotenv.2017.08.087
CrossRef Google Scholar
|
[157]
|
Komatsu KJ, Avolio ML, Lemoine NP, Isbell F, Grman E, et al. 2019. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences 116:17867−73 doi: 10.1073/pnas.1819027116
CrossRef Google Scholar
|
[158]
|
Austin AT, Vivanco L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555−58 doi: 10.1038/nature05038
CrossRef Google Scholar
|
[159]
|
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, et al. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218−21 doi: 10.1038/nature13247
CrossRef Google Scholar
|
[160]
|
Austin AT, Marchesini VA. 2012. Gregarious flowering and death of understorey bamboo slow litter decomposition and nitrogen turnover in a southern temperate forest in Patagonia, Argentina. Functional Ecology 26:265−73 doi: 10.1111/j.1365-2435.2011.01910.x
CrossRef Google Scholar
|
[161]
|
Wang B, Blondeel H, Baeten L, Djukic I, De Lombaerde E, Verheyen K. 2019. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest. Soil Biology and Biochemistry 138:107579 doi: 10.1016/j.soilbio.2019.107579
CrossRef Google Scholar
|
[162]
|
Rawlik K, Nowiński M, Jagodziński AM. 2021. Short life-fast death: decomposition rates of woody plants leaf- and herb-litter. Annals of Forest Science 78:6 doi: 10.1007/s13595-020-01019-y
CrossRef Google Scholar
|
[163]
|
Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in Terrestrial Ecosystems. In Studies in Ecology. vol. 5. Oxford, UK: Blackwell Scientific. pp. 66−112
|
[164]
|
Dighton J, Walsh E, Groben G, Zhang N. 2021. Influence of southern pine beetle on fungal communities of wood and bark decomposition of coarse woody debris in the New Jersey pine barrens. Forestry Research 1:17 doi: 10.48130/fr-2021-0017
CrossRef Google Scholar
|
[165]
|
Lagerström A, Nilsson MC, Wardle DA. 2013. Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. Plant and Soil 367:183−97 doi: 10.1007/s11104-012-1159-x
CrossRef Google Scholar
|
[166]
|
Wu QQ, Yue K, Wang XC, Ma YD, Li Y. 2020. Differential responses of litter decomposition to warming, elevated CO2, and changed precipitation regime. Plant and Soil 455:155−69 doi: 10.1007/s11104-020-04675-1
CrossRef Google Scholar
|
[167]
|
Wang L, Zhou Y, Chen Y, Xu Z, Zhang J, et al. 2022. Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition. Soil Biology and Biochemistry 168:108632 doi: 10.1016/j.soilbio.2022.108632
CrossRef Google Scholar
|
[168]
|
Fujii S, Mori AS, Koide D, Makoto K, Matsuoka S, et al. 2017. Disentangling relationships between plant diversity and decomposition processes under forest restoration. Journal of Applied Ecology 54:80−90 doi: 10.1111/1365-2664.12733
CrossRef Google Scholar
|
[169]
|
Wang B, Verheyen K, Baeten L, De Smedt P. 2021. Herb litter mediates tree litter decomposition and soil fauna composition. Soil Biology and Biochemistry 152:108063 doi: 10.1016/j.soilbio.2020.108063
CrossRef Google Scholar
|
[170]
|
Roeder M, Dossa GGO, Cornelissen JHC, Yang X, Nakamura A, Tomlinson KW. 2022. Liana litter decomposes faster than tree litter in a multi species and multisite experiment. Journal of Ecology 110:2433−47 doi: 10.1111/1365-2745.13960
CrossRef Google Scholar
|
[171]
|
Abdallah F, Chaieb M. 2012. The influence of trees on nutrients, water, light availability and understorey vegetation in an arid environment. Applied Vegetation Science 15:501−12 doi: 10.1111/j.1654-109X.2012.01201.x
CrossRef Google Scholar
|
[172]
|
Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, et al. 2012. Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57:815−23 doi: 10.1111/j.1365-2427.2012.02749.x
CrossRef Google Scholar
|
[173]
|
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, et al. 2010. Diversity meets decomposition. Trends in Ecology & Evolution 25:372−80 doi: 10.1016/j.tree.2010.01.010
CrossRef Google Scholar
|
[174]
|
Bokhorst S, Wardle DA, Nilsson MC, Gundale MJ. 2014. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. Plant and Soil 379:121−33 doi: 10.1007/s11104-014-2055-3
CrossRef Google Scholar
|
[175]
|
Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition interrestrial ecosystems. Annual Review Of Ecology Evolution And Systematics 36:191−218 doi: 10.1146/annurev.ecolsys.36.112904.151932
CrossRef Google Scholar
|
[176]
|
Krishna MP, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2:236−49 doi: 10.1007/s40974-017-0064-9
CrossRef Google Scholar
|
[177]
|
Kaye MW, Hone CM. 2016. Removal of invasive shrubs alters light but not leaf litter inputs in a deciduous forest understory. Restoration Ecology 24:617−25 doi: 10.1111/rec.12363
CrossRef Google Scholar
|
[178]
|
Landuyt D, Ampoorter E, Bastias CC, Benavides R, Müller S, et al. 2020. Importance of overstorey attributes for understorey litter production and nutrient cycling in European forests. Forest Ecosystems 7:45 doi: 10.1186/s40663-020-00256-x
CrossRef Google Scholar
|
[179]
|
Liu W, Fu S, Wu S, Zhong Z, Xu Y, et al. 2020. Nutrient limitations for overstory and understory plants during Robinia pseudoacacia afforestation in the Loess Plateau, China. Soil Science Society of America Journal 84:888−900 doi: 10.1002/saj2.20059
CrossRef Google Scholar
|
[180]
|
Kooijman AM, Cammeraat E. 2010. Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics. Functional Ecology 24:469−77 doi: 10.1111/j.1365-2435.2009.01640.x
CrossRef Google Scholar
|
[181]
|
Wang Q, Pieristè M, Kotilainen TK, Forey E, Chauvat M, et al. 2022. The crucial role of blue light as a driver of litter photodegradation in terrestrial ecosystems. Plant and Soil doi: 10.1007/s11104-022-05596-x
CrossRef Google Scholar
|
[182]
|
Marinho OA, Martinelli LA, Duarte-Neto PJ, Mazzi EA, King JY. 2020. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Science of the Total Environment 715:136601 doi: 10.1016/j.scitotenv.2020.136601
CrossRef Google Scholar
|
[183]
|
Wu C, Wang H, Mo Q, Zhang Z, Huang G, et al. 2019. Effects of elevated UV-B radiation and N deposition on the decomposition of coarse woody debris. Science of the Total Environment 663:170−76 doi: 10.1016/j.scitotenv.2019.01.271
CrossRef Google Scholar
|
[184]
|
Pieristè M, Neimane S, Solanki T, Nybakken L, Jones AG, et al. 2020. Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland. Plant Physiology and Biochemistry 146:42−54 doi: 10.1016/j.plaphy.2019.11.005
CrossRef Google Scholar
|
[185]
|
Pieristè M, Forey E, Lounès-Hadj Sahraoui A, Meglouli H, Laruelle F, et al. 2020. Spectral composition of sunlight affects the microbial functional structure of beech leaf litter during the initial phase of decomposition. Plant and Soil 451:515−30 doi: 10.1007/s11104-020-04557-6
CrossRef Google Scholar
|
[186]
|
Wang Q, Pieristè M, Liu C, Kenta T, Robson TM, et al. 2021. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytologist 229:2625−36 doi: 10.1111/nph.17022
CrossRef Google Scholar
|
[187]
|
Wang Q, Robson TM, Pieristè M, Kenta T, Zhou W, Kurokawa H. 2022. Canopy structure and phenology modulate the impacts of solar radiation on C and N dynamics during litter decomposition in a temperate forest. Science of the Total Environment 820:153185 doi: 10.1016/j.scitotenv.2022.153185
CrossRef Google Scholar
|
[188]
|
Frouz J, Špaldoňová A, Lhotáková Z, Cajthaml T. 2015. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil Biology and Biochemistry 91:23−31 doi: 10.1016/j.soilbio.2015.08.024
CrossRef Google Scholar
|
[189]
|
Tie L, Hu J, Peñuelas J, Sardans J, Wei S, et al. 2022. The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest. Science of the Total Environment 833:155163 doi: 10.1016/j.scitotenv.2022.155163
CrossRef Google Scholar
|
[190]
|
Tie L, Wei S, Peñuelas J, Sardans J, Peguero G, et al. 2021. Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest. Science of the Total Environment 781:146786 doi: 10.1016/j.scitotenv.2021.146786
CrossRef Google Scholar
|
[191]
|
De Groote SRE, Vanhellemont M, Baeten L, De Schrijver A, Martel A, et al. 2018. Tree species diversity indirectly affects nutrient cycling through the shrub layer and its high-quality litter. Plant and Soil 427:335−50 doi: 10.1007/s11104-018-3654-1
CrossRef Google Scholar
|
[192]
|
Kueffer C, Klingler G, Zirfass K, Schumacher E, Edwards PJ, Gusewell S. 2008. Invasive trees show only weak potential to impact nutrient dynamics in phosphorus-poor tropical forests in the Seychelles. Functional Ecology 22:359−66 doi: 10.1111/j.1365-2435.2007.01373.x
CrossRef Google Scholar
|
[193]
|
Zhang B, Cai Y, Hu S, Chang SX. 2021. Plant mixture effects on carbon-degrading enzymes promote soil organic carbon accumulation. Soil Biology and Biochemistry 163:108457 doi: 10.1016/j.soilbio.2021.108457
CrossRef Google Scholar
|
[194]
|
Stroud E, Craig BLH, Henry HAL. 2022. Short-term vs. long-term effects of warming and nitrogen addition on soil extracellular enzyme activity and litter decomposition in a grass-dominated system. Plant and Soil 481:165−77 doi: 10.1007/s11104-022-05625-9
CrossRef Google Scholar
|
[195]
|
Sorensen PL, Michelsen A. 2011. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Global Change Biology 17:528−37 doi: 10.1111/j.1365-2486.2010.02234.x
CrossRef Google Scholar
|
[196]
|
Gong S, Guo R, Zhang T, Guo J. 2015. Warming and nitrogen addition increase litter decomposition in a temperate Meadow ecosystem. PLoS One 10:e0116013 doi: 10.1371/journal.pone.0116013
CrossRef Google Scholar
|
[197]
|
Amani M, Graça MAS, Ferreira V. 2019. Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: A meta-analysis. International Review of Hydrobiology 104:14−25 doi: 10.1002/iroh.201801965
CrossRef Google Scholar
|
[198]
|
Li A, Fan Y, Chen S, Song H, Lin C, Yang Y. 2022. Soil warming did not enhance leaf litter decomposition in two subtropical forests. Soil Biology and Biochemistry 170:108716 doi: 10.1016/j.soilbio.2022.108716
CrossRef Google Scholar
|
[199]
|
Suseela V, Tharayil N. 2018. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry. Global Change Biology 24:1428−51 doi: 10.1111/gcb.13923
CrossRef Google Scholar
|
[200]
|
Zhang T, Luo Y, Chen HYH, Ruan H. 2018. Responses of litter decomposition and nutrient release to N addition: a meta-analysis of terrestrial ecosystems. Applied Soil Ecology 128:35−42 doi: 10.1016/j.apsoil.2018.04.004
CrossRef Google Scholar
|
[201]
|
Bornman JF, Paul N, Shao M. Solomon KR. 2019. Environmental effects and interactions of stratospheric ozone depletion, UV radiation, and climate change: 2018 assessment. Photochemical & Photobiological Sciences 18:601 doi: 10.1039/c8pp90066c
CrossRef Google Scholar
|
[202]
|
Li M, Du Z, Pan H, Yan C, Xiao W, Lei J. 2012. Effects of neighboring woody plants on target trees with emphasis on effects of understorey shrubs on overstorey physiology in forest communities: a mini-review. Community Ecology 13:117−28 doi: 10.1556/ComEc.13.2012.1.14
CrossRef Google Scholar
|
[203]
|
Evy A, Federico S, Harald A, Lander B, Sigrid B, et al. 2016. Driving mechanisms of overstorey-understorey diversity relationships in European forests. Perspectives in Plant Ecology Evolution and Systematics 19:21−29 doi: 10.1016/j.ppees.2016.02.001
CrossRef Google Scholar
|
[204]
|
Chun JH, Ali A, Lee CB. 2020. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Science of The Total Environment 744:140783 doi: 10.1016/j.scitotenv.2020.140783
CrossRef Google Scholar
|
[205]
|
Moreno G, Bartolome JW, Gea-Izquierdo G, Cañellas I. 2013. Overstory–understory relationships. In Mediterranean oak woodland working landscapes, eds. Campos P, Huntsinger L, Oviedo Pro JL, Starrs PF, Diaz M, et al. Dordrecht: Springer. pp. 145−79. https://doi.org/10.1007/978-94-007-6707-2_6
|
[206]
|
Xie L, Han L, Guo H, Zhao F, Gao F, et al. 2022. Shrubs facilitate herbaceous communities in a desert by modifying soil properties. Plant and Soil doi: 10.1007/s11104-022-05774-x
CrossRef Google Scholar
|
[207]
|
Helsen K, Shen YC, Lin TY, Chen CF, Huang CM, et al. 2022. Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understorey in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science 33:e13130 doi: 10.1111/jvs.13130
CrossRef Google Scholar
|
[208]
|
Corcket E, Alard D, van Halder I, Jactel H, Garrido Diaz B, et al. 2020. Canopy composition and drought shape understorey plant assemblages in a young tree diversity experiment. Journal of Vegetation Science 31:803−16 doi: 10.1111/jvs.12903
CrossRef Google Scholar
|
[209]
|
Du Z, Cai X, Bao W, Chen H, Pan H. 2016. Understory effects on overstory trees: A review. Chinese Journal of Applied Ecology 27:963−72 doi: 10.13287/j.1001-9332.201603.033
CrossRef Google Scholar
|
[210]
|
Du Z, Cai X, Bao W, Chen H, Pan H, et al. 2016. Short-term vs. long-term effects of understory removal on nitrogen and mobile carbohydrates in overstory trees. Forests 7:67 doi: 10.3390/f7030067
CrossRef Google Scholar
|
[211]
|
Errington RC, Pinno BD. 2021. Relationships between overstory and understory components of young natural and reconstructed boreal aspen stands. Ecological Restoration 39:182−93 doi: 10.3368/er.39.3.182
CrossRef Google Scholar
|
[212]
|
Kume A, Satomura T, Tsuboi N, Chiwa M, Hanba YT, et al. 2003. Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora. Forest Ecology and Management 176:195−203 doi: 10.1016/S0378-1127(02)00282-7
CrossRef Google Scholar
|
[213]
|
Hébert F, Thiffault N, Ruel JC, Munson AD. 2010. Ericaceous shrubs affect black spruce physiology independently from inherent site fertility. Forest Ecology and Management 260:219−28 doi: 10.1016/j.foreco.2010.04.026
CrossRef Google Scholar
|
[214]
|
Kobayashi T, Miki N, Kato K, Kubo T, Nishimura S, et al. 2006. Understory removal increases carbon gain and transpiration in the overstory of birch (Betula ermanii) stands in northern Hokkaido, Japan: trends in leaf, shoot, and canopy. Proceedings of international workshop on H2O and CO2 exchange in Siberia. pp. 19−22
|
[215]
|
Li R, Han J, Guan X, Chi Y, Zhang W, et al. 2020. Crown pruning and understory removal did not change the tree growth rate in a Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management 464:118056 doi: 10.1016/j.foreco.2020.118056
CrossRef Google Scholar
|
[216]
|
Chen Y, Fu X, Wang H, Dai X, Kou L, et al. 2020. Effects of understory removal on growth rate of middle-aged Chinese fir with different DBH classes. Scientia Silvae Sinicae 56:21−30 doi: 10.11707/j.1001-7488.20201103
CrossRef Google Scholar
|
[217]
|
Jin Y, Li J, Liu C, Liu Y, Zhang Y, et al. 2018. Carbohydrate dynamics of three dominant species in a Chinese savanna under precipitation exclusion. Tree Physiology 38:1371−83 doi: 10.1093/treephys/tpy017
CrossRef Google Scholar
|
[218]
|
Kabeya D, Iio A, Kakubari Y, Han Q. 2021. Dynamics of non-structural carbohydrates following a full masting event reveal a role for stored starch in relation to reproduction in Fagus crenata. Forestry Research 1:18 doi: 10.48130/fr-2021-0018
CrossRef Google Scholar
|
[219]
|
Li R, Yang Q, Zhang W, Zheng W, Wang S. 2018. Response of nonstructural carbohydrates to thinning and understory removal in a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation. Trees 32:801−8 doi: 10.1007/s00468-018-1673-4
CrossRef Google Scholar
|
[220]
|
Motsinger JR, Kabrick JM, Dey DC, Henderson DE, Zenner EK. 2010. Effect of midstory and understory removal on the establishment and development of natural and artificial pin oak advance reproduction in bottomland forests. New Forests 39:195−213 doi: 10.1007/s11056-009-9164-5
CrossRef Google Scholar
|
[221]
|
Ishii HT, Kobayashi T, Uemura S, Takahashi K, Hanba YT, et al. 2008. Removal of understory dwarf bamboo (Sasa kurilensis) induces changes in water-relations characteristics of overstory Betula ermanii trees. Journal of Forest Research 13:101−9 doi: 10.1007/s10310-007-0058-0
CrossRef Google Scholar
|
[222]
|
Matsushima M, Choi WJ, Chang SX. 2012. White spruce foliar δ13C and δ15N indicate changed soil N availability by understory removal and N fertilization in a 13-year-old boreal plantation. Plant and Soil 361:375−84 doi: 10.1007/s11104-012-1254-z
CrossRef Google Scholar
|
[223]
|
Takahashi K, Yogo M, Ishibashi S. 2006. Stand development and regeneration during a 33-year period in a seral Picea glehnii forest, northern Japan. Ecological Research 21:35−42 doi: 10.1007/s11284-005-0093-2
CrossRef Google Scholar
|
[224]
|
Zhang J, Oliver WW, Busse MD. 2006. Growth and development of ponderosa pine on sites of contrasting productivities: relative importance of stand density and shrub competition effects. Canadian Journal of Forest Research 36:2426−38 doi: 10.1139/x06-078
CrossRef Google Scholar
|
[225]
|
Zhang J, Powers RF, Oliver WW, Young DH. 2013. Response of ponderosa pine plantations to competing vegetation control in Northern California, USA: a meta-analysis. Forestry 86:3−11 doi: 10.1093/forestry/cps054
CrossRef Google Scholar
|
[226]
|
Busse M, Cochran P, Barrett J. 1996. Changes in ponderosa pine site productivity following removal of understory vegetation. Soil Science Society of America Journal 60:1614−21 doi: 10.2136/sssaj1996.03615995006000060004x
CrossRef Google Scholar
|
[227]
|
Wagner RG, Little KM, Richardson B, Mcnabb K. 2006. The role of vegetation management for enhancing productivity of the world's forests. Forestry 79:57−79 doi: 10.1093/forestry/cpi057
CrossRef Google Scholar
|
[228]
|
Stokes VJ, Willoughby IH. 2014. Early weed control can increase long-term growth, yield and carbon sequestration of Sitka spruce stands in Britain. Forestry 87:425−35 doi: 10.1093/forestry/cpu001
CrossRef Google Scholar
|
[229]
|
Yildiz O, Cromack K, Radosevich SR, Martinez-Ghersa MA, Baham JE. 2011. Comparison of 5th- and 14th-year Douglas-fir and understory vegetation responses to selective vegetation removal. Forest Ecology and Management 262:586−97 doi: 10.1016/j.foreco.2011.04.015
CrossRef Google Scholar
|
[230]
|
Takahashi K, Uemura S, Suzuki JI, Hara T. 2003. Effects of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecological Research 18:767−74 doi: 10.1111/j.1440-1703.2003.00594.x
CrossRef Google Scholar
|
[231]
|
Su X, Wang M, Huang Z, Fu S, Chen HYH. 2019. Forest understorey vegetation: colonization and the availability and heterogeneity of resources. Forests 10:944 doi: 10.3390/f10110944
CrossRef Google Scholar
|
[232]
|
Su X, Li S, Wan X, Huang Z, Liu B, et al. 2021. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. Forest Ecology and Management 483:118750 doi: 10.1016/j.foreco.2020.118750
CrossRef Google Scholar
|
[233]
|
Cheng C, Wang Y, Fu X, Xu M, Dai X, Wang H. 2017. Thinning effect on understory community and photosynthetic characteristics in a subtropical Pinus massoniana plantation. Canadian Journal of Forest Research 47:1104−15 doi: 10.1139/cjfr-2017-0082
CrossRef Google Scholar
|
[234]
|
Liu B, Biswas SR, Yang J, Liu Z, He HS, et al. 2020. Strong influences of stand age and topography on post-fire understory recovery in a Chinese boreal forest. Forest Ecology and Management 473:118307 doi: 10.1016/j.foreco.2020.118307
CrossRef Google Scholar
|
[235]
|
Zhang J, Young DH, Oliver WW, Fiddler GO. 2016. Effect of overstorey trees on understorey vegetation in California (USA) ponderosa pine plantations. Forestry 89:91−99 doi: 10.1093/forestry/cpv036
CrossRef Google Scholar
|
[236]
|
Montgomery RA, Reich PB, Palik BJ. 2010. Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. Ecology 91:3641−55 doi: 10.1890/09-1663.1
CrossRef Google Scholar
|
[237]
|
Xiao R, Man X, Duan B, Cai T, Ge Z, et al. 2022. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests. Soil Biology and Biochemistry 166:108572 doi: 10.1016/j.soilbio.2022.108572
CrossRef Google Scholar
|
[238]
|
Nilsson MC, Wardle DA. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment 3:421−8 doi: 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2
CrossRef Google Scholar
|
[239]
|
He W, Xu X, Zhang C, Ma Z, Xu J, et al. 2020. Understory vegetation removal reduces the incidence of non-additive mass loss during leaf litter decomposition in a subtropical Pinus massoniana plantation. Plant and Soil 446:529−41 doi: 10.1007/s11104-019-04378-2
CrossRef Google Scholar
|
[240]
|
Wang F, Zou B, Li H, Li Z. 2014. The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. Journal of Forest Research 19:238−43 doi: 10.1007/s10310-013-0395-0
CrossRef Google Scholar
|
[241]
|
Fang XM, Wang GG, Xu ZJ, Zong YY, Zhang XL, et al. 2021. Litter addition and understory removal influenced soil organic carbon quality and mineral nitrogen supply in a subtropical plantation forest. Plant and Soil 460:527−40 doi: 10.1007/s11104-020-04787-8
CrossRef Google Scholar
|
[242]
|
Xiong Y, Xia H, Li Z, Cai X, Fu S. 2008. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant and Soil 304:179−88 doi: 10.1007/s11104-007-9536-6
CrossRef Google Scholar
|
[243]
|
Zhang X, Zhao Q, Sun Q, Mao B, Zeng D. 2022. Understory vegetation interacts with nitrogen addition to affect soil phosphorus transformations in a nutrient-poor Pinus sylvestris var. mongolica plantation. Forest Ecology and Management 507:120026 doi: 10.1016/j.foreco.2022.120026
CrossRef Google Scholar
|
[244]
|
Zhang J, Qin G, Zhai Z, Zhou S, Tang L, et al. 2021. Diverse understory vegetation alleviates nitrogen competition with crop trees in poplar plantations. Forests 12:705 doi: 10.3390/f12060705
CrossRef Google Scholar
|
[245]
|
Zhao J, Wang X, Shao Y, Xu G, Fu S. 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry 43:954−60 doi: 10.1016/j.soilbio.2011.01.010
CrossRef Google Scholar
|
[246]
|
Fu X, Yang F, Wang J, Di Y, Dai X, et al. 2015. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment 502:280−86 doi: 10.1016/j.scitotenv.2014.09.018
CrossRef Google Scholar
|
[247]
|
Liu Z, Wu J, Zhou L, Lin Y, Fu S. 2012. Effect of understory fern (Dicranopteris dichotoma) removal on substrate utilization patterns of culturable soil bacterial communities in subtropical Eucalyptus plantations. Pedobiologia 55:7−13 doi: 10.1016/j.pedobi.2011.07.014
CrossRef Google Scholar
|
[248]
|
Ehrenfeld JG, Kourtev P, Huang W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological applications 11:1287−300 doi: 10.1890/1051-0761(2001)011[1287:CISFFI]2.0.CO;2
CrossRef Google Scholar
|
[249]
|
Zhao J, Wan S, Fu S, Wang X, Wang M, et al. 2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management 310:80−86 doi: 10.1016/j.foreco.2013.08.013
CrossRef Google Scholar
|
[250]
|
Zhang Q, Shao Ma, Jia X, Zhang C. 2018. Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the Loess Plateau in China. Soil Science Society of America Journal 82:106−14 doi: 10.2136/sssaj2017.05.0145
CrossRef Google Scholar
|
[251]
|
Qiao Y, Miao S, Silva LCR, Horwath WR. 2014. Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment. Forest Ecology and Management 329:318−27 doi: 10.1016/j.foreco.2014.04.025
CrossRef Google Scholar
|
[252]
|
Lyu M, Xie J, Giardina CP, Vadeboncoeur MA, Feng X, et al. 2019. Understory ferns alter soil carbon chemistry and increase carbon storage during reforestation with native pine on previously degraded sites. Soil Biology and Biochemistry 132:80−92 doi: 10.1016/j.soilbio.2019.02.004
CrossRef Google Scholar
|
[253]
|
Zhang J, Li Y, Chang SX, Jiang P, Zhou G, et al. 2014. Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation. Plant and soil 376:363−75 doi: 10.1007/s11104-013-1996-2
CrossRef Google Scholar
|
[254]
|
Li H, Fu S, Zhao H, Xia H. 2010. Effects of understory removal and N-fixing species seeding on soil N2O fluxes in four forest plantations in southern China. Soil Science & Plant Nutrition 56:541−51 doi: 10.1111/j.1747-0765.2010.00498.x
CrossRef Google Scholar
|
[255]
|
Feng J, Li Z, Hao Y, Wang J, Ru J, et al. 2022. Litter removal exerts greater effects on soil microbial community than understory removal in a subtropical-warm temperate climate transitional forest. Forest Ecology and Management 505:119867 doi: 10.1016/j.foreco.2021.119867
CrossRef Google Scholar
|
[256]
|
Reynolds PE, Thevathasan NV, Simpson JA, Gordon AM, Lautenschlager R, et al. 2000. Alternative conifer release treatments affect microclimate and soil nitrogen mineralization. Forest Ecology and Management 133:115−25 doi: 10.1016/S0378-1127(99)00302-3
CrossRef Google Scholar
|
[257]
|
Gurlevik N, Kelting DL, Allen HL. 2004. Nitrogen mineralization following vegetation control and fertilization in a 14-year-old loblolly pine plantation. Soil Science Society of America Journal 68:272−81 doi: 10.2136/sssaj2004.2720
CrossRef Google Scholar
|
[258]
|
Matsushima M, Chang SX. 2007. Effects of understory removal, N fertilization, and litter layer removal on soil N cycling in a 13-year-old white spruce plantation infested with Canada bluejoint grass. Plant and Soil 292:243−58 doi: 10.1007/s11104-007-9220-x
CrossRef Google Scholar
|
[259]
|
Davidson EA, Hart SC, Shanks CA, Firestone MK. 1991. Measuring gross nitrogen mineralization, and nitrification by 15N isotopic pool dilution in intact soil cores. Journal of Soil Science 42:335−49 doi: 10.1111/j.1365-2389.1991.tb00413.x
CrossRef Google Scholar
|
[260]
|
Bengtsson G, Bengtson P, Månsson KF. 2003. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biology and Biochemistry 35:143−54 doi: 10.1016/S0038-0717(02)00248-1
CrossRef Google Scholar
|
[261]
|
Zhao Q, Classen AT, Wang W, Zhao X, Mao B, et al. 2017. Asymmetric effects of litter removal and litter addition on the structure and function of soil microbial communities in a managed pine forest. Plant and Soil 414:81−93 doi: 10.1007/s11104-016-3115-7
CrossRef Google Scholar
|
[262]
|
Maillard F, Leduc V, Bach C, Reichard A, Fauchery L, et al. 2019. Soil microbial functions are affected by organic matter removal in temperate deciduous forest. Soil Biology & Biochemistry 133:28−36 doi: 10.1016/j.soilbio.2019.02.015
CrossRef Google Scholar
|
[263]
|
Zhu Y, Shen R, He J, Wang Y, Han X, et al. 2017. China Soil Microbiome Initiative: Progress and Perspective. Bulletin of the Chinese Academy of Sciences 32:554−65 doi: 10.16418/j.issn.1000-3045.2017.06.002
CrossRef Google Scholar
|
[264]
|
Wan S, Liu Z, Chen Y, Zhao J, Ying Q, et al. 2019. Effects of lime application and understory removal on soil microbial communities in subtropical Eucalyptus L'Her. plantations. Forests 10:338 doi: 10.3390/f10040338
CrossRef Google Scholar
|
[265]
|
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, et al. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629−33 doi: 10.1126/science.1094875
CrossRef Google Scholar
|
[266]
|
Cui F, Yang Y, Ye M, Wei W, Huang W, et al. 2021. Case study of a rhizosphere microbiome assay on a bamboo rhizome with excessive shoots. Forestry Research 1:10 doi: 10.48130/FR-2021-0010
CrossRef Google Scholar
|
[267]
|
Murugan R, Beggi F, Kumar S. 2014. Belowground carbon allocation by trees, understory vegetation and soil type alter microbial community composition and nutrient cycling in tropical Eucalyptus plantations. Soil Biology & Biochemistry 76:257−67 doi: 10.1016/j.soilbio.2014.05.022
CrossRef Google Scholar
|
[268]
|
Wan S, Fu S, Zhang C, Liu J, Zhang Y, et al. 2021. Effects of understory removal and litter addition on leaf and twig decomposition in a subtropical Chinese fir plantation. Land Degradation & Development 32:5004−11 doi: 10.1002/ldr.4086
CrossRef Google Scholar
|
[269]
|
Yang Y, Zhang X, Zhang C, Wang H, Fu X, et al. 2018. Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities. Biogeosciences 15:4481−94 doi: 10.5194/bg-15-4481-2018
CrossRef Google Scholar
|
[270]
|
Lei L, Xiao W, Zeng L, Frey B, Huang Z, et al. 2021. Effects of thinning intensity and understory removal on soil microbial community in Pinus massoniana plantations of subtropical China. Applied Soil Ecology 167:104055 doi: 10.1016/j.apsoil.2021.104055
CrossRef Google Scholar
|
[271]
|
Urcelay C, Díaz S, Gurvich DE, Chapin FSI, Cuevas E, et al. 2009. Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology 97:1291−301 doi: 10.1111/j.1365-2745.2009.01582.x
CrossRef Google Scholar
|
[272]
|
Mushinski RM, Gentry TJ, Boutton TW. 2019. Forest organic matter removal leads to long-term reductions in bacterial and fungal abundance. Applied Soil Ecology 137:106−10 doi: 10.1016/j.apsoil.2019.01.017
CrossRef Google Scholar
|
[273]
|
Zhang S, Yang X, Li D, Li S, Chen Z, et a. 2022. A meta-analysis of understory plant removal impacts on soil properties in forest ecosystems. Geoderma 426:116116 doi: 10.1016/j.geoderma.2022.116116
CrossRef Google Scholar
|
[274]
|
Liu L, Zhu K, Krause SMB, Li S, Wang X, et al. 2021. Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests. Soil Biology & Biochemistry 154:108144 doi: 10.1016/j.soilbio.2021.108144
CrossRef Google Scholar
|
[275]
|
Deng J, Zhou W, Dai L, Yuan Q, Zhou L, et al. 2022. The effects of shrub removal on soil microbial communities in primary forest, secondary forest and plantation forest on Changbai Mountain. Microbial Ecology 85:642−642 doi: 10.1007/s00248-021-01943-0
CrossRef Google Scholar
|
[276]
|
Keesstra S, Pereira P, Novara A, Brevik EC, Azorin-Molina C, et al. 2016. Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment 551−552:357−66 doi: 10.1016/j.scitotenv.2016.01.182
CrossRef Google Scholar
|
[277]
|
Liu Y, Tao Y, Wan KY, Zhang GS, Liu DB, et al. 2012. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agricultural Water Management 110:34−40 doi: 10.1016/j.agwat.2012.03.011
CrossRef Google Scholar
|
[278]
|
Geißler C, Lang AC, von Oheimb G, Härdtle W, Baruffol M, et al. 2012. Impact of tree saplings on the kinetic energy of rainfall-The importance of stand density, species identity and tree architecture in subtropical forests in China. Agricultural and Forest Meteorology 156:31−40 doi: 10.1016/j.agrformet.2011.12.005
CrossRef Google Scholar
|
[279]
|
Levia DF, Hudson SA, Llorens P, Nanko K. 2017. Throughfall drop size distributions: a review and prospectus for future research. WIREs Water 4:e1225 doi: 10.1002/wat2.1225
CrossRef Google Scholar
|
[280]
|
Nanko K, Hotta N, Suzuki M. 2006. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology 329:422−31 doi: 10.1016/j.jhydrol.2006.02.036
CrossRef Google Scholar
|
[281]
|
Shinohara Y, Komatsu H, Kuramoto K, Otsuki K. 2013. Characteristics of canopy interception loss in Moso bamboo forests of Japan. Hydrological Processes 27:2041−47 doi: 10.1002/hyp.9359
CrossRef Google Scholar
|
[282]
|
Shinohara Y, Levia DF, Komatsu H, Nogata M, Otsuki K. 2015. Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica D. Don) forest of western Japan. Agricultural and Forest Meteorology 214−215:148−56 doi: 10.1016/j.agrformet.2015.08.257
CrossRef Google Scholar
|
[283]
|
Chen J, Xiao H, Li Z, Liu C, Wang D, et al. 2019. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecological Engineering 132:109−14 doi: 10.1016/j.ecoleng.2019.04.010
CrossRef Google Scholar
|
[284]
|
Feng Q, Zhao W, Wang J, Zhang X, Zhao M, et al. 2016. Effects of different land-use types on soil erosion under natural rainfall in the Loess Plateau, China. Pedosphere 26:243−56 doi: 10.1016/S1002-0160(15)60039-X
CrossRef Google Scholar
|
[285]
|
Jiang M, Lin TC, Shaner PJL, Lyu MK, Xu C, et al. 2019. Understory interception contributed to the convergence of surface runoff between a Chinese fir plantation and a secondary broadleaf forest. Journal of Hydrology 574:862−71 doi: 10.1016/j.jhydrol.2019.04.088
CrossRef Google Scholar
|
[286]
|
Li X, Niu J, Xie B. 2014. The effect of leaf litter cover on surface runoff and soil erosion in Northern China. Plos One 9:e107789 doi: 10.1371/journal.pone.0107789
CrossRef Google Scholar
|
[287]
|
Zhang G, Zeng GM, Jiang YM, Huang GH, Li JB, et al. 2006. Modelling and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south China. Hydrology and Earth System Sciences 10:65−77 doi: 10.5194/hess-10-65-2006
CrossRef Google Scholar
|
[288]
|
Nanko K, Giambelluca TW, Sutherland RA, Mudd RG, Nullet MA, et al. 2015. Erosion potential under Miconia calvescens stands on the Island of Hawai ‘i. Land Degradation & Development 26:218−26 doi: 10.1002/ldr.2200
CrossRef Google Scholar
|
[289]
|
Shinohara Y, Misumi Y, Kubota T, Nanko K. 2019. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. CATENA 172:451−60 doi: 10.1016/j.catena.2018.09.011
CrossRef Google Scholar
|
[290]
|
Miura S, Yoshinaga S, Yamada T. 2003. Protective effect of floor cover against soil erosion on steep slopes forested with Chamaecyparis obtusa (hinoki) and other species. Journal of Forest Research 8:27−35 doi: 10.1007/s103100300003
CrossRef Google Scholar
|
[291]
|
Miura S, Ugawa S, Yoshinaga S, Keizo Hirai TY. 2015. Floor cover percentage determines splash erosion in Chamaecyparis obtusa forests. Soil Science Society of America Journal 79:1782−91 doi: 10.2136/sssaj2015.05.0171
CrossRef Google Scholar
|
[292]
|
Miyata S, Kosugi K, Gomi T, Mizuyama T. 2009. Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resources Research 45:W06402 doi: 10.1029/2008WR007270
CrossRef Google Scholar
|
[293]
|
Zhu X, Liu W, Chen J, Bruijnzeel LA, Mao Z, et al. 2020. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant and Soil 453:45−86 doi: 10.1007/s11104-019-04377-3
CrossRef Google Scholar
|
[294]
|
Liu R, Thomas BW, Shi X, Zhang X, Wang Z, Zhang Y. 2021. Effects of ground cover management on improving water and soil conservation in tree crop systems: A meta-analysis. Catena 199:105085 doi: 10.1016/j.catena.2020.105085
CrossRef Google Scholar
|
[295]
|
Zhou GY, Morris JD, Yan JH, Yu ZY, Peng SL. 2002. Hydrological impacts of reafforestation with eucalypts and indigenous species: a case study in southern China. Forest Ecology and Management 167:209−22 doi: 10.1016/S0378-1127(01)00694-6
CrossRef Google Scholar
|
[296]
|
Seitz S, Goebes P, Song Z, Bruelheide H, Härdtle W, et al. 2016. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests. Soil 2:49−61 doi: 10.5194/soil-2-49-2016
CrossRef Google Scholar
|
[297]
|
Sastre B, Barbero-Sierra C, Bienes R, Marques MJ, García-Díaz A. 2017. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. Journal of Soils and Sediments 17:873−88 doi: 10.1007/s11368-016-1589-9
CrossRef Google Scholar
|
[298]
|
Liu W, Zhu C, Wu J, Chen C. 2016. Are rubber-based agroforestry systems effective in controlling rain splash erosion? CATENA 147:16−24 doi: 10.1016/j.catena.2016.06.034
CrossRef Google Scholar
|
[299]
|
Song L, Boithias L, Sengtaheuanghoung O, Oeurng C, Valentin C, et al. 2020. Understory limits surface runoff and soil loss in Teak tree plantations of Northern Lao PDR. Water 12:2327 doi: 10.3390/w12092327
CrossRef Google Scholar
|
[300]
|
Zhou P, Luukkanen O, Tokola T, Nieminen J. 2008. Effect of vegetation cover on soil erosion in a mountainous watershed. CATENA 75:319−25 doi: 10.1016/j.catena.2008.07.010
CrossRef Google Scholar
|