[1]
|
Li Y, Wang H, Zhang Y, Martin C. 2018. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Reports 37:1443−50 doi: 10.1007/s00299-018-2283-8
CrossRef Google Scholar
|
[2]
|
Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A. 2014. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of Inflammation 2014:139873 doi: 10.1155/2014/139873
CrossRef Google Scholar
|
[3]
|
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, et al. 2009. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5:344−50 doi: 10.1038/nchembio.161
CrossRef Google Scholar
|
[4]
|
Wasternack C, Song S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany 68:1303−21 doi: 10.1093/jxb/erw443
CrossRef Google Scholar
|
[5]
|
Wasternack C, Strnad M. 2018. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. International Journal of Molecular Sciences 19:2539 doi: 10.3390/ijms19092539
CrossRef Google Scholar
|
[6]
|
Wasternack C, Feussner I. 2018. The oxylipin pathways: biochemistry and function. Annual Review of Plant Biology 69:363−86 doi: 10.1146/annurev-arplant-042817-040440
CrossRef Google Scholar
|
[7]
|
Vick BA, Zimmerman DC. 1983. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochemical and Biophysical Research Communications 111:470−77 doi: 10.1016/0006-291X(83)90330-3
CrossRef Google Scholar
|
[8]
|
Guan L, Denkert N, Eisa A, Lehmann M, Sjuts I, et al. 2019. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 116:10568−75 doi: 10.1073/pnas.1900482116
CrossRef Google Scholar
|
[9]
|
Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, et al. 2005. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiology 137:835−40 doi: 10.1104/pp.105.059352
CrossRef Google Scholar
|
[10]
|
Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW. 2000. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979−84 doi: 10.1007/s004250050706
CrossRef Google Scholar
|
[11]
|
Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58 doi: 10.1093/aob/mct067
CrossRef Google Scholar
|
[12]
|
Stintzi A, Browse J. 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences of the United States of America 97:10625−30 doi: 10.1073/pnas.190264497
CrossRef Google Scholar
|
[13]
|
Griffiths G. 2020. Jasmonates: biosynthesis, perception and signal transduction. Essays in Biochemistry 64:501−12 doi: 10.1042/EBC20190085
CrossRef Google Scholar
|
[14]
|
Wasternack C, Hause B. 2018. A bypass in jasmonate biosynthesis – the OPR3-independent formation. Trends in Plant Science 23:276−79 doi: 10.1016/j.tplants.2018.02.011
CrossRef Google Scholar
|
[15]
|
Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, et al. 2018. An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology 14:171−78 doi: 10.1038/nchembio.2540
CrossRef Google Scholar
|
[16]
|
Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell 16:2117−27 doi: 10.1105/tpc.104.023549
CrossRef Google Scholar
|
[17]
|
Staswick PE. 2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiology 150:1310−21 doi: 10.1104/pp.109.138529
CrossRef Google Scholar
|
[18]
|
Kramell R, Schmidt J, Herrmann G, Schliemann W. 2005. N-(jasmonoyl)tyrosine-derived compounds from flowers of broad beans (Vicia faba). Journal of Natural Products 68:1345−49 doi: 10.1021/np0501482
CrossRef Google Scholar
|
[19]
|
Li Q, Zheng J, Li S, Huang G, Skilling SJ, et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Molecular Plant 10:695−708 doi: 10.1016/j.molp.2017.01.010
CrossRef Google Scholar
|
[20]
|
Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788−91 doi: 10.1038/nature08854
CrossRef Google Scholar
|
[21]
|
Chini A, Fonseca S, Fernández G, Adie B, Chico JM, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666−71 doi: 10.1038/nature06006
CrossRef Google Scholar
|
[22]
|
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661−65 doi: 10.1038/nature05960
CrossRef Google Scholar
|
[23]
|
Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, et al. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. The Plant Cell 19:2470−83 doi: 10.1105/tpc.107.050708
CrossRef Google Scholar
|
[24]
|
Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091−94 doi: 10.1126/science.280.5366.1091
CrossRef Google Scholar
|
[25]
|
Xu L, Liu F, Lechner E, Genschik P, Crosby WL, et al. 2002. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. The Plant Cell 14:1919−35 doi: 10.1105/tpc.003368
CrossRef Google Scholar
|
[26]
|
Yan J, Zhang C, Gu M, Bai Z, Zhang W, et al. 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. The Plant Cell 21:2220−36 doi: 10.1105/tpc.109.065730
CrossRef Google Scholar
|
[27]
|
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400−5 doi: 10.1038/nature09430
CrossRef Google Scholar
|
[28]
|
Huang H, Chen Y, Wang S, Qi T, Song S. 2023. Jasmonate action and crosstalk in flower development and fertility. Journal of Experimental Botany 74:1186−97 doi: 10.1093/jxb/erac251
CrossRef Google Scholar
|
[29]
|
Huang H, Liu B, Liu L, Song S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany 68:1349−59 doi: 10.1093/jxb/erw495
CrossRef Google Scholar
|
[30]
|
Yan C, Xie D. 2015. Jasmonate in plant defence: sentinel or double agent? Plant Biotechnology Journal 13:1233−40 doi: 10.1111/pbi.12417
CrossRef Google Scholar
|
[31]
|
Wang J, Wu D, Wang Y, Xie D. 2019. Jasmonate action in plant defense against insects. Journal of Experimental Botany 70:3391−400 doi: 10.1093/jxb/erz174
CrossRef Google Scholar
|
[32]
|
Yan L, Zhai Q, Wei J, Li S, Wang B, et al. 2013. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genetics 9:e1003964 doi: 10.1371/journal.pgen.1003964
CrossRef Google Scholar
|
[33]
|
Li C, Liu G, Xu C, Lee GI, Bauer P, et al. 2003. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. The Plant Cell 15:1646−61 doi: 10.1105/tpc.012237
CrossRef Google Scholar
|
[34]
|
Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, et al. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell 16:126−43 doi: 10.1105/tpc.017954
CrossRef Google Scholar
|
[35]
|
Goetz S, Hellwege A, Stenzel I, Kutter C, Hauptmann V, et al. 2012. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiology 158:1715−27 doi: 10.1104/pp.111.192658
CrossRef Google Scholar
|
[36]
|
Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, et al. 2015. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. The Plant Journal 81:304−15 doi: 10.1111/tpj.12728
CrossRef Google Scholar
|
[37]
|
Saito R, Hayashi K, Nomoto H, Nakayama M, Takaoka Y, et al. 2021. Extended JAZ degron sequence for plant hormone binding in jasmonate co-receptor of tomato SlCOI1-SlJAZ. Scientific Reports 11:13612 doi: 10.1038/s41598-021-93067-1
CrossRef Google Scholar
|
[38]
|
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, et al. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell 29:1883−906 doi: 10.1105/tpc.16.00953
CrossRef Google Scholar
|
[39]
|
Ding F, Wang C, Xu N, Zhang S, Wang M. 2022. SlMYC2 mediates jasmonate-induced tomato leaf senescence by promoting chlorophyll degradation and repressing carbon fixation. Plant Physiology and Biochemistry 180:27−34 doi: 10.1016/j.plaphy.2022.03.026
CrossRef Google Scholar
|
[40]
|
Wang Z, Gao M, Li Y, Zhang J, Su H, et al. 2022. The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato. Journal of Experimental Botany 73:6207−25 doi: 10.1093/jxb/erac258
CrossRef Google Scholar
|
[41]
|
Chen Y, Feng P, Tang B, Hu Z, Xie Q, et al. 2022. The AP2/ERF transcription factor SlERF. F5 functions in leaf senescence in tomato. Plant Cell Report 41:1181−95 doi: 10.1007/s00299-022-02846-1
CrossRef Google Scholar
|
[42]
|
Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, et al. 2016. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. Journal of Experimental Botany 67:5313−24 doi: 10.1093/jxb/erw292
CrossRef Google Scholar
|
[43]
|
Kang JH, Shi F, Jones AD, Marks MD, Howe GA. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany 61:1053−64 doi: 10.1093/jxb/erp370
CrossRef Google Scholar
|
[44]
|
Peiffer M, Tooker JF, Luthe DS, Felton GW. 2009. Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytologist 184:644−56 doi: 10.1111/j.1469-8137.2009.03002.x
CrossRef Google Scholar
|
[45]
|
Luckwill LC. 1943. The genus Lycopersicon: a historical, biological and taxonomic survey of the wild and cultivated tomatoes. pp 44. Aberdeen, The University Press.
|
[46]
|
McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, et al. 2011. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiology 155:524−39 doi: 10.1104/pp.110.167114
CrossRef Google Scholar
|
[47]
|
Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, et al. 2015. Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. The Plant Cell 27:1002−17 doi: 10.1105/tpc.15.00087
CrossRef Google Scholar
|
[48]
|
Balcke GU, Bennewitz S, Bergau N, Athmer B, Henning A, et al. 2017. Multi-omics of tomato glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites. The Plant Cell 29:960−83 doi: 10.1105/tpc.17.00060
CrossRef Google Scholar
|
[49]
|
Hua B, Chang J, Xu Z, Han X, Xu M, et al. 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytologist 230:1063−77 doi: 10.1111/nph.17216
CrossRef Google Scholar
|
[50]
|
Boughton AJ, Hoover K, Felton GW. 2005. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. Journal of Chemical Ecology 31:2211−16 doi: 10.1007/s10886-005-6228-7
CrossRef Google Scholar
|
[51]
|
Yang C, Li H, Zhang J, Luo Z, Gong P, et al. 2011. A regulatory gene induces trichome formation and embryo lethality in tomato. Proceedings of the National Academy of Sciences of the United States of America 108:11836−41 doi: 10.1073/pnas.1100532108
CrossRef Google Scholar
|
[52]
|
Kanwar MK, Yu J, Zhou J. 2018. Phytomelatonin: recent advances and future prospects. Journal of Pineal Research 65:e12526 doi: 10.1111/jpi.12526
CrossRef Google Scholar
|
[53]
|
Hua B, Chang J, Han X, Xu Z, Hu S, et al. 2022. H and HL synergistically regulate jasmonate-triggered trichome formation in tomato. Horticulture Research 9:uhab080 doi: 10.1093/hr/uhab080
CrossRef Google Scholar
|
[54]
|
Hua B, Chang J, Wu M, Xu Z, Zhang F, et al. 2021. Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. Plant Biotechnology Journal 19:375−93 doi: 10.1111/pbi.13473
CrossRef Google Scholar
|
[55]
|
Shu P, Li Z, Min D, Zhang X, Ai W, et al. 2020. CRISPR/Cas9-Mediated SlMYC2 mutagenesis adverse to Tomato plant growth and meja-induced fruit resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry 68:5529−38 doi: 10.1021/acs.jafc.9b08069
CrossRef Google Scholar
|
[56]
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, et al. 2015. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biology 13:28 doi: 10.1186/s12915-015-0135-3
CrossRef Google Scholar
|
[57]
|
Niwa T, Suzuki T, Takebayashi Y, Ishiguro R, Higashiyama T, et al. 2018. Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SlMYB21 transcription factor in tomato. Bioscience, Biotechnology, and Biochemistry 82:292−303 doi: 10.1080/09168451.2017.1422107
CrossRef Google Scholar
|
[58]
|
Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, et al. 2019. Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. The Plant Cell 31:1043−62 doi: 10.1105/tpc.18.00978
CrossRef Google Scholar
|
[59]
|
Zhang Y, Xing H, Wang H, Yu L, Yang Z, et al. 2022. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. Frontiers in Plant Science 13:1013445 doi: 10.3389/fpls.2022.1013445
CrossRef Google Scholar
|
[60]
|
Liu L, Wei J, Zhang M, Zhang L, Li C, et al. 2012. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany 63:5751−61 doi: 10.1093/jxb/ers224
CrossRef Google Scholar
|
[61]
|
Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. 2008. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytologist 177:114−27 doi: 10.1111/j.1469-8137.2007.02252.x
CrossRef Google Scholar
|
[62]
|
Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, et al. 2009. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. The Plant Cell 21:1239−51 doi: 10.1105/tpc.108.065029
CrossRef Google Scholar
|
[63]
|
Li Z, Peng R, Yao Q. 2021. SlMYB14 promotes flavonoids accumulation and confers higher tolerance to 2, 4, 6-trichlorophenol in tomato. Plant Science 303:110796 doi: 10.1016/j.plantsci.2020.110796
CrossRef Google Scholar
|
[64]
|
Chen Y, Kim P, Kong L, Wang X, Tan W, et al. 2022. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. Journal of Experimental Botany 73:5559−80 doi: 10.1093/jxb/erac209
CrossRef Google Scholar
|
[65]
|
Chen H, Jones AD, Howe GA. 2006. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Letters 580:2540−46 doi: 10.1016/j.febslet.2006.03.070
CrossRef Google Scholar
|
[66]
|
Abdelkareem A, Thagun C, Nakayasu M, Mizutani M, Hashimoto T, et al. 2017. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochemical and Biophysical Research Communications 489:206−10 doi: 10.1016/j.bbrc.2017.05.132
CrossRef Google Scholar
|
[67]
|
Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, et al. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7:10654 doi: 10.1038/ncomms10654
CrossRef Google Scholar
|
[68]
|
Wang Y, Mostafa S, Zeng W, Jin B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22:8568 doi: 10.3390/ijms22168568
CrossRef Google Scholar
|
[69]
|
Xu B, Wang J, Peng Y, Huang H, Sun L, et al. 2022. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. Frontiers in Plant Science 13:952758 doi: 10.3389/fpls.2022.952758
CrossRef Google Scholar
|
[70]
|
Zhao W, Huang H, Wang J, Wang X, Xu B, et al. 2023. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. The Plant Journal 113:546−61 doi: 10.1111/tpj.16067
CrossRef Google Scholar
|
[71]
|
Pan C, Yang D, Zhao X, Jiao C, Yan Y, et al. 2019. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, Cell & Environment 42:1205−21 doi: 10.1111/pce.13444
CrossRef Google Scholar
|
[72]
|
Min D, Li F, Zhang X, Cui X, Shu P, et al. 2018. SlMYC2 involved in methyl jasmonate-induced tomato fruit chilling tolerance. Journal of Agricultural and Food Chemistry 66:3110−17 doi: 10.1021/acs.jafc.8b00299
CrossRef Google Scholar
|
[73]
|
Min D, Zhou J, Li J, Ai W, Li Z, et al. 2021. SlMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit. Postharvest Biology and Technology 174:111443 doi: 10.1016/j.postharvbio.2020.111443
CrossRef Google Scholar
|
[74]
|
Ding F, Ren L, Xie F, Wang M, Zhang S. 2021. Jasmonate and melatonin act synergistically to potentiate cold tolerance in tomato plants. Frontiers in Plant Science 12:763284 doi: 10.3389/fpls.2021.763284
CrossRef Google Scholar
|
[75]
|
Wang F, Guo Z, Li H, Wang M, Onac E, et al. 2016. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology 170:459−71 doi: 10.1104/pp.15.01171
CrossRef Google Scholar
|
[76]
|
Ding F, Wang X, Li Z, Wang M. 2023. Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato. Plants 12:60 doi: 10.3390/plants12010060
CrossRef Google Scholar
|
[77]
|
Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, et al. 2019. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 235:734−48 doi: 10.1016/j.chemosphere.2019.06.188
CrossRef Google Scholar
|
[78]
|
Thaler JS, Stout MJ, Karban R, Duffey SS. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecological Entomology 26:312−24 doi: 10.1046/j.1365-2311.2001.00324.x
CrossRef Google Scholar
|
[79]
|
Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, et al. 2005. Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. The Plant Cell 17:971−86 doi: 10.1105/tpc.104.029108
CrossRef Google Scholar
|
[80]
|
Tian D, Peiffer M, De Moraes CM, Felton GW. 2014. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta 239:577−89 doi: 10.1007/s00425-013-1997-7
CrossRef Google Scholar
|
[81]
|
Zhang P, Wei J, Zhao C, Zhang Y, Li C, et al. 2019. Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America 116:7387−96 doi: 10.1073/pnas.1818599116
CrossRef Google Scholar
|
[82]
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, et al. 2019. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. Journal of Experimental Botany 70:315−27 doi: 10.1093/jxb/ery347
CrossRef Google Scholar
|
[83]
|
Hu C, Wei C, Ma Q, Dong H, Shi K, et al. 2021. Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiology 185:1182−97 doi: 10.1093/plphys/kiaa089
CrossRef Google Scholar
|
[84]
|
Hu C, Wu S, Li J, Dong H, Zhu C, et al. 2022. Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato. New Phytologist 236:1796−808 doi: 10.1111/nph.18455
CrossRef Google Scholar
|
[85]
|
Cooper WR, Jia L, Goggin L. 2005. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Journal of Chemical Ecology 31:1953−67 doi: 10.1007/s10886-005-6070-y
CrossRef Google Scholar
|
[86]
|
Fan J, Hu C, Zhang L, Li Z, Zhao F, Wang S. 2015. Jasmonic acid mediates tomato’s response to root knot nematodes. Journal of Plant Growth Regulation 34:196−205 doi: 10.1007/s00344-014-9457-6
CrossRef Google Scholar
|
[87]
|
Sun Y, Cao H, Yin J, Kang L, Ge F. 2010. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant, Cell & Environment 33:729−39 doi: 10.1111/j.1365-3040.2009.02098.x
CrossRef Google Scholar
|
[88]
|
Zhao W, Li Z, Fan J, Hu C, Yang R, et al. 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Journal of Experimental Botany 66:4653−67 doi: 10.1093/jxb/erv238
CrossRef Google Scholar
|
[89]
|
Shang Y, Wang K, Sun S, Zhou J, Yu J. 2019. COP9 Signalosome CSN4 and CSN5 subunits are involved in jasmonate-dependent defense against root-knot nematode in Tomato. Frontiers in Plant Science 10:1223 doi: 10.3389/fpls.2019.01223
CrossRef Google Scholar
|
[90]
|
ZZou J, Zhao Q, Yang T, Shang Y, Ahammed GJ, et al. 2022. The E3 ubiquitin ligase RING1 interacts with COP9 Signalosome Subunit 4 to positively regulate resistance to root-knot nematodes in Solanum lycopersicum L. Plant Science 322:111344 doi: 10.1016/j.plantsci.2022.111344
CrossRef Google Scholar
|
[91]
|
Wang G, Hu C, Zhou J, Liu Y, Cai J, et al. 2019. Systemic root-shoot signaling drives jasmonate-based root defense against nematodes. Current Biology 29:3430−3438.E4 doi: 10.1016/j.cub.2019.08.049
CrossRef Google Scholar
|
[92]
|
Xu X, Fang P, Zhang H, Chi C, Song L, et al. 2019. Strigolactones positively regulate defense against root-knot nematodes in tomato. Journal of Experimental Botany 70:1325−37 doi: 10.1093/jxb/ery439
CrossRef Google Scholar
|
[93]
|
AbuQamar S, Chai MF, Luo H, Song F, Mengiste T. 2008. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. The Plant Cell 20:1964−83 doi: 10.1105/tpc.108.059477
CrossRef Google Scholar
|
[94]
|
Campos ML, Kang JH, Howe GA. 2014. Jasmonate-triggered plant immunity. Journal of Chemical Ecology 40:657−75 doi: 10.1007/s10886-014-0468-3
CrossRef Google Scholar
|
[95]
|
Thaler JS, Owen B, Higgins VJ. 2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology 135:530−38 doi: 10.1104/pp.104.041566
CrossRef Google Scholar
|
[96]
|
Min D, Li F, Cui X, Zhou J, Li J, et al. 2020. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Food Chemistry 310:125901 doi: 10.1016/j.foodchem.2019.125901
CrossRef Google Scholar
|
[97]
|
Liu Y, Du M, Deng L, Shen J, Fang M, et al. 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. The Plant Cell 31:106−27 doi: 10.1105/tpc.18.00405
CrossRef Google Scholar
|
[98]
|
Zhang L, Song Y, Liu K, Gong F. 2021. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. Journal of Plant Physiology 266:153533 doi: 10.1016/j.jplph.2021.153533
CrossRef Google Scholar
|
[99]
|
Jaiswal N, Liao CJ, Mengesha B, Han H, Lee S, et al. 2022. Regulation of plant immunity and growth by tomato receptor-like cytoplasmic kinase TRK1. New Phytologist 233:458−78 doi: 10.1111/nph.17801
CrossRef Google Scholar
|
[100]
|
Huang H, Zhao W, Li C, Qiao H, Song S, et al. 2022. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. Plant Physiology 190:828−42 doi: 10.1093/plphys/kiac275
CrossRef Google Scholar
|
[101]
|
Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R. 2019. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal 17:665−73 doi: 10.1111/pbi.13006
CrossRef Google Scholar
|
[102]
|
Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, et al. 2003. Virulence systems of Pseudomonas syringae pvtomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal 36:485−99 doi: 10.1046/j.1365-313X.2003.01895.x
CrossRef Google Scholar
|