[1]
|
Abdalla W, Gabbar A, Guma'a N, El Ghazali G, Khalid H. 2016. An updated species check-list for the genus Cassia L. sensu lato in the Sudan. Journal of Natural Resources and Environmental Studies 4(2):1−12
Google Scholar
|
[2]
|
McGuffin M, Kartesz JT, Leung AY, Tucker AO. 2000. American Herbal Products Association's Herbs of Commerce. 2nd Edition. Silver Spring, MD: American Herbal Products Association
|
[3]
|
Ewer C. 1820. United States Pharmacopoeial Convention. The Pharmacopoeia of the United States of America 1820. Boston, MA: Charles Ewer
|
[4]
|
Brinckmann J, Smith T. 2018. Senna. Cassia angustifolia and Cassia senna (syn. Cassia acutifolia, Senna alexandrina) Family: Fabaceae (Leguminosae). The J. the American Bot. Coun. (HerbalGram) 120:6−13
Google Scholar
|
[5]
|
World Health Organization. 1999. WHO Monographs on Selected Medicinal Plants. Vol 1. Geneva, Switzerland: World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/42052/9241545178.pdf?sequence=1&isAllowed=y
|
[6]
|
The Ministry of Health and Family Welfare, Government of India. 2001. Ayurvedic Pharmacopoeia Committee. The Ayurvedic Pharmacopoeia of India, Part I. Vol. 1. 1st Edition. New Delhi, India: The Controller of Publications, Civil lines, Delhi.
|
[7]
|
Chinese Pharmacopoeia Commission. 2015. Pharmacopoeia of the People’s Republic of China (2015). Vol. 1. Beijing, China: China Medical Science Press.
|
[8]
|
Puranik AS, Halade G, Kumar S, Mogre R, Apte K, et al. 2011. Cassia auriculata: aspects of safety, pharmacology and drug interaction. Evidence-Based Complementary and Alternative Medicine: ECAM 2011:915240 doi: 10.1093/ecam/nep237
CrossRef Google Scholar
|
[9]
|
Batanouny KH, Aboutabl E, Shabana M, Soliman F. 1999. Pharmacopoeial wild medicinal plants in Egypt. In Wild Medicinal Plants in Egypt: An Inventory to Support Conservation and Sustainable Use, ed. Batanouny KH. Cairo, Egypt: Academy of Scientific Research and Technology; Morges, Switzerland: International Union for Conservation.
|
[10]
|
Jat RS, Reddy RN, Bansal R, Manivel P. 2015. Extension Bulletin: Good Agricultural Practices for Senna. Anand, Gujarat: Directorate of Medicinal and Aromatic Plants Research
|
[11]
|
Wood GB, Bache F. 1833. The Dispensatory of the United States ofAmerica. Philadelphia, PA: Grigg & Elliot
|
[12]
|
Baumann BB. 1960. The botanical aspects of ancient Egyptian embalming and burial. Economic Botany 14(1):84−104 doi: 10.1007/BF02859368
CrossRef Google Scholar
|
[13]
|
Hamza NB, Habeballa RS, Abdalla IE. 2009. Phylogenetic relationships within indigenous Sudanese Cassia senna (L.) using RAPD molecular markers. African Journal of Biotechnology 8(19):4824−29
Google Scholar
|
[14]
|
Lal RK, Sharma JR, Misra HO. 1998. Genetic diversity of senna (Cassia angustifolia Vahl.). Journal of Herbs, Spices & Medicinal Plants 5(2):3−10 doi: 10.1300/J044v05n02_02
CrossRef Google Scholar
|
[15]
|
Flückiger FA, Hanbury D, King's CCL. 1874. Pharmacographia a History of the Principal Drugs of Vegetable Origin, met with in Great Britain and British India. London, UK: Macmillan and Co.
|
[16]
|
Goraya GS, Ved DK. 2017. Medicinal Plants in India: An Assessment of their Demand and Supply. New Delhi: National Medicinal Plants Board, Ministry of AYUSH, Government of India, Indian Council of Forestry Research & Education, Dehradun.
|
[17]
|
Mikaili P, Sharifi M, Shayegh J, Sarahroodi S. 2012. A review on pharmacognotic and pharmaceutical terms originated from Islamic sources. Journal of Basic and Applied Scientific Research 2(4):3235−41
Google Scholar
|
[18]
|
Hussain A, Sharma JR, Puri HS, Tyagi BR. 1984. Genetic resources of important medicinal and aromatic plants in South Asia: A status report. International Bureau of Plant Genetic Resource (IBPGR), Rome.
|
[19]
|
Kumar A, Gupta AK, Siddiqui S, Siddiqui MH, Jnanesha AC, et al. 2022. An assessment, prospects, and obstacles of industrially important medicinal crop Indian Senna (Cassia angustifolia Vahl.): A review. Industrial Crops and Products 187:115472 doi: 10.1016/j.indcrop.2022.115472
CrossRef Google Scholar
|
[20]
|
Kumar A, Husain D, Lal RK, Singh S, Singh V, et al. 2023. Genetic diversity and future prospects in Withania somnifera (L.) Dunal: an assessment based on quantitative traits in different accessions of Ashwagandha. The Nucleus 66:151−59 doi: 10.1007/s13237-023-00423-9
CrossRef Google Scholar
|
[21]
|
Gupta S, Kumar A, Gupta AK, Jnanesha AC, Talha M, et al. 2023. Industrial mint crop revolution, new opportunities, and novel cultivation ambitions: A review. Ecological Genetics and Genomics 27:100174 doi: 10.1016/j.egg.2023.100174
CrossRef Google Scholar
|
[22]
|
Sastri BN. 1950. Wealth of India: Raw Materials. vol. 2. New Delhi: CSIR-NIScPR. pp. 93−98. https://niscpr.res.in/knowledgeproducts/wealthofindia
|
[23]
|
Zafar R, Malhotra P, Manohar SJ. 1993. Occurrence of anthraquinone derivatives in indigenous Cassia species – A chemotaxonomic approach. New Botany 20:139−43
Google Scholar
|
[24]
|
Griggs B. 1981. Green Pharmacy. London: Jill Normans Ho B House Ltd. 24 pp.
|
[25]
|
Christopher J. 1979. School of natural healing. Utah: Biworld Publishers, Inc. 103 pp.
|
[26]
|
Khan MA, Khan MS, Azam H, Hakeem HAN. 1999. Sena/Senna alexanderian Miller (Cassia senna L.). The glory of medicines. Hamdard Medicines 51(3):81−85
Google Scholar
|
[27]
|
Atal CK, Kapur BM. 1977. Cultivation & utilization of medicinal and aromatic plants. India: Regional Research Laboratory. CSIR. pp: 1−568.
|
[28]
|
Gupta R. 1974. Wild growing Senna (Cassia angustifolia) from Kutch, Gujarat. Current Science 43(3):89
Google Scholar
|
[29]
|
Kapur BM, Atal CK. 1977. Medicinal Plants. In Cultivation and utilization of Medicinal and Aromatic Plants, eds. Atal CK, Kapur BM. Jammu-Tawi: Regional Research Laboratory (RRL). pp. 129−31
|
[30]
|
Dastur JF. 1951. Medicinal Plants of India and Pakistan. Bombay: Taraporevalla Sons & Co. Ltd.
|
[31]
|
Upadhyay A, Chandel Y, Nayak PS, Khan NA. 2011. Sennoside contents in Senna (Cassia angustifolia Vahl.) as influenced by date of leaf picking, packaging material and storage period. J Stored Product Postharvest Res 2(5):97−103
Google Scholar
|
[32]
|
Irwin HS, Barnebv RC. 1982. The American cassiinae: A synoptical revision of Leguminosae tribe cassieae subtribe cassiinae in the new world. Memoirs of The New York Botanical Garden 35:1−918
Google Scholar
|
[33]
|
Irwin HS, Turner BL. 1960. Chromosomal relationships and taxonomic considerations on the genus Cassia. American Journal of Botany 47(4):309−18 doi: 10.1002/j.1537-2197.1960.tb07130.x
CrossRef Google Scholar
|
[34]
|
Fairbairn JW, Shrestha AB. 1967. The taxonomic validity of Cassia acutifolia and Cassia angustifolia. Lloydia 34(1):230−32
Google Scholar
|
[35]
|
Ghareeb A, Khalifa SF, Fawzi N. 1999. Molecular Systematics of some Cassia species. CYTOLOGIA 64(1):11−16 doi: 10.1508/cytologia.64.11
CrossRef Google Scholar
|
[36]
|
Kirtikar KR, Basu BD. 1935. Indian Medicinal Plants. Vol. 3. Allahabad, India: Lalit Mohan Basu. 852 pp. http://asi.nic.in/asi_books/2048.pdf
|
[37]
|
Darlington CD, Wylie AP. 1956. Chromosome Atlas of Flowering Plants. New York: Mac Millan Co.
|
[38]
|
Kumari S, Bir SS. 1987. Cytology of Indian Legumes: An overview. In Aspects of Plant Sciences 9, ed. Bir SS. Delhi: Today and Tomorrow Printers. pp. 247−345.
|
[39]
|
Bir SS, Kumari S. 1981. Cytological evolution in certain legume genera from North Indian: Book Chapter: India in Cassia Linn. In Contemporary Trends in Plant Sciences, ed. Verma SC. New Delhi: Kalyani Publishers. pp. 345−59.
|
[40]
|
Frahm-Leliveld JA. 1953. Some chromosome numbers in tropical leguminous plants. Euphytica 2(1):46−48 doi: 10.1007/BF00035741
CrossRef Google Scholar
|
[41]
|
George SM, Bhavanandan KV. 1993. Cytological studies in some species of Cassia from South India. Journal of Cytology and Genetics 28:1−5
Google Scholar
|
[42]
|
Khatoon S. 1991. Polyploidy in the flora of Pakistan – an analytical study. Ph. D. Thesis. University of Karachi, Pakistan.
|
[43]
|
Mohan Rao M, Pushpa JS, Deshmukh PG, Pendse GS. 1976. Investigation on quality improvement of senna. (Cassia aungustifolia vahl.). Proc. Second Workshop on Medicinal and Aromatic Plants. 1−4 November, 1976. pp. 86−97
|
[44]
|
Khalifa MA. 1977. Studies on breeding system of Alexandrian Senna (Cassia acutifolia Del. ). The Journal of Agricultural Science 88(2):509−11 doi: 10.1017/S0021859600035036
CrossRef Google Scholar
|
[45]
|
Lal RK. 2022. The opium poppy (Papaver somniferum L.): Historical perspectives recapitulate and induced mutation towards latex less, low alkaloids in capsule husk mutant: A review. Journal of Medicinal Plants Studies 10(3):19−29
Google Scholar
|
[46]
|
Lal RK, Gupta P, Chanotiya CS, Mishra A, Kumar A. 2023. Eminent high essential oil yielding and photosynthesis efficient genotype selection across multi-environments in the palmarosa {Cymbopogon martinii (Roxb.) Wats.}. Ecological Genetics and Genomics 27:100167 doi: 10.1016/j.egg.2023.100167
CrossRef Google Scholar
|
[47]
|
Lal RK, Gupta P, Chanotiya CS, Mishra A, Kumar A. 2023. The nature and extent of heterosis, combining ability under the influence of character associations, and path analysis in Basil (Ocimum basilicum L.). Industrial Crops and Products 195:116421 doi: 10.1016/j.indcrop.2023.116421
CrossRef Google Scholar
|
[48]
|
Pendse GS, Dange PS, Surange SR. 1973. Proceedings of First Work-Shop held at University of Agricultural Sciences, Bangalore, 1973.
|
[49]
|
Sankaranarayanan R. 1994. Heritability and genetic advance studies in senna. Madras Agricultural Journal 81:638−40
Google Scholar
|
[50]
|
Lal RK, Gupta P, Chanotiya CS, Mishra A. 2022. Influences of traits associations for essential oil yield stability in multi-environment trials of vetiver (Chrysopogon zizanioides L. Roberty). Biochemical Systematics and Ecology 103:104448 doi: 10.1016/j.bse.2022.104448
CrossRef Google Scholar
|
[51]
|
Sankaranarayanan R, Muthuswamy S. 1992. Correlation studies in senna (Cassia angustifolia). Agricultural Science Digest (Karnal) 2(2):73−75
Google Scholar
|
[52]
|
Singh SP, Dubey T, Tiwari RK. 2003. Correlation and path analysis in Senna (Cassia senna). Indian Journal of Genetics and Plant Breeding 63(4):356
Google Scholar
|
[53]
|
Khalatkar AS, Bhargava YR. 1987. Effect of gamma radiations, ethyl methane sulfonate and sodium azide on the sennoside content in Cassia angustifolia. Acta Horticulturae 208:231−35 doi: 10.17660/actahortic.1987.208.24
CrossRef Google Scholar
|
[54]
|
Singh SP, Sharma JR, Misra HO, Lal RK, Gupta MM. 1998. Genetic variation and strain selection in Senna (Cassia angustifolia) for north Indian plains. Journal of Medicinal and Aromatic Plant Sciences 20:375−78
Google Scholar
|
[55]
|
Sharma AK, Goyal RK, Gupta JP. 1999. Senna - The best choice for sandy wastelands. Indian Farming 49:18−20
Google Scholar
|
[56]
|
Pareek SK, Srivastava VK, Maheshwari ML, Singh S, Gupta R. 1980. Grow senna in north India. Indian Farm 24:15−17
Google Scholar
|
[57]
|
Aiyer AKY. 1958. Field Crops of India. Bangalore, India: Bangalore Printing & Publishing Co. Ltd. pp. 541−43.
|
[58]
|
Gupta R. 1971. Senna has a growing export market. Indian Farm 21(8):29−32
Google Scholar
|
[59]
|
Shah RR, Amim DR, Patel RB, Dalal KC. 1979. Yield Performance and Sennosides contents of senna leaflets in relation to age, days to stripping. Indian Journal of Pharmaceutical Sciences 41:157−60
Google Scholar
|
[60]
|
Pareek SK, Srivastava VK, Maheshwari ML, Mandal S, Gupta R. 1983. Investigation in agronomic parameters of Senna (Cassia aungustifolia Vahl.) as grown in north–western India. International journal of Tropical Agriculture 1(2):139−44
Google Scholar
|
[61]
|
Pareek SK, Gupta R. 1984. Exploratory studies on yield and operative economics of medicinal plants based cropping systems in north-western India. Annals of Agricultural Research 5(1−2):169−77
Google Scholar
|
[62]
|
Kalyansundaram NK, Amin DR, Patel AI, Dalal KC. 1980. Effect of nitrogen and phosphorus on yield and quality of senna leaflets. Indian Journal of Pharmaceutical Sciences 43(3):100−2
Google Scholar
|
[63]
|
Basak BB, Gajbhiye NA. 2018. Phosphorus enriched organic fertilizer, an effective P source for improving yield and bioactive principle of Senna (Cassia angustifolia Vhal.). Industrial Crops and Products 115:208−13 doi: 10.1016/j.indcrop.2018.02.026
CrossRef Google Scholar
|
[64]
|
Jnanesha AC, Kumar A, LaL RK. 2021. Hydrogel application improved growth and yield in Senna (Cassia angustifolia Vahl.). Industrial Crops and Products 174:114175 doi: 10.1016/j.indcrop.2021.114175
CrossRef Google Scholar
|
[65]
|
Gupta R. 1984. Senna cultivation in India. Indian Horticulture 28(4):19−21+48
Google Scholar
|
[66]
|
Shalaby AS, Razin AM, Ahmad SS. 1989. Dense cultivation of Senna (Cassia acutifolia) in newly reclaimed lands. Indian Journal of Agriculture Science 59:744−46
Google Scholar
|
[67]
|
Arya R. 2003. Yield of Cassia angustifolia in combination with tree species in a silvi–herbal trial under hot arid conditions in India. Bioresource Technology 86(2):165−69 doi: 10.1016/s0960-8524(02)00150-5
CrossRef Google Scholar
|
[68]
|
Bhatia RK, Lohar DR, Chawan DD, Garg SP. 1978. Chemical control of yield of sennosides in senna leaves. Planta Medica 34(8):437−41 doi: 10.1055/s-0028-1097476
CrossRef Google Scholar
|
[69]
|
Upadhyay SK, Singh V. 1990. Origin of Cassia (Chemotaxonomy/Cassia/Origin of Angiosperms). National Acadamy Science Letter 13:293−95
Google Scholar
|
[70]
|
Stoll A, Becker B, Kessmaul W. 1949. The isolation of anthraglycosides from senna drugs. Helvetica Chimica Acta 32:1892−903 doi: 10.1002/hlca.19490320613
CrossRef Google Scholar
|
[71]
|
Evans WC. 1997. Trease & Evans' Pharmacognosy. 14th Edition. London, UK: WB Saunders Company Ltd.
|
[72]
|
Lamili J, Toppet S, Cuveele J, Janssen G. 1981. Naphthalene glycosides in Cassia senna and Cassia angustifolia. Planta Med 43(1):11−17 doi: 10.1055/s-2007-971465
CrossRef Google Scholar
|
[73]
|
Frahm-Leliveld JA. 1957. Observations cytologiques sur quelques Legumineuses tropicales et subtropicales. Revue de Cytologie et de Biologie Végétales, le Botaniste 18:273−87
Google Scholar
|
[74]
|
Erni F, Frei RW. 1978. Two –dimensional column liquid chromatographic technique for resolution of complex mixtures. Journal of Chromatography A 149:561−69 doi: 10.1016/S0021-9673(00)81011-0
CrossRef Google Scholar
|
[75]
|
Frahm-Leliveld JA. 1960. Chromosome numbers in leguminous plants. Acta Botanica Neerlandica 9:327−29 doi: 10.1111/j.1438-8677.1960.tb00662.x
CrossRef Google Scholar
|
[76]
|
Verma RK, Uniyal GC, Singh SP, Sharma JR, Gupta MM. 1996. Reversed-phase high-performance liquid chromatography of Cassia angustifolia. Phytochemical Analysis 7:73−75 doi: 10.1002/(SICI)1099-1565(199603)7:2<73::AID-PCA289>3.0.CO;2-R
CrossRef Google Scholar
|
[77]
|
Labadie RP. 1970. The anthracene derivatives in Rhamnus frangula L. I. The aglycones. Pharmaceutisch Weekblad 105:189−95
Google Scholar
|
[78]
|
Auterhoff H, Scherff FC. 1960. Dianthrones of pharmacologically important hydroxyanthraquinones. Archiv der Pharmazie 293:918−25 doi: 10.1002/ardp.19602931007
CrossRef Google Scholar
|
[79]
|
Schnek G. 1969. On the enzymatic and non-enzymatic oxidation of pharmaceutically interesting substances and some examples of the effect of light, Part 2. Deutsche Apotheker Zeitung 109(40):1529−31
Google Scholar
|
[80]
|
Müller P, Basedow T. 2007. Aflatoxin contamination of pods of Indian Cassia senna L. (Caesalpinaceae) before harvest, during drying and storage: Reasons and possible methods of reduction. Journal of Stored Products Research 43:323−29 doi: 10.1016/j.jspr.2006.08.005
CrossRef Google Scholar
|
[81]
|
Kobashi K, Nishimura T, Kusaka M, Hattori M, Namba T. 1980. Metabolism of sennosides by human intestinal bacteria. Planta Medica 40(3):225−36 doi: 10.1055/s-2008-1074963
CrossRef Google Scholar
|
[82]
|
Kisa K, Sasaki K, Yamachi K, Kuwano S. 1981. Potentiating effect of sennoside C on purgative activity of sennoside A in mice. Planta Medica 42(3):302−3 doi: 10.1055/s-2007-971647
CrossRef Google Scholar
|
[83]
|
Bala S, Uniyal GC, Dubey T, Singh SP. 2001. An improved method for the analysis of sennosides in Cassia angustifolia by high-performance liquid chromatography. Phytochemical Analysis 12(4):277−80 doi: 10.1002/pca.586
CrossRef Google Scholar
|
[84]
|
Sun Y, Li X, Yu X. 2004. Determination of sennosides and degraded products in the process of sennoside metabolism by HPLC. Chinese Journal of Chromatography 22(1):48−50 doi: 10.3321/j.issn:1000-8713.2004.01.014
CrossRef Google Scholar
|
[85]
|
Srivastava A, Pandey R, Verma RK, Gupta MM. 2006. Liquid chromatographic determination of sennosides in Cassia angustifolia leaves. Journal of AOAC International 89:937−41 doi: 10.1093/jaoac/89.4.937
CrossRef Google Scholar
|
[86]
|
Morinaga O, Uto T, Sakamoto S, Tanaka H, Shoyama Y. 2009. Enzyme- linked immunosorbent assay for total sennosides using anti-sennside A and anti-sennoside B monoclonal antibodies. Fitoterapia 80(1):28−31 doi: 10.1016/j.fitote.2008.09.004
CrossRef Google Scholar
|
[87]
|
Khabiya R, Choudhary GP, Jnanesha, AC, Kumar, A, Lal RK. 2023. An insight into the potential varieties of Ashwagandha (Indian ginseng) for better therapeutic efficacy. Acta Ecologica Sinica In press:1−7 doi: 10.1016/j.chnaes.2023.06.009
CrossRef Google Scholar
|
[88]
|
Agarwal V, Bajpai M. 2010. Pharmacognostical and biological studies on senna and its products: an overview. International Journal of Pharma and Biosciences 1(2):107
Google Scholar
|
[89]
|
Leng-Peschlow E. 1986. Dual effect of orally administered sennosides on large intestine transit and fluid absorption in the rat. Journal of Pharmacy and Pharmacology 38:606−10 doi: 10.1111/j.2042-7158.1986.tb03089.x
CrossRef Google Scholar
|
[90]
|
Godding EW. 1988. Laxatives and the special role of senna. Pharmacology 36:230−36 doi: 10.1159/000138445
CrossRef Google Scholar
|
[91]
|
Bradley PR. 1992. British Herbal Compendium. Vol. 1. Bournemouth, UK: British Herbal Medicine Association.
|
[92]
|
Leng-Peschlow E. 1993. Sennoside-induced secretion and its relevance for the laxative effect. Pharmacology 47:14−21 doi: 10.1159/000139838
CrossRef Google Scholar
|
[93]
|
Waller SL, Misiewicz JJ. 1969. Prognosis in the irritable-bowel syndrome. The Lancet 294:753−56 doi: 10.1016/S0140-6736(69)90475-9
CrossRef Google Scholar
|
[94]
|
Ewe K, Ueberschaer B, Press AG. 1993. Influence of senna fibre, and fibre + senna on colonic transit in loperamide-induced constipation. Pharmacology 47:242−48 doi: 10.1159/000139864
CrossRef Google Scholar
|
[95]
|
Hietala P, Lainonen H, Marvola M. 1988. New aspects on the metabolism of the sennosides. Pharmacology 36:138−43 doi: 10.1159/000138433
CrossRef Google Scholar
|
[96]
|
Nijs G, de Witte P, Geboes K, Meulemans A, Schuurkes J, et al. 1993. In vitro demonstration of a positive effect of rhein anthrone on peristaltic reflex of guinea pig ileum. Pharmacology 47:40−48 doi: 10.1159/000139841
CrossRef Google Scholar
|
[97]
|
Rumsey RDE, Squires PE, Read NW. 1993. In vitro effects of sennoside on contractile activity and fluid flow in the perfused large intestine of the rat. Pharmacology 47:32−39 doi: 10.1159/000139840
CrossRef Google Scholar
|
[98]
|
Yamauchi K, Yagi T, Kuwano S. 1993. Suppression of the purgative action of rhein anthrone, the active metabolite of Sennosides A and B, by calcium channel blockers, calmodulin antagonists and indometacin. Pharmacology 47:22−31 doi: 10.1159/000139839
CrossRef Google Scholar
|
[99]
|
Staumont G, Frexinos J, Fioramonti J, Buéno L. 1988. Sennosides and human colonic motility. Pharmacology 36:49−55 doi: 10.1159/000138421
CrossRef Google Scholar
|
[100]
|
Waltenberger B, Avula B, Ganzera M, Khan IA, Stuppner H, et al. 2008. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers – an in vitro model for intestinal absorption. Phytomedicine 15(5):373−77 doi: 10.1016/j.phymed.2007.03.008
CrossRef Google Scholar
|
[101]
|
Anonymous. 1992. Risk assessment for senna during pregnancy. Pharmacology 44(Suppl.1):20−22 doi: 10.1159/000138948
CrossRef Google Scholar
|
[102]
|
Gattuso JM, Kamm MA. 1994. Adverse effects of drugs used in the management of constipation and diarrhea. Drug Safety 10(1):47−65 doi: 10.2165/00002018-199410010-00004
CrossRef Google Scholar
|
[103]
|
Garcia-Villar R. 1998. Evaluation of the effects of sennosides on uterine mobility in the pregnant Ewe. Pharmacology 36:203−11
Google Scholar
|
[104]
|
Faber P, Strenge-Hesse A. 1988. Relevance of Rhein excretion into breast milk. Pharmacology 36:212−20 doi: 10.1159/000138442
CrossRef Google Scholar
|
[105]
|
Faber P, Strenge-Hesse A. 1989. Senna-containing laxatives: excretion in the breast milk? Geburtshilfe Und Frauenheilkunde 49(11):958−62 doi: 10.1055/s-2008-1036117
CrossRef Google Scholar
|
[106]
|
Kiernan JA, Heinicke EA. 1989. Sennosides do not kill myenteric neurons in the colon of the rat or mouse. Neuroscience 30(3):837−42 doi: 10.1016/0306-4522(89)90175-9
CrossRef Google Scholar
|
[107]
|
Heinicke EA, Kiernan JA. 1990. Resistance of myenteric neurons in the rats colon to depletion by 1,8-dihydroxyanthraquinone. The Journal of Pharmacy and Pharmacology 42(2):123−25 doi: 10.1111/j.2042-7158.1990.tb05366.x
CrossRef Google Scholar
|
[108]
|
Milner P, Belai A, Tomlinson A, Hoyle CHV, Sarner S, et al. 1992. Effects of long-term laxative treatment on neuropeptides in rat mesenteric vessels and caecum. Journal of Pharmacy and Pharmacology 44(9):777−79 doi: 10.1111/j.2042-7158.1992.tb05520.x
CrossRef Google Scholar
|
[109]
|
Grimminger W, Witthohn K. 1993. Analytics of senna drugs with regard to the toxicological discussion of anthranoides. Pharmacology 47:98−109 doi: 10.1159/000139848
CrossRef Google Scholar
|
[110]
|
Heidemann A, Miltenburger HG, Mengs U. 1993. The genotoxicity status of senna. Pharmacology 47:178−86 doi: 10.1159/000139857
CrossRef Google Scholar
|
[111]
|
Odenthal KP, Leng-Peschlow E, Voderholzer W, Müller-Lissner S. 1993. Effects of long-term sennoside treatment on in vitro motility of rat colon. Pharmacology 47:146−54 doi: 10.1159/000139854
CrossRef Google Scholar
|
[112]
|
Leng-Peschlow E, Odenthal KP, Voderholzer W, Müller-Lissner S. 1993. Chronic sennoside treatment does not cause habituation and secondary hyper aldosteronism in rats. Pharmacology 47:162−71 doi: 10.1159/000139856
CrossRef Google Scholar
|
[113]
|
Mereto E, Ghia M, Brambilla G. 1996. Evaluation of the potential carcinogenic activity of senna and Cascara glycosides for the rat colon. Cancer Letters 101:79−83 doi: 10.1016/0304-3835(96)04129-8
CrossRef Google Scholar
|
[114]
|
van Gorkom BAP, Karrenbeld A, van der Sluis T, Zwart N, de Vries EGE, et al. 2001. Apoptosis induction by sennoside laxatives in man; escape from a protective mechanism during chronic sennoside use? The Journal of Pathology 194:493−99 doi: 10.1002/path.914
CrossRef Google Scholar
|
[115]
|
van Gorkom BAP, Timmer-Bosscha H, de Jong S, van der Kolk DM, Kleibeuker JH, de Vries EGE. 2002. Cyto toxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein. British Journal of Cancer 86:1494−500 doi: 10.1038/sj.bjc.6600255
CrossRef Google Scholar
|
[116]
|
Vanderperren B, Rizzo M, Angenot L, Haufroid V, Jadoul M, et al. 2005. Acute liver failure with renal impairment related to the abuse of senna anthraquinone glycosides. The Annals of Pharmacotherapy 39:1353−57 doi: 10.1345/aph.1E670
CrossRef Google Scholar
|
[117]
|
Silva CR, Monteiro MR, Rocha HM, Ribeiro AF, Caldeira-de-Araujo A, et al. 2008. Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vhal.) aqueous extract using in vitro assays. Toxicology in Vitro 22:212−18 doi: 10.1016/j.tiv.2007.07.008
CrossRef Google Scholar
|
[118]
|
Spiller HA, Winter ML, Weber JA, Krenzelok EP, Anderson DL, et al. 2003. Skin breakdown and blisters from senna-containing laxatives in young children. The Annals of Pharmacotherapy 37:636−39 doi: 10.1345/aph.1C439
CrossRef Google Scholar
|
[119]
|
Nilofer, Singh AK, Singh A, Singh S. 2018. Impact of sowing and harvest times and irrigation regimes on the sennoside content of Cassia angustifolia Vahl. Industrial Crops and Products 125:482−90 doi: 10.1016/j.indcrop.2018.09.025
CrossRef Google Scholar
|