[1]
|
Takaoka S, Kurata M, Harimoto Y, Hatta R, Yamamoto M, et al. 2014. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytologist 202:1297−309 doi: 10.1111/nph.12754
CrossRef Google Scholar
|
[2]
|
Thomma BPHJ. 2003. Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology 4:225−36 doi: 10.1046/j.1364-3703.2003.00173.x
CrossRef Google Scholar
|
[3]
|
Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746−51 doi: 10.1126/science.1236011
CrossRef Google Scholar
|
[4]
|
Zhou JM, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell 181:978−89 doi: 10.1016/j.cell.2020.04.028
CrossRef Google Scholar
|
[5]
|
Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29 doi: 10.1038/nature05286
CrossRef Google Scholar
|
[6]
|
Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54:263−72 doi: 10.1016/j.molcel.2014.03.028
CrossRef Google Scholar
|
[7]
|
Noctor G, Mhamdi A, Foyer CH. 2016. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant, Cell & Environment 39:1140−60 doi: 10.1111/pce.12726
CrossRef Google Scholar
|
[8]
|
Foyer CH, Noctor G. 2016. Stress-triggered redox signalling: what's in pROSpect? Plant, Cell & Environment 39:951−64 doi: 10.1111/pce.12621
CrossRef Google Scholar
|
[9]
|
Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54:43−55 doi: 10.1016/j.molcel.2014.02.021
CrossRef Google Scholar
|
[10]
|
Liu X, Zhou Q, Guo Z, Liu P, Shen L, et al. 2020. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 9:e61605 doi: 10.7554/eLife.61605
CrossRef Google Scholar
|
[11]
|
Torres DP, Proels RK, Schempp H, Hückelhoven R. 2017. Silencing of RBOHF2 causes leaf age-dependent accelerated senescence, salicylic acid accumulation, and powdery mildew resistance in barley. Molecular Plant-Microbe Interactions 30:906−18 doi: 10.1094/MPMI-04-17-0088-R
CrossRef Google Scholar
|
[12]
|
Yang C, Li W, Cao J, Meng F, Yu Y, et al. 2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. The Plant Journal 89:338−53 doi: 10.1111/tpj.13388
CrossRef Google Scholar
|
[13]
|
Schaller A, Stintzi A. 2009. Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry 70:1532−38 doi: 10.1016/j.phytochem.2009.07.032
CrossRef Google Scholar
|
[14]
|
Liu S, Sun R, Zhang X, Feng Z, Wei F, et al. 2020. Genome-wide analysis of OPR family genes in cotton identified a role for GhOPR9 in Verticillium dahliae resistance. Genes 11:1134 doi: 10.3390/genes11101134
CrossRef Google Scholar
|
[15]
|
Jia H, Zhang C, Pervaiz T, Zhao P, Liu Z, et al. 2016. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Functional & Integrative Genomics 16:79−94 doi: 10.1007/s10142-015-0468-6
CrossRef Google Scholar
|
[16]
|
Wu L, Huang Z, Li X, Ma L, Gu Q, et al. 2018. Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in Microbiology 9:847 doi: 10.3389/fmicb.2018.00847
CrossRef Google Scholar
|
[17]
|
Chapman KM, Marchi-Werle L, Hunt TE, Heng-Moss TM, Louis J. 2018. Abscisic and jasmonic acids contribute to soybean tolerance to the soybean aphid (Aphis glycines Matsumura). Scientific Reports 8:15148 doi: 10.1038/s41598-018-33477-w
CrossRef Google Scholar
|
[18]
|
Chen C, Liu Y, Song W, Chen D, Chen F, et al. 2019. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proceedings of the National Academy of Sciences of the United States of America 116:14331−38 doi: 10.1073/pnas.190547111
CrossRef Google Scholar
|
[19]
|
Qiu J, Xie J, Chen Y, Shen Z, Shi H, et al. 2022. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant 15:723−39 doi: 10.1016/j.molp.2022.02.014
CrossRef Google Scholar
|
[20]
|
Guo T, Mao X, Zhang H, Zhang Y, Fu M, et al. 2017. Lamin-like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. Molecular Plant 10:1334−48 doi: 10.1016/j.molp.2017.09.008
CrossRef Google Scholar
|
[21]
|
Ootsubo Y, Hibino T, Wakazono T, Mukai Y, Che FS. 2016. IREN, a novel EF-hand motif-containing nuclease, functions in the degradation of nuclear DNA during the hypersensitive response cell death in rice. Bioscience, Biotechnology, and Biochemistry 80:748−60 doi: 10.1080/09168451.2015.1123610
CrossRef Google Scholar
|
[22]
|
Ma L, Li R, Ma L, Song N, Xu Z, et al. 2021. Involvement of NAC transcription factor NaNAC29 in Alternaria alternata resistance and leaf senescence in Nicotiana attenuata. Plant Diversity 43:502−09 doi: 10.1016/j.pld.2020.11.003
CrossRef Google Scholar
|
[23]
|
Xin J, Liu Y, Li H, Chen S, Jiang J, et al. 2021. CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. Horticulture Research 8:101 doi: 10.1038/s41438-021-00534-x
CrossRef Google Scholar
|
[24]
|
Duval M, Hsieh TF, Kim SY, Thomas TL. 2002. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology 50:237−248 doi: 10.1023/A:1016028530943
CrossRef Google Scholar
|
[25]
|
Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30−44 doi: 10.1016/j.gene.2010.06.008
CrossRef Google Scholar
|
[26]
|
Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports 5:297−303 doi: 10.1038/sj.embor.7400093
CrossRef Google Scholar
|
[27]
|
Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10:79−87 doi: 10.1016/j.tplants.2004.12.010
CrossRef Google Scholar
|
[28]
|
Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, et al. 2008. Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiology and Biochemistry 46:394−401 doi: 10.1016/j.plaphy.2007.12.015
CrossRef Google Scholar
|
[29]
|
Puranik S, Sahu PP, Srivastava PS, Prasad M. 2012. NAC proteins: regulation and role in stress tolerance. Trends in Plant Science 17:369−81 doi: 10.1016/j.tplants.2012.02.004
CrossRef Google Scholar
|
[30]
|
Yuan X, Wang H, Cai J, Li D, Song F. 2019. NAC transcription factors in plant immunity. Phytopathology Research 1:3 doi: 10.1186/s42483-018-0008-0
CrossRef Google Scholar
|
[31]
|
Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, et al. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10:239−47 doi: 10.1093/dnares/10.6.239
CrossRef Google Scholar
|
[32]
|
Nuruzzaman M, Sharoni AM, Kikuchi S. 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology 4:248 doi: 10.3389/fmicb.2013.00248
CrossRef Google Scholar
|
[33]
|
Wang X, Basnayake BMVS, Zhang H, Li G, Li W, et al. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Molecular Plant-Microbe Interactions 22:1227−38 doi: 10.1094/MPMI-22-10-1227
CrossRef Google Scholar
|
[34]
|
de Oliveira TM, Cidade LC, Gesteira AS, Coelho Filho MA, Soares Filho WS, et al. 2011. Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genetics & Genomes 7:1123−34 doi: 10.1007/s11295-011-0400-8
CrossRef Google Scholar
|
[35]
|
Liu Q, Yan S, Huang W, Yang J, Dong J, et al. 2018. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Molecular Biology 98:289−302 doi: 10.1007/s11103-018-0768-z
CrossRef Google Scholar
|
[36]
|
Wang Z, Xia Y, Lin S, Wang Y, Guo B, et al. 2018. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. The Plant Journal 95:584−97 doi: 10.1111/tpj.13972
CrossRef Google Scholar
|
[37]
|
Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, et al. 2014. OsNAC111, a blast disease-responsive transcription factor in rice, positively regulates the expression of defense-related genes. Molecular Plant-Microbe Interactions 27:1027−34 doi: 10.1094/MPMI-03-14-0065-R
CrossRef Google Scholar
|
[38]
|
Wang J, Guan Y, Ding L, Li P, Zhao W, et al. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248−57 doi: 10.1016/j.plantsci.2018.12.008
CrossRef Google Scholar
|
[39]
|
Bu Q, Jiang H, Li C, Zhai Q, Zhang J, et al. 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research 18:756−67 doi: 10.1038/cr.2008.53
CrossRef Google Scholar
|
[40]
|
Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, et al. 2010. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. The Plant Journal 61:804−15 doi: 10.1111/j.1365-313X.2009.04107.x
CrossRef Google Scholar
|
[41]
|
Zhou W, Qian C, Li R, Zhou S, Zhang R, et al. 2018. TaNAC6s are involved in the basal and broad-spectrum resistance to powdery mildew in wheat. Plant Science 277:218−28 doi: 10.1016/j.plantsci.2018.09.014
CrossRef Google Scholar
|
[42]
|
Wang L, Cheng H, Wang Q, Si C, Yang Y, et al. 2021. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer chrysanthemum. Horticulture Research 8:79 doi: 10.1038/s41438-021-00516-z
CrossRef Google Scholar
|
[43]
|
Liak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[44]
|
Tang Y, Wang F, Zhao J, Xie K, Hong Y, et al. 2010. Virus-based microrna expression for gene functional analysis in plants. Plant Physiology 153:632−41 doi: 10.1104/pp.110.155796
CrossRef Google Scholar
|
[45]
|
Wang T, Wei Q, Wang Z, Liu W, Zhao X, et al. 2022. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. Journal of Integrative Plant Biology 64:741−55 doi: 10.1111/jipb.13201
CrossRef Google Scholar
|
[46]
|
Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, et al. 2020. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. The Plant Journal 103:1783−95 doi: 10.1111/tpj.14863
CrossRef Google Scholar
|
[47]
|
Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, et al. 2014. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell 26:2038−54 doi: 10.1105/tpc.114.124867
CrossRef Google Scholar
|
[48]
|
Huang Y, Xing X, Tang Y, Jin J, Ding L, et al. 2022. An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum. Plant, Cell & Environment 45:1442−56 doi: 10.1111/pce.14261
CrossRef Google Scholar
|
[49]
|
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2001. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621−8
Google Scholar
|
[50]
|
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
CrossRef Google Scholar
|
[51]
|
Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, et al. 2011. VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. The Plant Journal 66:579−90 doi: 10.1111/j.1365-313X.2011.04514.x
CrossRef Google Scholar
|
[52]
|
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, et al. 2010. VND-INTERACTING 2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. The Plant Cell 22:1249−63 doi: 10.1105/tpc.108.064048
CrossRef Google Scholar
|
[53]
|
Kim WC, Reca IB, Kim Y, Park S, Thomashow MF, et al. 2014. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana. Plant Molecular Biology 84:577−87 doi: 10.1007/s11103-013-0154-9
CrossRef Google Scholar
|
[54]
|
Ailizati A, Nagahage ISP, Miyagi A, Ishikawa T, Kawai-Yamada M, et al. 2021. An Arabidopsis NAC domain transcriptional activator VND7 negatively regulates VNI2 expression. Plant Biotechnology 38:415−20 doi: 10.5511/plantbiotechnology.21.1013a
CrossRef Google Scholar
|
[55]
|
Yang SD, Seo PJ, Yoon HK, Park CM. 2011. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell 23:2155−68 doi: 10.1105/tpc.111.084913
CrossRef Google Scholar
|
[56]
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. 2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta 240:1149−65 doi: 10.1007/s00425-014-2151-x
CrossRef Google Scholar
|
[57]
|
Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SCM. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5:308−16 doi: 10.1038/nchembio.164
CrossRef Google Scholar
|
[58]
|
Sgherri C, Ranieri A, Quartacci MF. 2013. Antioxidative responses in Vitis vinifera infected by grapevine fanleaf virus. Journal of Plant Physiology 170:121−28 doi: 10.1016/j.jplph.2012.09.016
CrossRef Google Scholar
|
[59]
|
Song X, Wang Y, Mao W, Shi K, Zhou Y, et al. 2009. Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum 135:246−57 doi: 10.1111/j.1399-3054.2008.01189.x
CrossRef Google Scholar
|
[60]
|
Mittler R. 2017. ROS are good. Trends in Plant Science 22:11−19 doi: 10.1016/j.tplants.2016.08.002
CrossRef Google Scholar
|