[1]
|
Foster R, Izawa T, Chua NH. 1994. Plant bZIP proteins gather at ACGT elements. The FASEB Journal 8:192−200 doi: 10.1096/fasebj.8.2.8119490
CrossRef Google Scholar
|
[2]
|
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science 7:106−11 doi: 10.1016/S1360-1385(01)02223-3
CrossRef Google Scholar
|
[3]
|
Vinson CR, Hai T, Boyd SM. 1993. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes and Development 7:1047−58 doi: 10.1101/gad.7.6.1047
CrossRef Google Scholar
|
[4]
|
Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, et al. 2002. Classification of human B-ZIP proteins based on dimerization properties. Molecular and Cellular Biology 22:6321−35 doi: 10.1128/MCB.22.18.6321-6335.2002
CrossRef Google Scholar
|
[5]
|
Iglesias-Fernández R, Barrero-Sicilia C, Carrillo-Barral N, Oñate-Sánchez L, Carbonero P. 2013. Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7. The Plant Journal 74:767−80 doi: 10.1111/tpj.12162
CrossRef Google Scholar
|
[6]
|
Ye L, Wu Y, Zhang J, Zhang J, Zhou H, et al. 2023. A bZIP transcription factor (CiFD) regulates drought- and low- temperature-induced flowering by alternative splicing in citrus. Journal of Integrative Plant Biology 65:674−91 doi: 10.1111/jipb.13390
CrossRef Google Scholar
|
[7]
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family — an update. Current Opinion in Plant Biology 45:36−49 doi: 10.1016/j.pbi.2018.05.001
CrossRef Google Scholar
|
[8]
|
Zhong L, Chen D, Min D, Li W, Xu Z, et al. 2015. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 457:433−39 doi: 10.1016/j.bbrc.2015.01.009
CrossRef Google Scholar
|
[9]
|
Tang C, Li T, Klosterman SJ, Tian C, Wang Y. 2020. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. New Phytologist 226:1461−79 doi: 10.1111/nph.16481
CrossRef Google Scholar
|
[10]
|
Wang H, Xu K, Li X, Blanco-Ulate B, Yang Q, et al. 2023. A pear S1-bZIP transcription factor PpbZIP44 modulates carbohydrate metabolism, amino acid, and flavonoid accumulation in fruits. Horticulture Research 10:uhad140 doi: 10.1093/hr/uhad140
CrossRef Google Scholar
|
[11]
|
Zhang X, Wu Y, Zhang Y, Yin X, van Nocker, et al. 2022. Identification of potential key genes in resveratrol biosynthesis via transcriptional analyses of berry development in grapevine (Vitis spp.) genotypes varying in trans-resveratrol content. Fruit Research 2:6 doi: 10.48130/frures-2022-0006
CrossRef Google Scholar
|
[12]
|
Li Y, Meng D, Li M, Cheng L. 2016. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica). Tree Genetics & Genomes 12:82 doi: 10.1007/s11295-016-1043-6
CrossRef Google Scholar
|
[13]
|
Wang X, Chen X, Yang T, Cheng Q, Cheng Z. 2017. Genome-wide identification of bZIP family genes involved in drought and heat stresses in strawberry (Fragaria vesca). International Journal of Genomics 2017:3981031 doi: 10.1155/2017/3981031
CrossRef Google Scholar
|
[14]
|
Sun M, Fu X, Tan Q, Liu L, Chen M, et al. 2016. Analysis of basic leucine zipper genes and their expression during bud dormancy in peach (Prunus persica). Plant Physiology and Biochemistry 104:54−70 doi: 10.1016/j.plaphy.2016.03.004
CrossRef Google Scholar
|
[15]
|
Manzoor MA, Manzoor MM, Li G, Abdullah M, Han W, et al. 2021. Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri). BMC Plant Biology 21:413 doi: 10.1186/s12870-021-03191-3
CrossRef Google Scholar
|
[16]
|
Peviani A, Lastdrager J, Hanson J, Snel B. 2016. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts. Scientific Reports 6:30444 doi: 10.1038/srep30444
CrossRef Google Scholar
|
[17]
|
Mair A, Pedrotti L, Wurzinger B, Anrather D, Simeunovic A, et al. 2015. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife 4:e05828 doi: 10.7554/eLife.05828
CrossRef Google Scholar
|
[18]
|
Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, et al. 2006. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. The EMBO Journal 25:3133−43 doi: 10.1038/sj.emboj.7601206
CrossRef Google Scholar
|
[19]
|
Dröge-Laser W, Weiste C. 2018. The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends in Plant Science 23:422−33 doi: 10.1016/j.tplants.2018.02.003
CrossRef Google Scholar
|
[20]
|
Chen Q, Tang Y, Wang Y, Sun B, Chen T, et al. 2020. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1.1. Scientia Horticulturae 259:108850 doi: 10.1016/j.scienta.2019.108850
CrossRef Google Scholar
|
[21]
|
Zhang Y, Li S, Chen Y, Liu Y, Lin Y, et al. 2022. Heterologous overexpression of strawberry bZIP11 induces sugar accumulation and inhibits plant growth of tomato. Scientia Horticulturae 292:110634 doi: 10.1016/j.scienta.2021.110634
CrossRef Google Scholar
|
[22]
|
Xing S, Chen K, Zhu H, Zhang R, Zhang H, et al. 2020. Fine-tuning sugar content in strawberry. Genome Biology 21:230 doi: 10.1186/s13059-020-02146-5
CrossRef Google Scholar
|
[23]
|
Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, et al. 2004. Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Research 32:3435−45 doi: 10.1093/nar/gkh653
CrossRef Google Scholar
|
[24]
|
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34 doi: 10.1093/molbev/msaa015
CrossRef Google Scholar
|
[25]
|
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8:28−36 doi: 10.1111/2041-210X.12628
CrossRef Google Scholar
|
[26]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[27]
|
Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, et al. 2006. Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. The Plant Journal 46:890−900 doi: 10.1111/j.1365-313X.2006.02731.x
CrossRef Google Scholar
|
[28]
|
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293
CrossRef Google Scholar
|
[29]
|
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238 doi: 10.1186/s13059-019-1832-y
CrossRef Google Scholar
|
[30]
|
Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516−18 doi: 10.1093/bioinformatics/btaa1022
CrossRef Google Scholar
|
[31]
|
Xiang Y, Huang C, Hu Y, Wen J, Li S, et al. 2017. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution 34:262−81 doi: 10.1093/molbev/msw242
CrossRef Google Scholar
|
[32]
|
Mora-Márquez F, Chano V, Vázquez-Poletti JL, de Heredia UL. 2021. TOA: a software package for automated functional annotation in non-model plant species. Molecular Ecology Resources 21:621−36 doi: 10.1111/1755-0998.13285
CrossRef Google Scholar
|
[33]
|
Yu G, Wang L, Han Y, He Q. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16:284−87 doi: 10.1089/omi.2011.0118
CrossRef Google Scholar
|
[34]
|
VanBuren R, Wai C, Colle M, Wang J, Sullivan S, et al. 2018. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. GigaScience 7:giy094 doi: 10.1093/gigascience/giy094
CrossRef Google Scholar
|
[35]
|
Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525−27 doi: 10.1038/nbt.3519
CrossRef Google Scholar
|
[36]
|
Duan Y, Yang H, Yang H, Wu Y, Fan S, et al. 2023. Integrative physiological, metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants. Journal of Plant Physiology 280:153888 doi: 10.1016/j.jplph.2022.153888
CrossRef Google Scholar
|
[37]
|
Wanamaker SA, Garza RM, MacWilliams A, Nery JR, Bartlett A, et al. 2017. CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nature Methods 14:819−25 doi: 10.1038/nmeth.4343
CrossRef Google Scholar
|
[38]
|
Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. 2018. The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics 50:772−77 doi: 10.1038/s41588-018-0110-3
CrossRef Google Scholar
|
[39]
|
Wei K, Chen J, Wang Y, Chen Y, Chen S, et al. 2012. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research 19:463−76 doi: 10.1093/dnares/dss026
CrossRef Google Scholar
|
[40]
|
Nijhawan A, Jain M, Tyagi AK, Khurana JP. 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology 146:333−50 doi: 10.1104/pp.107.112821
CrossRef Google Scholar
|
[41]
|
Acharya A, Ruvinov SB, Gal J, Moll JR, Vinson C. 2002. A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: amino acids I, V, L, N, A, and K. Biochemistry 41:14122−31 doi: 10.1021/bi020486r
CrossRef Google Scholar
|
[42]
|
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100 doi: 10.1038/nature09916
CrossRef Google Scholar
|
[43]
|
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics 42:833−39 doi: 10.1038/ng.654
CrossRef Google Scholar
|
[44]
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, et al. 2021. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research 8:197 doi: 10.1038/s41438-021-00632-w
CrossRef Google Scholar
|
[45]
|
Kang SG, Price J, Lin PC, Hong JC, Jang JC. 2010. The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Molecular Plant 3:361−73 doi: 10.1093/mp/ssp115
CrossRef Google Scholar
|
[46]
|
Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S. 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. The Plant Journal 53:935−49 doi: 10.1111/j.1365-313X.2007.03385.x
CrossRef Google Scholar
|
[47]
|
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, et al. 2009. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Molecular Biology 69:107−19 doi: 10.1007/s11103-008-9410-9
CrossRef Google Scholar
|
[48]
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, et al. 2023. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nature Communications 14:2600 doi: 10.1038/s41467-023-38096-2
CrossRef Google Scholar
|
[49]
|
Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, et al. 2020. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP. Cell Reports 31:107717 doi: 10.1016/j.celrep.2020.107717
CrossRef Google Scholar
|