[1]
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, et al. 2024. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. Journal of Hazardous Materials 466:133639 doi: 10.1016/j.jhazmat.2024.133639
CrossRef Google Scholar
|
[2]
|
Xia M, Liu Y, Liu J, Chen D, Shi Y, et al. 2022. Out of the Himalaya-Hengduan Mountains: Phylogenomics, biogeography and diversification of Polygonatum Mill. (Asparagaceae) in the Northern Hemisphere. Molecular Phylogenetics and Evolution 169:107431 doi: 10.1016/j.ympev.2022.107431
CrossRef Google Scholar
|
[3]
|
Shi Y, Yang TG, Yang MS, Yu M, Zhang XF. 2022. Polygonati Rhizoma: a crop with potential of being consumed as food and medicine. China Journal of Chinese Materia Medica 47:1132−35 doi: 10.19540/j.cnki.cjcmm.20211105.101
CrossRef Google Scholar
|
[4]
|
Yang JX, Wu S, Huang XL, Hu XQ, Zhang Y. 2015. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms. Evidence-Based Complementary and Alternative Medicine 2015:391065 doi: 10.1155/2015/391065
CrossRef Google Scholar
|
[5]
|
Ko JH, Kwon HS, Yoon JM, Yoo JS, Jang HS, et al. 2015. Effects of Polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice. Pharmaceutical Biology 53:563−70 doi: 10.3109/13880209.2014.932393
CrossRef Google Scholar
|
[6]
|
Zhang H, Cao Y, Chen L, Wang J, Tian Q, et al. 2015. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydrate Polymers 117:879−86 doi: 10.1016/j.carbpol.2014.10.034
CrossRef Google Scholar
|
[7]
|
Zhao P, Zhao C, Li X, Gao Q, Huang L, et al. 2018. The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology. Journal of Ethnopharmacology 214:274−91 doi: 10.1016/j.jep.2017.12.006
CrossRef Google Scholar
|
[8]
|
Ren HM, Deng YL, Zhang JL, Ye XW, Xia LT, et al. 2020. Research progress on processing history evolution, chemical components and pharmacological effects of Polygonati Rhizoma. China Journal of Chinese Materia Medica 45:4163−82 doi: 10.19540/j.cnki.cjcmm.20200522.601
CrossRef Google Scholar
|
[9]
|
Rufus P, Mohamed N, Shuid A. 2013. Beneficial effects of traditional Chinese medicine on the treatment of osteoporosis on ovariectomised rat models. Current Drug Targets 14:1689−93 doi: 10.2174/1389450114666131220160357
CrossRef Google Scholar
|
[10]
|
Gao Y, Fan H, Nie A, Yang K, Xing H, et al. 2022. Aconitine: a review of its pharmacokinetics, pharmacology, toxicology and detoxification. Journal of Ethnopharmacology 293:115270 doi: 10.1016/j.jep.2022.115270
CrossRef Google Scholar
|
[11]
|
Liu JJ, Si JP. 2018. Herbal textual research on Chinese medicine "Huangjing" (Polygonati Rhizoma) and some enlightenments. China Journal of Chinese Materia Medica 43:631−36 doi: 10.19540/j.cnki.cjcmm.20180105.001
CrossRef Google Scholar
|
[12]
|
Hu X, Wang J, Chai J, Yu X, Zhang Y, et al. 2020. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting Pink1/parkin mediated mitophagy. OncoTargets and Therapy 13:9967−76 doi: 10.2147/ott.s273435
CrossRef Google Scholar
|
[13]
|
Schmidt AM. 2018. Highlighting diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology 38:e1−e8 doi: 10.1161/atvbaha.117.310221
CrossRef Google Scholar
|
[14]
|
Roden M. 2016. Diabetes mellitus: definition, classification and diagnosis. Wien Klin Wochenschr 128:37−40 doi: 10.1007/s00508-015-0931-3
CrossRef Google Scholar
|
[15]
|
Wang J, Ma Q, Li Y, Li P, Wang M, et al. 2020. Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomedicine & Pharmacotherapy 121:109565 doi: 10.1016/j.biopha.2019.109565
CrossRef Google Scholar
|
[16]
|
Xu YXZ, Xi S, Qian X. 2019. Evaluating traditional Chinese medicine and herbal products for the treatment of gestational diabetes mellitus. Journal of Diabetes Research 2019:9182595 doi: 10.1155/2019/9182595
CrossRef Google Scholar
|
[17]
|
Cui X, Wang S, Cao H, Guo H, Li Y, et al. 2018. A review: the bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules 23:1170 doi: 10.3390/molecules23051170
CrossRef Google Scholar
|
[18]
|
Wang Y, Qin S, Pen G, Chen D, Han C, et al. 2017. Original Research: potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Experimental Biology and Medicine 242:92−101 doi: 10.1177/1535370216663866
CrossRef Google Scholar
|
[19]
|
Wang Y, Lan C, Liao X, Chen D, Song W, et al. 2019. Polygonatum sibiricum polysaccharide potentially attenuates diabetic retinal injury in a diabetic rat model. Journal of Diabetes Investigation 10:915−24 doi: 10.1111/jdi.12976
CrossRef Google Scholar
|
[20]
|
Zhang HY, Hu WC, Ma GX, Zhu NL, Sun XB, et al. 2018. A new steroidal saponin from Polygonatum sibiricum. Journal of Asian Natural Products Research 20:586−92 doi: 10.1080/10286020.2017.1351436
CrossRef Google Scholar
|
[21]
|
Chai Y, Luo J, Bao Y. 2021. Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice. Biomedicine & Pharmacotherapy 143:112155 doi: 10.1016/j.biopha.2021.112155
CrossRef Google Scholar
|
[22]
|
Luo J, Chai Y, Zhao M, Guo Q, Bao Y. 2020. Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin fromPolygonatum sibiricum. Food & Function 11:4327−38 doi: 10.1039/d0fo00428f
CrossRef Google Scholar
|
[23]
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. 2022. Polygonatum sibiricum saponin exerts beneficial hypoglycemic effects in type 2 diabetes mice by improving hepatic insulin resistance and glycogen synthesis-related proteins. Nutrients 14:5222 doi: 10.3390/nu14245222
CrossRef Google Scholar
|
[24]
|
Zhai L, Wang X. 2018. Syringaresinol-di-O-β-D-glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin-induced mouse model of diabetes. Molecular Medicine Reports 18:551−19 doi: 10.3892/mmr.2018.9580
CrossRef Google Scholar
|
[25]
|
Wang G, Liu Z, Liang D, Yu J, Wang T, et al. 2022. Aqueous extract of Polygonatum sibiricum ameliorates glucose and lipid metabolism via PI3K/AKT signaling pathway in high-fat diet and streptozotocin-induced diabetic mice. Journal of Food Biochemistry 46:e14402 doi: 10.1111/jfbc.14402
CrossRef Google Scholar
|
[26]
|
Li C, Li J, Shang Y, Wang Y, Gao J, et al. 2021. Hypoglycemic and hypolipidemic activity of Polygonatum sibiricum fermented with Lactobacillus brevis YM 1301 in diabetic C57BL/6 mice. Journal of Medicinal Food 24:720−31 doi: 10.1089/jmf.2021.k.0034
CrossRef Google Scholar
|
[27]
|
Schroeder MA, DiPersio JF. 2011. Mouse models of graft-versus-host disease: advances and limitations. Disease Models & Mechanisms 4:318−33 doi: 10.1242/dmm.006668
CrossRef Google Scholar
|
[28]
|
Singh S, Loke YK. 2012. Drug safety assessment in clinical trials: methodological challenges and opportunities. Trials 13:138 doi: 10.1186/1745-6215-13-138
CrossRef Google Scholar
|
[29]
|
Qi F, Zhao L, Zhou A, Zhang B, Li A, et al. 2015. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. BioScience Trends 9:16−34 doi: 10.5582/bst.2015.01019
CrossRef Google Scholar
|
[30]
|
Tao WW, Jiang H, Tao XM, Jiang P, Sha LY, et al. 2016. Effects of acupuncture, Tuina, Tai Chi, Qigong, and traditional Chinese medicine five-element music therapy on symptom management and quality of life for cancer patients: a meta-analysis. Journal of Pain and Symptom Management 51:728−47 doi: 10.1016/j.jpainsymman.2015.11.027
CrossRef Google Scholar
|
[31]
|
Huang Y, Cai T, Xia X, Cai Y, Wu XY. 2016. Research advances in the intervention of inflammation and cancer by active ingredients of traditional Chinese medicine. Journal of Pharmacy & Pharmaceutical Sciences 19:114 doi: 10.18433/j3sg7k
CrossRef Google Scholar
|
[32]
|
Ma YL, Zhang YS, Zhang F, Zhang YY, Thakur K, et al. 2019. Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food and Chemical Toxicology 132:110655 doi: 10.1016/j.fct.2019.110655
CrossRef Google Scholar
|
[33]
|
Li XL, Zhang XX, Ma RH, Ni ZJ, Thakur K, et al. 2023. Integrated miRNA and mRNA omics reveal dioscin suppresses migration and invasion via MEK/ERK and JNK signaling pathways in human endometrial carcinoma in vivo and in vitro. Journal of Ethnopharmacology 303:116027 doi: 10.1016/j.jep.2022.116027
CrossRef Google Scholar
|
[34]
|
Sun M, Ye Y, Xiao L, Duan X, Zhang Y, et al. 2017. Anticancer effects of ginsenoside Rg3 (Review). International Journal of Molecular Medicine 39:507−18 doi: 10.3892/ijmm.2017.2857
CrossRef Google Scholar
|
[35]
|
Koczurkiewicz P, Czyż J, Podolak I, Wójcik K, Galanty A, et al. 2015. Multidirectional effects of triterpene saponins on cancer cells - mini-review of in vitro studies. Acta Biochimica Polonica 62:383−93 doi: 10.18388/abp.2015_1089
CrossRef Google Scholar
|
[36]
|
Yu J, Li G, Mu Y, Zhou H, Wang X, et al. 2019. Anti-breast cancer triterpenoid saponins from the thorns of Gleditsia sinensis. Natural Product Research 33:2308−13 doi: 10.1080/14786419.2018.1443092
CrossRef Google Scholar
|
[37]
|
Liu C, Zeng Y, Dai LH, Cai TY, Zhu YM, et al. 2015. Mogrol represents a novel leukemia therapeutic, via ERK and STAT3 inhibition. American Journal of Cancer Research 5:1308−18
Google Scholar
|
[38]
|
Brieger K, Schiavone S, Miller J, Krause KH. 2012. Reactive oxygen species: from health to disease. Swiss Medical Weekly 142:w13659 doi: 10.4414/smw.2012.13659
CrossRef Google Scholar
|
[39]
|
Lennicke C, Cochemé HM. 2021. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell 81:3691−707 doi: 10.1016/j.molcel.2021.08.018
CrossRef Google Scholar
|
[40]
|
Matsumoto S, Jin M, Dewa Y, Nishimura J, Moto M, et al. 2009. Suppressive effect of Siraitia grosvenorii extract on dicyclanil-promoted hepatocellular proliferative lesions in male mice. The Journal of Toxicological Sciences 34:109−18 doi: 10.2131/jts.34.109
CrossRef Google Scholar
|
[41]
|
Zhou D, Li X, Chang W, Han Y, Liu B, et al. 2019. Antiproliferative steroidal glycosides from rhizomes of Polygonatum sibiricum. Phytochemistry 164:172−83 doi: 10.1016/j.phytochem.2019.05.013
CrossRef Google Scholar
|
[42]
|
Xie Y, Jiang Z, Yang R, Ye Y, Pe Li, et al. 2021. Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer. Biomed Pharmacother 137:111338 doi: 10.1016/j.biopha.2021.111338
CrossRef Google Scholar
|
[43]
|
Wang J, Wong YK, Liao F. 2018. What has traditional Chinese medicine delivered for modern medicine? Expert Reviews in Molecular Medicine 20:e4 doi: 10.1017/erm.2018.3
CrossRef Google Scholar
|
[44]
|
Oravecz M, Mészáros J. 2012. Traditional Chinese medicine: theoretical background and its use in China. Orvosi Hetilap 153:723−31 doi: 10.1556/oh.2012.29365
CrossRef Google Scholar
|
[45]
|
Geethangili M, Ding ST. 2018. A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Frontiers in Pharmacology 9:1109 doi: 10.3389/fphar.2018.01109
CrossRef Google Scholar
|
[46]
|
Wangkheirakpam S. 2018. Traditional and folk medicine as a target for drug discovery. In Natural Products and Drug Discovery, eds. Mandal SC, Mandal V, Konishi T. Amsterdam, Netherlands: Elsevier. pp. 29−56. https://doi.org/10.1016/B978-0-08-102081-4.00002-2
|
[47]
|
Zhao H, Wang QL, Hou SB, Chen G. 2019. Chemical constituents from the rhizomes of Polygonatum sibiricum Red. and anti-inflammatory activity in RAW264.7 macrophage cells. Natural Product Research 33:2359−62 doi: 10.1080/14786419.2018.1440220
CrossRef Google Scholar
|
[48]
|
Fei J, Liang B, Jiang C, Ni H, Wang L. 2019. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomedicine & Pharmacotherapy 109:1586−92 doi: 10.1016/j.biopha.2018.09.161
CrossRef Google Scholar
|
[49]
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. 2019. Cyclooxygenase-2 in cancer: a review. Journal of Cellular Physiology 234:5683−99 doi: 10.1002/jcp.27411
CrossRef Google Scholar
|
[50]
|
Lechner M, Lirk P, Rieder J. 2005. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Seminars in Cancer Biology 15:277−89 doi: 10.1016/j.semcancer.2005.04.004
CrossRef Google Scholar
|
[51]
|
Guo F, Tang C, Li Y, Liu Y, Lv P, et al. 2018. The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. Journal of Cellular and Molecular Medicine 22:5062−75 doi: 10.1111/jcmm.13790
CrossRef Google Scholar
|
[52]
|
Du Y, Zhu Y, Teng X, Zhang K, Teng X, et al. 2015. Toxicological effect of manganese on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. Biological Trace Element Research 168:227−34 doi: 10.1007/s12011-015-0340-5
CrossRef Google Scholar
|
[53]
|
Liu B, Tang Y, Song Z, Ge J. 2021. Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD-induced mouse obesity via regulation of lipid metabolism and inflammatory response. Molecular Medicine Reports 24:501 doi: 10.3892/mmr.2021.12140
CrossRef Google Scholar
|
[54]
|
Cai J, Zhu Y, Zuo Y, Tong Q, Zhang Z, et al. 2019. Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high-glucose-and high-insulin-induced 3T3-L1 adipocytes by promoting Nrf2 expression. Molecular Medicine Reports 20:3951−58 doi: 10.3892/mmr.2019.10626
CrossRef Google Scholar
|
[55]
|
Zhou W, Hong J, Liu T, Li M, Jin H, et al. 2022. Polygonatum polysaccharide regulates macrophage polarization and improves LPS-induced acute lung injury through TLR4-MAPK/NF-κB pathway. Canadian Respiratory Journal 2022:2686992 doi: 10.1155/2022/2686992
CrossRef Google Scholar
|
[56]
|
Xiao L, Qi L, Zhang G, Liu H, Gu Y, et al. 2022. Polygonatum sibiricum polysaccharides attenuate lipopoly-saccharide-induced septic liver injury by suppression of pyroptosis via NLRP3/GSDMD signals. Molecules 27:5999 doi: 10.3390/molecules27185999
CrossRef Google Scholar
|
[57]
|
Deshpande D, Fuchs L, Klose CSN. 2021. Neuro-immune-metabolism: the tripod system of homeostasis. Immunology Letters 240:77−97 doi: 10.1016/j.imlet.2021.10.001
CrossRef Google Scholar
|
[58]
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. 2023. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discovery 9:229 doi: 10.1038/s41420-023-01504-z
CrossRef Google Scholar
|
[59]
|
Liu N, Dong Z, Zhu X, Xu H, Zhao Z. 2018. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. International Journal of Biological Macromolecules 107:796−802 doi: 10.1016/j.ijbiomac.2017.09.051
CrossRef Google Scholar
|
[60]
|
Ha, Hong, Kim, Hong, Lee, et al. 2019. Efficacy of Polygonatum sibiricum on mild insomnia: a randomized placebo-controlled trial. Nutrients 11:1719 doi: 10.3390/nu11081719
CrossRef Google Scholar
|
[61]
|
Zhang X, Ni L, Hu S, Yue B, Chen X, et al. 2022. Polygonatum sibiricum ameliorated cognitive impairment of naturally aging rats through BDNF–TrkB signaling pathway. Journal of Food Biochemistry 46:e14510 doi: 10.1111/jfbc.14510
CrossRef Google Scholar
|
[62]
|
Luo S, Zhang X, Huang S, Feng X, Zhang X, et al. 2022. A monomeric polysaccharide from Polygonatum sibiricum improves cognitive functions in a model of Alzheimer’s disease by reshaping the gut microbiota. International Journal of Biological Macromolecules 213:404−15 doi: 10.1016/j.ijbiomac.2022.05.185
CrossRef Google Scholar
|
[63]
|
Jo K, Suh HJ, Choi HS. 2018. Polygonatum sibiricum rhizome promotes sleep by regulating non-rapid eye movement and GABAergic/serotonergic receptors in rodent models. Biomedicine & Pharmacotherapy 105:167−75 doi: 10.1016/j.biopha.2018.05.115
CrossRef Google Scholar
|
[64]
|
He Y, Huang L, Jiang P, Xu G, Sun T. 2022. Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7 cells. Journal of Ethnopharmacology 293:115240 doi: 10.1016/j.jep.2022.115240
CrossRef Google Scholar
|
[65]
|
Li B, Wu P, Fu W, Xiong Y, Zhang L, et al. 2019. The role and mechanism of miRNA-1224 in the Polygonatum sibiricum polysaccharide regulation of bone marrow-derived macrophages to osteoclast differentiation. Rejuvenation Research 22:420−30 doi: 10.1089/rej.2018.2126
CrossRef Google Scholar
|
[66]
|
Park DR, Yeo CH, Yoon JE, Hong EY, Choi BR, et al. 2022. Polygonatum sibiricum improves menopause symptoms by regulating hormone receptor balance in an ovariectomized mouse model. Biomedicine & Pharmacotherapy 153:113385 doi: 10.1016/j.biopha.2022.113385
CrossRef Google Scholar
|
[67]
|
Su J, Wang Y, Yan M, He Z, Zhou Y, et al. 2022. The beneficial effects of Polygonatum sibiricum Red. superfine powder on metabolic hypertensive rats via gut-derived LPS/TLR4 pathway inhibition. Phytomedicine 106:154404 doi: 10.1016/j.phymed.2022.154404
CrossRef Google Scholar
|
[68]
|
Sun T, Zhang H, Li Y, Liu Y, Dai W, et al. 2020. Physicochemical properties and immunological activities of polysaccharides from both crude and wine-processed Polygonatum sibiricum. International Journal of Biological Macromolecules 143:255−64 doi: 10.1016/j.ijbiomac.2019.11.166
CrossRef Google Scholar
|
[69]
|
Bian Z, Li C, Peng D, Wang X, Zhu G. 2022. Use of steaming process to improve biochemical activity of Polygonatum sibiricum polysaccharides against D-galactose-induced memory impairment in mice. International Journal of Molecular Sciences 23:11220 doi: 10.3390/ijms231911220
CrossRef Google Scholar
|
[70]
|
Ma W, Wei S, Peng W, Sun T, Huang J, et al. 2021. Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Research International 2021:6688855 doi: 10.1155/2021/6688855
CrossRef Google Scholar
|
[71]
|
Luan Y, Jiang Y, Huang R, Wang X, He X, et al. 2023. Polygonati rhizoma polysaccharide prolongs lifespan and healthspan in Caenorhabditis elegans. Molecules 28:2235 doi: 10.3390/molecules28052235
CrossRef Google Scholar
|