[1]
|
Barnes J, Anderson LA, Gibbons S, Phillipson JD. 2005. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. Journal of Pharmacy and Pharmacology 57(8):929−54 doi: 10.1211/0022357056127
CrossRef Google Scholar
|
[2]
|
Gajurel PR, Kashung S, Nopi s, Panmei R, Singh B. 2021. Can the Ayurvedic pippali plant (Piper longum L.) be a good option for livelihood and socio-economic development for Indian farmers? Current science 120(10):1567 doi: 10.18520/cs/v120/i10/1567-1572
CrossRef Google Scholar
|
[3]
|
Kang Y, Mao YF, Sheng LY, et al. 2022. China Statistical Yearbook-2022. International Trade and Economic Cooperation: 11-6 Major Exported Commodoties in Quantity and Value (2021), ed. Wang JS, China Statistical Press.
|
[4]
|
Menggala SR, Vanhove W, Muhammad DRA, Rahman A, Speelman S, et al. 2021. The Effect of Geographical Indications (GIs) on the Koerintji Cinnamon Sales Price and Information of Origin. Agronomy 11(7):1410 doi: 10.3390/agronomy11071410
CrossRef Google Scholar
|
[5]
|
van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. 2004. The Catharanthus alkaloids: pharmacognosy and biotechnology. Current Medicinal Chemistry 11(5):607−28 doi: 10.2174/0929867043455846
CrossRef Google Scholar
|
[6]
|
Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, et al. 2011. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochemistry 46(1):23−34 doi: 10.1016/j.procbio.2010.09.004
CrossRef Google Scholar
|
[7]
|
Liang S, Wen Z, Tang T, Liu Y, Dang F, et al. 2022. Study on flavonoid and bioactivity features of the pericarp of Citri Reticulatae 'chachi' during storage. Arabian Journal of Chemistry 15(3):103653 doi: 10.1016/j.arabjc.2021.103653
CrossRef Google Scholar
|
[8]
|
Liu H, Wen J, Xu Y, Wu J, Yu Y, et al. 2022. Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata 'chachi' peel at different collection periods using gas chromatography-ion mobility spectrometry. LWT 171:114126 doi: 10.1016/j.lwt.2022.114126
CrossRef Google Scholar
|
[9]
|
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23(4):762 doi: 10.3390/molecules23040762
CrossRef Google Scholar
|
[10]
|
Li Y, Kong D, Fu Y, Sussman MR, Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148:80−89 doi: 10.1016/j.plaphy.2020.01.006
CrossRef Google Scholar
|
[11]
|
Weremczuk-Jeżyna I, Hnatuszko-Konka K, Lebelt L, Grzegorczyk-Karolak I. 2021. The protective function and modification of secondary metabolite accumulation in response to light stress in Dracocephalum forrestii Shoots. International Journal of Molecular Sciences 22(15):7965 doi: 10.3390/ijms22157965
CrossRef Google Scholar
|
[12]
|
Cao S, Shi L, Shen Y, He L, Meng X. 2022. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 10:e14336 doi: 10.7717/peerj.14336
CrossRef Google Scholar
|
[13]
|
Lv J, Yang S, Zhou W, Liu Z, Tan J, et al. 2024. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiological Research 283:127688 doi: 10.1016/j.micres.2024.127688
CrossRef Google Scholar
|
[14]
|
Wu W, Chen W, Liu S, Wu J, Zhu Y, et al. 2021. Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in Plant Science 12:646146 doi: 10.3389/fpls.2021.646146
CrossRef Google Scholar
|
[15]
|
Pang Z, Chen J, Wang T, Gao C, Li Z, et al. 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science 12:621276 doi: 10.3389/fpls.2021.621276
CrossRef Google Scholar
|
[16]
|
Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37(5):634−63 doi: 10.1111/1574-6976.12028
CrossRef Google Scholar
|
[17]
|
Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo J, et al. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters 287(1):8−14 doi: 10.1111/j.1574-6968.2008.01258.x
CrossRef Google Scholar
|
[18]
|
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters 278(1):1−9 doi: 10.1111/j.1574-6968.2007.00918.x
CrossRef Google Scholar
|
[19]
|
Zhou N, Mu M, Xie H, Wu Y, Zhou Y, et al. 2021. Rhizospheric fungal diversities and soil biochemical factors of Fritillaria taipaiensis over five cultivation years. Horticulturae 7(12):560 doi: 10.3390/horticulturae7120560
CrossRef Google Scholar
|
[20]
|
Kui L, Chen B, Chen J, Sharifi R, Dong Y, et al. 2021. A comparative analysis on the structure and function of the Panax notoginseng rhizosphere microbiome. Frontiers in Microbiology 12:673512 doi: 10.3389/fmicb.2021.673512
CrossRef Google Scholar
|
[21]
|
Chiellini C, Maida I, Emiliani G, Mengoni A, Mocali S, et al. 2014. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. International Microbiology 17(3):165−74 doi: 10.2436/20.1501.01.219
CrossRef Google Scholar
|
[22]
|
Chen JM, Feng WM, Yan H, Liu P, Zhou GS, et al. 2022. Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis. Frontiers in Plant Science 13 doi: 10.3389/fpls.2022.1005711
CrossRef Google Scholar
|
[23]
|
Chen J, Wu Y, Zhuang X, Guo J, Hu X, et al. 2022. Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. Environmental Microbiome 17:52 doi: 10.1186/s40793-022-00446-w
CrossRef Google Scholar
|
[24]
|
Yang K, Fu R, Feng H, Jiang G, Finkel O, et al. 2023. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Molecular Plant 16(9):1379−95 doi: 10.1016/j.molp.2023.08.004
CrossRef Google Scholar
|
[25]
|
Hartmann M., Six J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment 4:4−18 doi: 10.1038/s43017-022-00366-w
CrossRef Google Scholar
|
[26]
|
Thakur M, Bhattacharya S, Khosla PK, Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12:1−12 doi: 10.1016/j.jarmap.2018.11.004
CrossRef Google Scholar
|
[27]
|
Edmeades DC. 2003. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66(2):165−80 doi: 10.1023/A:1023999816690
CrossRef Google Scholar
|
[28]
|
El Gendy AG, El Gohary AE, Omer EA, Hendawy SF, Hussein MS, et al. 2015. Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products 69:167−74 doi: 10.1016/j.indcrop.2015.02.023
CrossRef Google Scholar
|
[29]
|
Liu W, Wang Q, Wang B, Wang X, Franks A, et al. 2015. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil 395(1-2):415−27 doi: 10.1007/s11104-015-2569-3
CrossRef Google Scholar
|
[30]
|
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. 2023. The potential of rhizobacteria to mitigate abiotic stress in Lessertia frutescens. Plants 12:196 doi: 10.3390/plants12010196
CrossRef Google Scholar
|
[31]
|
Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment 612:522−37 doi: 10.1016/j.scitotenv.2017.08.095
CrossRef Google Scholar
|
[32]
|
Tariq MR, Shaheen F, Mustafa S, ALI S, Fatima A, et al. 2022. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ 10:e13782 doi: 10.7717/peerj.13782
CrossRef Google Scholar
|
[33]
|
Tian L, Shi S, Ji L, Nasir F, Ma LN, et al. 2018. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. International Microbiology 21(3):153−62 doi: 10.1007/s10123-018-0015-0
CrossRef Google Scholar
|
[34]
|
Feng WM, Liu P, Yan H, Zhang S, Shang EX, et al. 2021. Impact of Bacillus on phthalides accumulation in Angelica sinensis (Oliv.) by stoichiometry and microbial diversity analysis. Frontiers in Microbiology 11:611143 doi: 10.3389/fmicb.2020.611143
CrossRef Google Scholar
|
[35]
|
Huang X, Zeng Z, Chen Z, Tong X, Jiang J, et al. 2022. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Frontiers in Microbiology 13:1035167 doi: 10.3389/fmicb.2022.1035167
CrossRef Google Scholar
|
[36]
|
Shah S, Shah B, Sharma R, Rekadwad B, Shouche YS, et al. 2022. Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production. BMC Microbiology 22:101 doi: 10.1186/s12866-022-02507-z
CrossRef Google Scholar
|
[37]
|
Phurailatpam L, Gupta A, Sahu PK, Mishra S. 2022. Insights into the functional potential of bacterial endophytes from the ethnomedicinal plant, Piper longum L. Symbiosis 87(2):165−74 doi: 10.1007/s13199-022-00864-x
CrossRef Google Scholar
|
[38]
|
Liu T, Liao Q, Yu F, Zi S, Tian S, et al. 2022. Plant growth-promoting activities of bacterial endophytes isolated from the medicinal plant Pairs polyphylla var. yunnanensis. World Journal of Microbiology and Biotechnology 38:15 doi: 10.1007/s11274-021-03194-0
CrossRef Google Scholar
|
[39]
|
Wang L, Huang X, Li J, Huang J, Bao S, et al. 2022. Metabolites of zearalenone and phytohormones secreted by endophytic fungus strain TH15 regulating the root development in Tetrastigma hemsleyanum. Plant Cell, Tissue and Organ Culture (PCTOC) 150(3):683−94 doi: 10.1007/s11240-022-02321-5
CrossRef Google Scholar
|
[40]
|
Han Z, Cui Y, Wang Y, Wang Y, Sun Z, et al. 2022. Effect of rhizospheric fungus on biological control of root rot (Fusarium equiseti) disease of Saposhnikovia divaricata. Agronomy 12(11):2906 doi: 10.3390/agronomy12112906
CrossRef Google Scholar
|
[41]
|
Yang S, Zhang X, Cao Z, Zhao K, Wang S, et al. 2014. Growth‐promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology 7(6):611−20 doi: 10.1111/1751-7915.12148
CrossRef Google Scholar
|
[42]
|
Ding C, Wang S, Li J, Wang Z. 2022. Transcriptomic analysis reveals the mechanism of host growth promotion by endophytic fungus of Rumex gmelinii Turcz. Archives of Microbiology 204(7):443 doi: 10.1007/s00203-022-03072-9
CrossRef Google Scholar
|
[43]
|
Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK. 2014. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197−204 doi: 10.1007/s13205-013-0143-3
CrossRef Google Scholar
|
[44]
|
Ali S, Kim WC. 2018. Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Frontiers in Microbiology 9:1096 doi: 10.3389/fmicb.2018.01096
CrossRef Google Scholar
|
[45]
|
Lyu D, Backer R, Berrué F, Martinez-Farina C, Hui JPM, et al. 2023. Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry 71(19):7268−77 doi: 10.1021/acs.jafc.2c06961
CrossRef Google Scholar
|
[46]
|
Asghari B, Khademian R, Sedaghati B. 2020. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L. ) under water shortage condition. Scientia Horticulturae 263:109132
Google Scholar
|
[47]
|
Liu T, Ren Z, Chunyu WX, Li GD, Chen X, et al. 2022. Exploration of Diverse Secondary Metabolites From Streptomyces sp. YINM00001, Using Genome Mining and One Strain Many Compounds Approach. Frontiers in Microbiology 13:831174 doi: 10.3389/fmicb.2022.831174
CrossRef Google Scholar
|
[48]
|
Maithani D, Sharma A, Gangola S, Chaudhary P, Bhatt P. 2022. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiological Research 261:127053 doi: 10.1016/j.micres.2022.127053
CrossRef Google Scholar
|
[49]
|
Sarang H, Rajani P, Vasanthakumari MM, Kumara PM, Siva R, et al. 2017. An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie van Leeuwenhoek 110(7):853−862 doi: 10.1007/s10482-017-0858-y
CrossRef Google Scholar
|
[50]
|
Tanapichatsakul C, Khruengsai S, Monggoot S, Pripdeevech P. 2019. Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 7:e6427 doi: 10.7717/peerj.6427
CrossRef Google Scholar
|
[51]
|
Peng F, Zhang MY, Hou SY, Chen J, Wu YY, et al. 2020. Insights into Streptomyces spp. isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiology 20:143 doi: 10.1186/s12866-020-01832-5
CrossRef Google Scholar
|
[52]
|
Rahmat E, Kang Y. 2020. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Applied Microbiology and Biotechnology 104(11):4659−74 doi: 10.1007/s00253-020-10587-y
CrossRef Google Scholar
|
[53]
|
Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes – a review. Natural Product Reports 33(8):988−1005 doi: 10.1039/C6NP00025H
CrossRef Google Scholar
|
[54]
|
Zhang S, Zhang L, Zhu J, Chen H, Chen Z, et al. 2021. Genomic and Metabolomic Investigation of a Rhizosphere Isolate Streptomyces netropsis WLXQSS-4 Associated with a Traditional Chinese Medicine. Molecules 26(8):2147 doi: 10.3390/molecules26082147
CrossRef Google Scholar
|
[55]
|
Cheng JT, Cao F, Chen XA, Li YQ, Mao XM. 2020. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics 21:424 doi: 10.1186/s12864-020-06813-6
CrossRef Google Scholar
|
[56]
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, et al. 2022. Integrated genomic and metabolomic analysis illuminates key secreted metabolites produced by the novel endophyte Bacillus halotolerans Cal. l. 30 involved in diverse biological control activities. Microorganisms 10(2):399 doi: 10.3390/microorganisms10020399
CrossRef Google Scholar
|
[57]
|
Su J, Wang Y, Bai M, Peng T, Li H, et al. 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. Microbiome 11:61 doi: 10.1186/s40168-023-01504-2
CrossRef Google Scholar
|
[58]
|
Zhang Y, Berman A, Shani E. 2023. Plant hormone transport and localization: signaling molecules on the move. Annual Review of Plant Biology 74(1):453−79 doi: 10.1146/annurev-arplant-070722-015329
CrossRef Google Scholar
|
[59]
|
Yang L, Yan Y, Zhao B, Xu H, Su X, et al. 2022. Study on the Regulation of Exogenous Hormones on the Absorption of Elements and the Accumulation of Secondary Metabolites in the Medicinal Plant Artemisia argyi Leaves. Metabolites 12(10):984 doi: 10.3390/metabo12100984
CrossRef Google Scholar
|
[60]
|
Luo J, Zhou JJ, Zhang JZ. 2018. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. International Journal of Molecular Sciences 19(1):259 doi: 10.3390/ijms19010259
CrossRef Google Scholar
|
[61]
|
Duca D, Lorv J, Patten CL, Rose D, Glick BR. 2014. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek 106(1):85−125 doi: 10.1007/s10482-013-0095-y
CrossRef Google Scholar
|
[62]
|
Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, et al. 2018. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Scientific Reports 8(1):5450 doi: 10.1038/s41598-018-23716-5
CrossRef Google Scholar
|
[63]
|
Zhou JY, Sun K, Chen F, Yuan J, Li X, et al. 2018. Endophytic Pseudomonas induces metabolic flux changes that enhance medicinal sesquiterpenoid accumulation in Atractylodes lancea. Plant Physiology and Biochemistry 130:473−81 doi: 10.1016/j.plaphy.2018.07.016
CrossRef Google Scholar
|
[64]
|
Zhang KL, Liu QS, Kang HX, Liu XM, Chen XP, et al. 2020. Herbivore‐induced rice resistance against rice blast mediated by salicylic acid. Insect Science 27(1):49−57 doi: 10.1111/1744-7917.12630
CrossRef Google Scholar
|
[65]
|
Pokotylo I, Hodges M, Kravets V, Ruelland E. 2022. A ménage à trois: salicylic acid, growth inhibition, and immunity. Trends in Plant Science 27(5):460−71 doi: 10.1016/j.tplants.2021.11.008
CrossRef Google Scholar
|
[66]
|
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, et al. 2021. The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. Journal of Fungi 7(8):633 doi: 10.3390/jof7080633
CrossRef Google Scholar
|
[67]
|
Safara S, Harighi B, Bahramnejad B, Ahmadi S. 2022. Antibacterial activity of endophytic bacteria against sugar beet root rot agent by volatile organic compound production and induction of systemic resistance. Frontiers in Microbiology 13:921762 doi: 10.3389/fmicb.2022.921762
CrossRef Google Scholar
|
[68]
|
Yu Z, Dong W, Teixeira da Silva JA, He C, Si C, et al. 2021. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Protoplasma 258(4):803−15 doi: 10.1007/s00709-020-01599-6
CrossRef Google Scholar
|
[69]
|
Gao FK, Ren CG, Dai CC. 2012. Signaling effects of nitric oxide, salicylic acid, and reactive oxygen species on isoeuphpekinensin accumulation in Euphorbia pekinensis suspension cells induced by an endophytic fungal elicitor. Journal of Plant Growth Regulation 31(4):490−497 doi: 10.1007/s00344-012-9258-8
CrossRef Google Scholar
|
[70]
|
Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal 105(2):307−21 doi: 10.1111/tpj.15067
CrossRef Google Scholar
|
[71]
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62(1):25−54 doi: 10.1111/jipb.12899
CrossRef Google Scholar
|
[72]
|
Zhou JY, Li X, Zhao D, Deng-Wang MY, Dai CC. 2016. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Planta 244(3):699−712 doi: 10.1007/s00425-016-2536-0
CrossRef Google Scholar
|
[73]
|
Fan H, Wu Q, Wang X, Wu L, Cai Y, et al. 2016. Molecular cloning and expression of 1-deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoisomerase in Dendrobium officinale. Plant Cell, Tissue and Organ Culture (PCTOC) 125(2):381−85 doi: 10.1007/s11240-016-0945-1
CrossRef Google Scholar
|
[74]
|
Ptak A, Morańska E, Warchoł M, Gurgul A, Skrzypek E, et al. 2022. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Scientific Reports 12:13700 doi: 10.1038/s41598-022-17992-5
CrossRef Google Scholar
|
[75]
|
Liang Z, Ma Y, Xu T, Cui B, Liu Y, et al. 2013. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS One 8(9):e72806 doi: 10.1371/journal.pone.0072806
CrossRef Google Scholar
|
[76]
|
Yang D, Sheng D, Duan Q, Liang X, Liang Z, et al. 2012. PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots. Journal of Plant Growth Regulation 31(4):579−87 doi: 10.1007/s00344-012-9268-6
CrossRef Google Scholar
|
[77]
|
DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell 81:3449−67 doi: 10.1016/j.molcel.2021.07.029
CrossRef Google Scholar
|
[78]
|
Ngou BPM, Ding P, Jones JDG. 2022. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell 34(5):1447−78 doi: 10.1093/plcell/koac041
CrossRef Google Scholar
|
[79]
|
Narula K, Elagamey E, Abdellatef MAE, Sinha A, Ghosh S, et al. 2020. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. The Plant Journal 103(2):561−83 doi: 10.1111/tpj.14750
CrossRef Google Scholar
|
[80]
|
Lu C, Jiang Y, Yue Y, Sui Y, Hao M, et al. 2023. Glutathione and neodiosmin feedback sustain plant immunity. Journal of Experimental Botany 74(3):976−90 doi: 10.1093/jxb/erac442
CrossRef Google Scholar
|
[81]
|
Tang BZ, Liu CY, Li ZQ, Zhang XX, Zhou SQ, et al. 2021. Multilayer regulatory landscape during pattern‐triggered immunity in rice. Plant Biotechnology Journal 19(12):2629−45 doi: 10.1111/pbi.13688
CrossRef Google Scholar
|
[82]
|
Pérez-Pérez J, Minguillón S, Kabbas-Piñango E, Payá C, Campos L, et al. 2024. Metabolic crosstalk between hydroxylated monoterpenes and salicylic acid in tomato defense response against bacteria. Plant Physiology 00:kiae148 doi: 10.1093/plphys/kiae148
CrossRef Google Scholar
|
[83]
|
Wang Y, Gao Y, Zang P, Xu Y. 2020. Transcriptome analysis reveals underlying immune response mechanism of fungal (Penicillium oxalicum) disease in Gastrodia elata Bl. f. glauca S. chow (Orchidaceae). BMC Plant Biology 20:445 doi: 10.1186/s12870-020-02653-4
CrossRef Google Scholar
|
[84]
|
Yang Q, Li J, Sun J, Cui X. 2022. Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology 119:101814 doi: 10.1016/j.pmpp.2022.101814
CrossRef Google Scholar
|
[85]
|
Gao J, Li T, Jiao L, Jiang C, Chen S, Huang L, et al. 2022. Metabolome and transcriptome analyses identify the plant immunity systems that facilitate sesquiterpene and lignan biosynthesis in Syringa pinnatifolia Hemsl. BMC Plant Biology 22:132 doi: 10.1186/s12870-022-03537-5
CrossRef Google Scholar
|
[86]
|
Xie S, Jiang L, Wu Q, Wan W, Gan Y, et al. 2022. Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum Infection. Phytopathology 112(9):1886−93 doi: 10.1094/PHYTO-01-22-0028-R
CrossRef Google Scholar
|
[87]
|
Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, et al. 2023. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant 16(5):849−64 doi: 10.1016/j.molp.2023.03.009
CrossRef Google Scholar
|
[88]
|
Chen J, Wu XT, Xu YQ, Zhong Y, Li YX, et al. 2015. lobal transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. BMC Genomics 16:S15 doi: 10.1186/1471-2164-16-S7-S15
CrossRef Google Scholar
|
[89]
|
Elyasi R, Majdi M, Bahramnejad B, Mirzaghaderi G. 2016. Spatial modulation and abiotic elicitors responses of the biosynthesis related genes of mono/triterpenes in black cumin (Nigella sativa). Industrial Crops and Products 79:240−47 doi: 10.1016/j.indcrop.2015.11.005
CrossRef Google Scholar
|
[90]
|
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, et al. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440):eaau6389 doi: 10.1126/science.aau6389
CrossRef Google Scholar
|
[91]
|
Liang ML, Ye HJ, Shen Q, Jiang XY, Cui GB, et al. 2021. Tangeretin inhibits fungal ferroptosis to suppress rice blast. Journal of Integrative Plant Biology 63(12):2136−49 doi: 10.1111/jipb.13175
CrossRef Google Scholar
|
[92]
|
Zhou Z, Feng J, Huo J, Qiu S, Zhang P, et al. 2024. Versatile CYP98A enzymes catalyse meta-hydroxylation reveals diversity of salvianolic acids biosynthesis. Plant Biotechnology Journal 22:1536−48 doi: 10.1111/pbi.14284
CrossRef Google Scholar
|
[93]
|
Zhang G, Chen S, Zhou W, Meng J, Deng K, et al. 2018. Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity. Food Chemistry 269:150−56 doi: 10.1016/j.foodchem.2018.06.132
CrossRef Google Scholar
|
[94]
|
Zhang Y, Li T, Ye C, Lu R, Liu Y, et al. 2021. Leaching alleviates phenol-mediated root rot in Panax notoginseng by modifying the soil microbiota. Plant and Soil 468:491−507 doi: 10.1007/s11104-021-05136-z
CrossRef Google Scholar
|
[95]
|
Waterman PG. 1992. Roles for secondary metabolites in plants. Ciba Foundation Symposium 171:255−69 doi: 10.1002/9780470514344.ch15
CrossRef Google Scholar
|
[96]
|
Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11):1720−31 doi: 10.4161/psb.6.11.17613
CrossRef Google Scholar
|
[97]
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. 2023. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. Journal of Genetics and Genomics 51(5):467−78 doi: 10.1016/j.jgg.2023.10.004
CrossRef Google Scholar
|
[98]
|
Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. 2004. Nicotine's defensive function in nature. PLoS Biology 2(8):e217 doi: 10.1371/journal.pbio.0020217
CrossRef Google Scholar
|
[99]
|
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7(1):59 doi: 10.1186/s40168-019-0677-7
CrossRef Google Scholar
|
[100]
|
Wei C, Liang J, Wang R, Chi L, Wang W, et al. 2024. Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis. Frontiers in Plant Science 14:1339478 doi: 10.3389/fpls.2023.1339478
CrossRef Google Scholar
|
[101]
|
Maggini V, Mengoni A, Bogani P, Firenzuoli F, Fani R. 2020. Promoting model systems of microbiota-medicinal plant interactions. Trends in Plant Science 25(3):223−25 doi: 10.1016/j.tplants.2019.12.013
CrossRef Google Scholar
|
[102]
|
Huang W, Long C, Lam E. 2018. Roles of plant-associated microbiota in traditional herbal medicine. Trends in Plant Science 23(7):559−62 doi: 10.1016/j.tplants.2018.05.003
CrossRef Google Scholar
|
[103]
|
Rustamova N, Bozorov K, Efferth T, Yili A. 2020. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochemistry Reviews 19:425−48 doi: 10.1007/s11101-020-09672-x
CrossRef Google Scholar
|
[104]
|
Ahmed R, Sonowal S, Chikkaputtaiah C, Basar E, Velmurugan N. 2023. Bifunctional and metabolically stable Himalayan endophytic bacterium Pantoea sp. enhances microalgal productivity. Biomass Conversion and Biorefinery doi: 10.1007/s13399-023-04123-x
CrossRef Google Scholar
|
[105]
|
Takino J, Kozaki T, Sato Y, Liu C, Ozaki T, et al. 2018. Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase. Journal of the American Chemical Society 140(39):12392−95 doi: 10.1021/jacs.8b08925
CrossRef Google Scholar
|
[106]
|
Jacoby RP, Koprivova A, Kopriva S. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany 72(1):57−69 doi: 10.1093/jxb/eraa424
CrossRef Google Scholar
|