[1]
|
Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88 doi: 10.1080/07388551.2020.1752617
CrossRef Google Scholar
|
[2]
|
Li P, Xu Y, Zhang Y, Fu J, Yu S, et al. 2020. Metabolite profiling and transcriptome analysis revealed the chemical contributions of tea trichomes to tea flavors and tea plant defenses. Journal of Agricultural and Food Chemistry 68:11389−401 doi: 10.1021/acs.jafc.0c04075
CrossRef Google Scholar
|
[3]
|
Liang Y, Pan G, Xu X. 1993. Effect of Maofeng tea processing on leaf trichomes of tea (Camellia sinensis L). Journal of the Science of Food and Agriculture 62:35−39 doi: 10.1002/jsfa.2740620105
CrossRef Google Scholar
|
[4]
|
Cao H, Li J, Ye Y, Lin H, Hao Z, et al. 2020. Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (Camellia Sinensis). Biomolecules 10:311 doi: 10.3390/biom10020311
CrossRef Google Scholar
|
[5]
|
Kumar N, Pandey S, Bhattacharya A, Ahuja PS. 2004. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]. Journal of Biosciences 29:309−17 doi: 10.1007/BF02702613
CrossRef Google Scholar
|
[6]
|
Wang X, Shen C, Meng P, Tan G, Lv L. 2021. Analysis and review of trichomes in plants. BMC Plant Biology 21:70 doi: 10.1186/s12870-021-02840-x
CrossRef Google Scholar
|
[7]
|
Serna L, Martin C. 2006. Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science 11:274−80 doi: 10.1016/j.tplants.2006.04.008
CrossRef Google Scholar
|
[8]
|
Pesch M, Hülskamp M. 2009. One, two, three.. models for trichome patterning in Arabidopsis? Current Opinion in Plant Biology 12:587−92 doi: 10.1016/j.pbi.2009.07.015
CrossRef Google Scholar
|
[9]
|
Valverde PL, Fornoni J, Núñez-Farfán J. 2001. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. Journal of Evolutionary Biology 14:424−32 doi: 10.1046/j.1420-9101.2001.00295.x
CrossRef Google Scholar
|
[10]
|
Levin DA. 1973. The role of trichomes in plant defense. Quarterly Review of Biology 48:3−15 doi: 10.1086/407484
CrossRef Google Scholar
|
[11]
|
Peter AJ, Shanower TG, Romeis J. 1995. The role of plant trichomes in insect resistance: a selective review. Phytophaga 7:41−64
Google Scholar
|
[12]
|
Dai X, Wang G, Yang D, Tang Y, Broun P, et al. 2010. TrichOME: A comparative omics database for plant trichomes. Plant Physiology 152:44−54 doi: 10.1104/pp.109.145813
CrossRef Google Scholar
|
[13]
|
Lange BM, Turner GW. 2013. Terpenoid biosynthesis in trichomes − current status and future opportunities. Plant Biotechnology Journal 11:2−22 doi: 10.1111/j.1467-7652.2012.00737.x
CrossRef Google Scholar
|
[14]
|
Schilmiller AL, Last RL, Pichersky E. 2008. Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal 54:702−11 doi: 10.1111/j.1365-313X.2008.03432.x
CrossRef Google Scholar
|
[15]
|
Ning P, Wang J, Zhou Y, Gao L, Wang J, et al. 2016. Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau, China. Ecology And Evolution 6:3786−95 doi: 10.1002/ece3.2157
CrossRef Google Scholar
|
[16]
|
Yan A, Pan J, An L, Gan Y, Feng H. 2012. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B:Biology 113:29−35 doi: 10.1016/j.jphotobiol.2012.04.011
CrossRef Google Scholar
|
[17]
|
Yu Z, Zheng X, Lin W, He W, Shao L, et al. 2021. Photoprotection of Arabidopsis leaves under short-term high light treatment: The antioxidant capacity is more important than the anthocyanin shielding effect. Plant Physiology and Biochemistry 166:258−69 doi: 10.1016/j.plaphy.2021.06.006
CrossRef Google Scholar
|
[18]
|
Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. 2008. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991−99 doi: 10.1242/dev.016873
CrossRef Google Scholar
|
[19]
|
Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483−93 doi: 10.1016/0092-8674(91)90523-2
CrossRef Google Scholar
|
[20]
|
Rerie WG, Feldmann KA, Marks MD. 1994. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development 8:1388−99 doi: 10.1101/gad.8.12.1388
CrossRef Google Scholar
|
[21]
|
Li P, Fu J, Xu Y, Shen Y, Zhang Y, et al. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist 234:902−17 doi: 10.1111/nph.18026
CrossRef Google Scholar
|
[22]
|
Sun B, Zhu Z, Liu R, Wang L, Dai F, et al. 2020. TRANSPARENT TESTA GLABRA1 (TTG1) regulates leaf trichome density in tea Camellia sinensis. Nordic Journal of Botany 38:10 doi: 10.1111/njb.02592
CrossRef Google Scholar
|
[23]
|
Liu R, Wang Y, Tang S, Cai J, Liu S, et al. 2021. Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Scientific Reports 11:10764 doi: 10.1038/s41598-021-90205-7
CrossRef Google Scholar
|
[24]
|
Liu Y, Hou H, Jiang X, Wang P, Dai X, et al. 2018. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. International Journal of Molecular Sciences 19:15 doi: 10.3390/ijms19061686
CrossRef Google Scholar
|
[25]
|
Wakamatsu J, Wada T, Tanaka W, Fujii S, Fujikawa Y, et al. 2021. Identification of six CPC-like genes and their differential expression in leaves of tea plant, Camellia sinensis. Journal of Plant Physiology 263:153465 doi: 10.1016/j.jplph.2021.153465
CrossRef Google Scholar
|
[26]
|
Zhao X, Zeng X, Lin N, Yu S, Fernie AR, et al. 2021. CsbZIP1–CsMYB12 mediates the production of bitter–tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator – repressor network. Horticulture Research 8:110 doi: 10.1038/s41438-021-00545-8
CrossRef Google Scholar
|
[27]
|
Ahmad MZ, Li P, She G, Xia, E, Benedito VA, et al. 2020. Genome-wide analysis of serine carboxypeptidase-like acyltransferase gene family for evolution and characterization of enzymes involved in the biosynthesis of galloylated catechins in the tea plant (Camellia sinensis). Frontiers in Plant Science 11:848 doi: 10.3389/fpls.2020.00848
CrossRef Google Scholar
|
[28]
|
Kolde R, Kolde MR. 2015. Package ‘pheatmap’. R Package 1:790 https://cran.microsoft.com/snapshot/2015-04-08/web/packages/geoR/index.html
|
[29]
|
Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, et al. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology 153:590−602 doi: 10.1104/pp.110.153320
CrossRef Google Scholar
|
[30]
|
Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103−6 doi: 10.1126/science.1200660
CrossRef Google Scholar
|
[31]
|
Brown BA, Jenkins GI. 2008. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiology 146:323−24 doi: 10.1104/pp.107.108456
CrossRef Google Scholar
|
[32]
|
Osterlund MT, Hardtke CS, Wei N, Deng X. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462−66 doi: 10.1038/35013076
CrossRef Google Scholar
|
[33]
|
Ni M, Tepperman JM, Quail PH. 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657−67 doi: 10.1016/S0092-8674(00)81636-0
CrossRef Google Scholar
|
[34]
|
Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, et al. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86−92 doi: 10.1038/nature02514
CrossRef Google Scholar
|
[35]
|
Heddad M, Norén H, Reiser V, Dunaeva M, Andersson B, et al. 2006. Differential expression and localization of early light-induced proteins in Arabidopsis. Plant Physiology 142:75−87 doi: 10.1104/pp.106.081489
CrossRef Google Scholar
|
[36]
|
Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, et al. 2015. The responses of arabidopsis early light-induced protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiology 169:840−55 doi: 10.1104/pp.15.00398
CrossRef Google Scholar
|
[37]
|
Zhao M, Jin J, Gao T, Zhang N, Jing T, et al. 2019. Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Frontiers in Plant Science 10:1675 doi: 10.3389/fpls.2019.01675
CrossRef Google Scholar
|
[38]
|
Samarina LS, Bobrovskikh AV, Doroshkov AV, Malyukova LS, Matskiv AO, et al. 2020. Comparative expression analysis of stress-inducible candidate genes in response to cold and drought in tea plant [Camellia sinensis (L.) Kuntze]. Frontiers in Genetics 11:611283 doi: 10.3389/fgene.2020.611283
CrossRef Google Scholar
|
[39]
|
Amme S, Rutten T, Melzer M, Sonsmann G, Vissers JPC, et al. 2005. A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics 5:2508−18 doi: 10.1002/pmic.200401274
CrossRef Google Scholar
|
[40]
|
Mayer AM. 2006. Polyphenol oxidases in plants and fungi: going places? A review Phytochemistry 67:2318−31 doi: 10.1016/j.phytochem.2006.08.006
CrossRef Google Scholar
|
[41]
|
Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, et al. 2001. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45−50 doi: 10.1007/s004250000487
CrossRef Google Scholar
|
[42]
|
Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, et al. 2006. Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiology 141:1021−34 doi: 10.1104/pp.106.082743
CrossRef Google Scholar
|
[43]
|
Grover A. 2012. Plant chitinases: genetic diversity and physiological roles. Critical Reviews In Plant Sciences 31:57−73 doi: 10.1080/07352689.2011.616043
CrossRef Google Scholar
|
[44]
|
Wang Y, Bouwmeester K, Beseh P, Shan W, Govers F. 2014. Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity. Molecular Plant-Microbe Interactions 27:1390−402 doi: 10.1094/MPMI-06-14-0191-R
CrossRef Google Scholar
|
[45]
|
Wang J, Wang J, Shang H, Chen X, Xu X, et al. 2019. TaXa21, a leucine-rich repeat receptor-like kinase gene associated with TaWRKY76 and TaWRKY62, plays positive roles in wheat high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Molecular Plant-Microbe Interactions 32:1526−35 doi: 10.1094/MPMI-05-19-0137-R
CrossRef Google Scholar
|
[46]
|
Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology 16:426−33 doi: 10.1038/ni.3124
CrossRef Google Scholar
|
[47]
|
Luo X, Xu N, Huang J, Gao F, Zou H, et al. 2017. A lectin receptor-like kinase mediates pattern-triggered salicylic acid signaling. Plant Physiology 174:2501−14 doi: 10.1104/pp.17.00404
CrossRef Google Scholar
|
[48]
|
Muchero W, Sondreli KL, Chen J, Urbanowicz BR, Zhang J, et al. 2018. Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree. PNAS 115:11573−78 doi: 10.1073/pnas.1804428115
CrossRef Google Scholar
|
[49]
|
Shiu SH, Bleecker AB. 2001. Plant receptor-like kinase gene family: diversity, function, and signaling. Science's STKE 2001:re22 doi: 10.1126/stke.2001.113.re22
CrossRef Google Scholar
|
[50]
|
Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, et al. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497−500 doi: 10.1038/nature05999
CrossRef Google Scholar
|
[51]
|
Sierla M, Hõrak H, Overmyer K, Waszczak C, Yarmolinsky D, et al. 2018. The receptor-like pseudokinase GHR1 is required for stomatal closure. The Plant Cell 30:2813−37 doi: 10.1105/tpc.18.00441
CrossRef Google Scholar
|
[52]
|
Kaufmann C, Sauter M. 2019. Sulfated plant peptide hormones. Journal of Experimental Botany 70:4267−77 doi: 10.1093/jxb/erz292
CrossRef Google Scholar
|
[53]
|
Wang S, Liu L, Mi X, Zhao S, An Y, et al. 2021. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. The Plant Journal 106:862−75 doi: 10.1111/tpj.15203
CrossRef Google Scholar
|
[54]
|
Zhu J, He Y, Yan X, Liu L, Guo R, et al. 2019. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis). Horticulture Research 6:126 doi: 10.1038/s41438-019-0208-5
CrossRef Google Scholar
|
[55]
|
Sun W, Gao D, Xiong Y, Tang X, Xiao X, et al. 2017. Hairy Leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice. Molecular Plant 10:1417−33 doi: 10.1016/j.molp.2017.09.015
CrossRef Google Scholar
|
[56]
|
Huang H, Nusinow DA. 2016. Into the evening: Complex interactions in the Arabidopsis circadian clock. Trends in Genetics 32:674−86 doi: 10.1016/j.tig.2016.08.002
CrossRef Google Scholar
|
[57]
|
Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, et al. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398−402 doi: 10.1038/nature10182
CrossRef Google Scholar
|
[58]
|
Jin Q, Wang Z, Chen Y, Luo Y, Tian N, et al. 2022. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genomics 23:29 doi: 10.1186/s12864-021-08179-9
CrossRef Google Scholar
|
[59]
|
Liang T, Shi C, Peng Y, Tan H, Xin P, et al. 2020. Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. The Plant Cell 32:3224−39 doi: 10.1105/tpc.20.00048
CrossRef Google Scholar
|
[60]
|
Lehmann-Danzinger H. 2000. Diseases and pests of tea: Overview and possibilities of integrated pest and disease management. Journal of Agriculture and Rural Development in the Tropics and Subtropics 101:13−38
Google Scholar
|
[61]
|
Jayaswall K, Mahajan P, Singh G, Parmar R, Seth R, et al. 2016. Transcriptome analysis reveals candidate genes involved in blister blight defense in tea (Camellia sinensis (L.) Kuntze). Scientific Reports 6:30412 doi: 10.1038/srep30412
CrossRef Google Scholar
|
[62]
|
Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, et al. 2019. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. PNAS 116:15991−96 doi: 10.1073/pnas.1908748116
CrossRef Google Scholar
|
[63]
|
Zhang L, Jiang X, Liu Q, Ahammed GJ, Lin R, et al. 2020. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant Cell & Environment 43:2712−26 doi: 10.1111/pce.13868
CrossRef Google Scholar
|
[64]
|
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A Conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80 doi: 10.1105/tpc.113.122069
CrossRef Google Scholar
|
[65]
|
Sun B, Zhu Z, Cao P, Chen H, Chen C, et al. 2016. Purple foliage coloration in tea (Camellia sinensis L. ) arises from activation of the R2R3-MYB transcription factor CsAN1. Scientific Reports 6:32534 doi: 10.1038/srep32534
CrossRef Google Scholar
|
[66]
|
Li P, Xia E, Fu J, Xu Y, Zhao X, et al. 2022. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). The Plant Journal 110:1144−65 doi: 10.1111/tpj.15729
CrossRef Google Scholar
|
[67]
|
Wang P, Ma G, Zhang L, Li Y, Fu Z, et al. 2019. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67:1418−28 doi: 10.1021/acs.jafc.8b06207
CrossRef Google Scholar
|
[68]
|
Zhong R, Demura T, Ye Z. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell 18:3158−70 doi: 10.1105/tpc.106.047399
CrossRef Google Scholar
|
[69]
|
Zhong R, Richardson EA, Ye Z. 2007. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis inArabidopsis. The Plant Cell 19:2776−92 doi: 10.1105/tpc.107.053678
CrossRef Google Scholar
|
[70]
|
Liang G, He H, Li Y, Ai Q, Yu D. 2014. MYB82 functions in regulation of trichome development in Arabidopsis. Journal of Experimental Botany 65:3215−23 doi: 10.1093/jxb/eru179
CrossRef Google Scholar
|
[71]
|
Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. 2018. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. The Plant Journal 96:949−65 doi: 10.1111/tpj.14081
CrossRef Google Scholar
|
[72]
|
Scully ED, Gries T, Sarath G, Palmer NA, Baird L, et al. 2016. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor. The Plant Journal 85:378−95 doi: 10.1111/tpj.13112
CrossRef Google Scholar
|
[73]
|
Wang L, Lu W, Ran L, Dou L, Yao S, et al. 2019. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. The Plant Journal 99:733−51 doi: 10.1111/tpj.14364
CrossRef Google Scholar
|