[1]
|
Berthaud J, Charrier A. 1988. Genetic resources of Coffea. In Coffee, Agronomy, eds. Clarke RJ, Macrae R. vol. 4. London and New York: Elsevier Applied Science. pp. 1−42.
|
[2]
|
Davis AP, Tosh J, Ruch N, Fay MF. 2011. Growing coffee: Psilanthus (Rubiaceae) subsumed based on molecular and morphological data; implications for the size, morphology, distribution, and evolutionary history of Coffea. Botanical Journal of the Linnean Society 167(4):357−77 doi: 10.1111/j.1095-8339.2011.01177.x
CrossRef Google Scholar
|
[3]
|
International Coffee Organization. 2012. Trade Statistics Tables from International Coffee Organization. www.ico.org/documents1112-e.asp.
|
[4]
|
Davis A, Gole TW, Baena S, Moat J. 2012. The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. PLoS One 7(11):e47981 doi: 10.1371/journal.pone.0047981
CrossRef Google Scholar
|
[5]
|
Aga E. 2005. Molecular genetic diversity study of forest coffee tree (Coffea arabica L.) populations in ethiopia: implications for conservation and breeding. Doctoral Dissertation. Swedish University of Agricultural Sciences, Alnarp, Sweden. pp. 38−79
|
[6]
|
Lashermes P, Combes M, Robert J, Trouslot P, D'Hont A, et al. 1999. Molecular characterisation and origin of the Coffea arabica L. genome. Molecular and General Genetics 261:259−66 doi: 10.1007/s004380050965
CrossRef Google Scholar
|
[7]
|
Coulibaly I, Noirot M, Lorieux M, Charrier A, Hamon SC et al. 2002. Introgression of self-compatibility from Coffea heterocalyx to the cultivated species Coffea canephora. Theoretical and Applied Genetics 105:994−99 doi: 10.1007/s00122-002-1008-z
CrossRef Google Scholar
|
[8]
|
Labouisse J, Bellachew B, Kotecha S, Bertrand B. 2008. Status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications forc onservation. Genetic Resources and Crop Evolution 55:1079−93 doi: 10.1007/s10722-008-9361-7
CrossRef Google Scholar
|
[9]
|
Fairtrade Foundation. 2023. Coffee Farmers. www.fairtrade.org.uk/Farmers-and-Workers/Coffee/
|
[10]
|
Geromel C, Ferreira LP, Guerreiro SMC, Cavalari AA, Pot D. et al. 2006. Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. Journal of Experimental Botany 57:3243−58 doi: 10.1093/jxb/erl084
CrossRef Google Scholar
|
[11]
|
Bangura W. 2017. Brief Report on the state of the biodiversity for food and agriculture in Sierra Leone. Country Report 001. Forestry Division of the Ministry of Agriculture Forestry and Food Security. www.fao.org/3/CA3424EN/ca3424en.pdf
|
[12]
|
Grind PD. 2022. Exploring Coffee Production in Sierra Leone. https://perfectdailygrind.com/2022/10/exploring-coffee-production-in-sierra-leone/
|
[13]
|
Government of Sierra Leone, United Nations Development Programme. 2007. Integrated Resilient Urban Mobility Project (IRUMP). Environmental and Social Management Framework. pp 5−20. https://mof.gov.sl/wp-content/uploads/2019/03/ESMF_IRUMP-March-2019.pdf
|
[14]
|
McCouch SR, Kochert G, Yu Z, Wang Z, Khush GS. etal. 1988. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics 76:815−29 doi: 10.1007/BF00273666
CrossRef Google Scholar
|
[15]
|
Lahai PM, Aikpokpodion PO, Lahai MT, Bah MA, Gboku MLS. 2023. Phenotypic diversity of wild Sierra Leonean coffee (Coffea stenophylla) collected from Kenema and Moyamba districts. Beverage Plant Research 3:12 doi: 10.48130/BPR-2023-0012
CrossRef Google Scholar
|
[16]
|
International Plant Genetic Resource Institute. 1996. Diversity for development. Rome: International Plant Genetic Resources Institute. www.echocommunity.org/resources/f046001b-1de1-4eef-803c-82bb19e38f76
|
[17]
|
Lashermes P, Trouslot P, Anthony F, Combes MC, Charrier A. 1996. Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87:59−64 doi: 10.1007/BF00022965
CrossRef Google Scholar
|
[18]
|
Moncada P, McCouch S. 2004. Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome 47:501−9 doi: 10.1139/g03-129
CrossRef Google Scholar
|
[19]
|
Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, Medina-Filho HP, et al. 2007. Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genetic Resourceand Crop Evolution 55:901−10 doi: 10.1007/s10722-007-9295-5
CrossRef Google Scholar
|
[20]
|
Gutiérrez OA, Martinez K, Zhang D, Livingstone DS, Turnbull CJ, et al. 2021. Selecting SNP markers reflecting population origin for cacao (Theobroma cacao L.) germplasm identification. Beverage Plant Research 1:15 doi: 10.48130/bpr-2021-0015
CrossRef Google Scholar
|
[21]
|
Akpertey A, Padi FK, Meinhardt L, Zhang D. 2021. Effectiveness of single nucleotide polymorphism markers in genotyping germplasm collections of Coffea canephora using KASP assay. Frontiers in Plant Science 11:612593 doi: 10.3389/fpls.2020.612593
CrossRef Google Scholar
|
[22]
|
Van der Vossen HAM. 2001. Agronomy I: Coffee breeding practices. In Coffee: Recent Development, eds. Clark RJ, Vitzthum OG. London, UK: Blackwell Science. pp. 184–201. https://doi.org/10.1002/9780470690499.ch9
|
[23]
|
William HU. 2009. All about Coffee. New York: Adams Media. 796 pp.
|
[24]
|
Prado SG, Collazo JA, Stevenson PC, Irwin RE. 2019. A comparison of coffee floral traits under two different agricultural practices. Scientific Reports 9:7331 doi: 10.1038/s41598-019-43753-y
CrossRef Google Scholar
|
[25]
|
World Agroforestry Centre. 2009. Agroforestry Database. World Agroforestry Centre, agroforestree database 4.0. https://apps.worldagroforestry.org/treedb/
|
[26]
|
EIAR. 2020. Research on coffee and tea. www.eiar.gov.et/jarc/index.php/jarc-research/coffee-and-tea (Accessed on 20th August, 2023).
|
[27]
|
Anim-Kwapong E, Anim-Kwapong G, Adomako B. 2011. Variation and association among characters genetically related to yield and yield stability in Coffea canephora genotypes. Journal of Plant Breeding and Crop Science 12:311−20
Google Scholar
|
[28]
|
Keerthi CM, Ramesh S, Byregowda M, Mohan Rao A. 2018. Frequency of heterotic hybrids in relation to parental genetic divergence and general combining ability in Dolichos bean. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88:923−33 doi: 10.1007/s40011-016-0826-8
CrossRef Google Scholar
|
[29]
|
Kokko H, Ots I. 2006. When not to avoid Inbreeding. Evolution 60:467−75 doi: 10.1111/j.0014-3820.2006.tb01128.x
CrossRef Google Scholar
|
[30]
|
Lains E. 1958. Sao Tome and Principe and the cultivation of coffee. In Memorias Junta Investig. do Ultramar No. 1. www.aler-renovaveis.org/contents/files/aler-relatorio-stp-nov2020.pdf
|
[31]
|
Carvalho A. 1988. Principles and practice of coffee plant breeding for productivity and quality factors: Coffea arabica. In Coffee: Agronomy, eds. Clarke RJ, Macrae R. volume 4. London: Elsevier Applied Science. pp. 129–65.
|
[32]
|
Guzzo SD. 2004. Molecular and biochemical aspects of acquired systemic resistance. International Journal of Research Agriculture 7:32
Google Scholar
|
[33]
|
Melese YY, Kolech SA. 2021. Coffee (Coffea arabica L.): Methods, objectives, and future strategies of breeding in Ethiopia—Review. Sustainability 13:10814 doi: 10.3390/su131910814
CrossRef Google Scholar
|
[34]
|
Beckman H. 1987. The nature of wilt diseases of plants. St. Paul, Minnesota, USA: APS Press. 175 pp.
|
[35]
|
Strange RN. 1993. Plant disease control towards environmentally acceptable methods. New York, USA: Chapman and Hall. Springer Dordrecht. 356 pp.
|
[36]
|
Admikew G. 2017. Mode of inheritance of resistance to coffee wilt disease (G. xylarioides Heim and Saccas) in Arabica coffee (Coffea arabica L.) genotypes. Master's Thesis. Jimma University, Jimma, Ethiopia. pp. 57
|
[37]
|
Clarke R, Vitzthum OG. 2008. Coffee: Recent developments. Hoboken, NJ, USA: John Wiley and Sons. Elsevier Applied Science. pp. 272.
|
[38]
|
Tessema A, Alamerew S, Kufa T, Garedew W. 2011. Variability and association of quality and biochemical attributes in some promising Coffea arabica germplasm collections in southwestern Ethiopia. International Journal of Plant Breeding and Genetics 5:302−16 doi: 10.3923/ijpbg.2011.302.316
CrossRef Google Scholar
|
[39]
|
Allard RW. 1999. Principles of plant breeding. 2nd edition. Canada: John Willey & Sons. 264 pp.
|
[40]
|
Bayetta B. 2001. Arabica coffee breeding for yield and resistance to coffee berry disease (Colletotichum kahawae sp. nor). Ph. D. Thesis. Imperial College of Wye, University of London. pp. 55
|
[41]
|
Wassu M, Bayetta B, Harjit S. 2004. Heterosis and combiningability for yield and yield-related trait in Arabica coffee. M. Sc. Dissertation. Haramaya University, Ethiopia. pp. 1530−36.
|
[42]
|
Ayano A, Sentayehu A, Abush T. 2014. Combining ability for yield and morphological charactersin southwestern Ethiopian origin coffee hybrids. Sky Journal of Agricultural Research 3:128−36
Google Scholar
|
[43]
|
DulaG. 2019. Review on heterosis and combining ability study for yield and morphological characters of coffee (Coffea arabica L.) in Ethiopia. Journal of Environment and Earth Science 9:24−49 doi: 10.7176/jees/9-12-03
CrossRef Google Scholar
|
[44]
|
Cilas C, Bouharmont P, Boccara M. Eskes AB, Baradat PH. 1998. Prediction of genetic value for coffee production in Coffea arabica from a half-diallel with lines and hybrids. Euphytica 104:49−59 doi: 10.1023/A:1018635216182
CrossRef Google Scholar
|
[45]
|
Montagnon C, Bouharmont P. 1996. Multivariate analysis of phenotypic diversity of Coffea arabica. Genetic Resources and Crop Evolution 43:221−227 doi: 10.1007/BF00123274
CrossRef Google Scholar
|
[46]
|
Bangarwa SK. 2017. Heterosis, its type and theories. https://biotecharticles.com/Agriculture-Article/Heterosis-Its-Types-and-Theories-4178.html
|
[47]
|
Geneti D, Bellachew B, Habte E. 2019. Heterosis evaluation for morphological characters of diallel cross in western Ethiopian origin coffee (Coffea arabica L.). International Journal of Scientific Foot Prints 7:11−20
Google Scholar
|
[48]
|
Falconer DS, Mackay FC. 1996. Introduction to quantitative genetics. Longman Scientific and Technical, New York. https://archive.org/details/IntroductionToQuantitativeGenetics
|
[49]
|
Charrier A, Berthaud J. 1985. Botanical classification of coffee. In Coffee: botany, biochemistry and production of beans and beverages, eds. Clifford MN, Wilson KC. Boston, MA: Springer. pp. 13–47.
|
[50]
|
Ameha M. 1990. Heterosis and Arabica coffee breeding in Ethiopia. Plant Breeding 6:593−98
Google Scholar
|
[51]
|
Fazuoli LC, Carvalho A, da Costa WM. 1993. Dialectic hybridizations in the Mundo Novo cultivar of Coffea arabica. 19th Brazilian Congress of Research. IAC, Campinas Brazil. Brazil: Kluwer Academic Publishers. pp. 14–18.
|
[52]
|
Netto KA, Miguel AE, Queiroz AR, Pereira JBD. 1993. Hybrid studies of Coffea Arabica Catimor versus Catuai Catindu versus Catuai and others. 19th Brazilian Congress of IAC, Campinas Brazil. pp. 38–40.
|
[53]
|
Bellachew B. 1997. Arabica coffee breeding in Ethiopia: A review. Proceedings of the 17th ASIC Colloquium, Nairobi, Kenya. ASIC Paris France. pp. 406–14.
|
[54]
|
Resende MDV. 2002. Biometric genetics and statistics in perennial plant breeding. Embrapa Information Technology Brazil. pp. 975
|
[55]
|
Berthaud J. 1980. Incompatibility in Coffea Canephora - Test method and genetic determinism. African Journal of Agricultural Research 24:267−74
Google Scholar
|
[56]
|
Montagnon C, Leroy T, Cilas C, Legnaté H, Charrier A. 2008. Heterozygous genotypes are efficient testers for assessing between population combining ability in the reciprocal recurrent selection of Coffea canephora. Euphytica 160:101−10 doi: 10.1007/s10681-007-9561-9
CrossRef Google Scholar
|
[57]
|
Leroy T, Montagnon C, Cilas C, Yapo A, Charmetant P, et al. 1997. Reciprocal recurrent selection applied to Coffea canephora Pierre. III. Genetic gains and results of first cycle intergroup crosses. Euphytica 95:347−54 doi: 10.1023/A:1003074716379
CrossRef Google Scholar
|
[58]
|
Ferrão RG, Cruz CD, Ferreira A, Cecon PR, Ferrão MAG, et al. 2008. Genetic parameters in coffee conilon. Brazilian Journal of Agricultural Research 43:61−69 doi: 10.1590/s0100-204x2008000100009
CrossRef Google Scholar
|
[59]
|
LeRoy CJ, Wymore AS, Davis R, Marks JC. 2014. Indirect influences of a major drought on leaf litter quality and decomposition in a southwestern stream. Fundamental and Applied Limnology 184:1−10 doi: 10.1127/1863-9135/2014/0505
CrossRef Google Scholar
|
[60]
|
Montagnon C, Leroy T, Cilas C, Charrier A. 2003. Heritability of Coffea canephora yield estimated from several mating designs. Euphytica 133:209−18 doi: 10.1023/A:1025543805652
CrossRef Google Scholar
|
[61]
|
Berthaud J. 1986. Genetic resources for the improvement of diploid African coffee trees. Evaluation of the genetic richness of forest populations and its organizing mechanisms. Implications for the application. In Coffee. Vol 4. Paris (FRA), ORSTOM. 379 pp. England: Elsevier Applied Science Publishers.
|
[62]
|
Gupta PK, Rustgi S, Mir RR. 2008. Array-based high-throughput DNA markers for crop improvement. Heredity 101:5−18 doi: 10.1038/hdy.2008.35
CrossRef Google Scholar
|
[63]
|
Sousa TV, Caixeta ET, Alkimim ER, de Oliveira ACB, Pereira AA, et al. 2017. Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker. Tree Genetics & Genomes 13:124 doi: 10.1007/s11295-017-1208-y
CrossRef Google Scholar
|