[1]
|
Alexander L, Grierson D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany 53:2039−55 doi: 10.1093/jxb/erf072
CrossRef Google Scholar
|
[2]
|
Zhang Z, Zhang H, Quan R, Wang X, Huang R. 2009. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiology 150:365−77 doi: 10.1104/pp.109.135830
CrossRef Google Scholar
|
[3]
|
Li T, Jiang Z, Zhang L, Tan D, Wei Y, et al. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal 88:735−48 doi: 10.1111/tpj.13289
CrossRef Google Scholar
|
[4]
|
Han Z, Hu Y, Lv Y, Rose JKC, Sun Y, et al. 2018. Natural variation underlies differences in ETHYLENE RESPONSE FACTOR17 activity in fruit peel degreening. Plant Physiology 176:2292−304 doi: 10.1104/pp.17.01320
CrossRef Google Scholar
|
[5]
|
Yin X, Xie X, Xia X, Yu J, Ferguson IB, et al. 2016. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal 86:403−12 doi: 10.1111/tpj.13178
CrossRef Google Scholar
|
[6]
|
Qiao H, Zhang H, Wang Z, Shen Y. 2021. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid. Journal of Integrative Plant Biology 63:553−69 doi: 10.1111/jipb.13065
CrossRef Google Scholar
|
[7]
|
Gu T, Jia S, Huang X, Wang L, Fu W, et al. 2019. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145−62 doi: 10.1007/s00425-019-03155-w
CrossRef Google Scholar
|
[8]
|
Chervin C, El-Kereamy A, Roustan JP, Latché A, Lamon J, et al. 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Science 167:1301−5 doi: 10.1016/j.plantsci.2004.06.026
CrossRef Google Scholar
|
[9]
|
El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, et al. 2003. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum 119:175−82 doi: 10.1034/j.1399-3054.2003.00165.x
CrossRef Google Scholar
|
[10]
|
Wang P, Yu A, Ji X, Mu Q, Salman Haider M, et al. 2022. Transcriptome and metabolite integrated analysis reveals that exogenous ethylene controls berry ripening processes in grapevine. Food Research International 155:111084 doi: 10.1016/j.foodres.2022.111084
CrossRef Google Scholar
|
[11]
|
Hörtensteiner S. 2009. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science 14:155−62 doi: 10.1016/j.tplants.2009.01.002
CrossRef Google Scholar
|
[12]
|
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell 21:767−85 doi: 10.1105/tpc.108.064089
CrossRef Google Scholar
|
[13]
|
Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, et al. 2014. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Molecular Plant 7:1288−302 doi: 10.1093/mp/ssu045
CrossRef Google Scholar
|
[14]
|
Wei Y, Jin J, Xu Y, Liu W, Yang G, et al. 2021. Ethylene-activated MdPUB24 mediates ubiquitination of MdBEL7 to promote chlorophyll degradation in apple fruit. The Plant Journal 108:169−82 doi: 10.1111/tpj.15432
CrossRef Google Scholar
|
[15]
|
Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dörmann P, et al. 2007. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Letters 581:5517−25 doi: 10.1016/j.febslet.2007.10.060
CrossRef Google Scholar
|
[16]
|
Peng G, Xie X, Jiang Q, Song S, Xu C. 2013. Chlorophyll a/b binding protein plays a key role in natural and ethylene-induced degreening of Ponkan (Citrus reticulata Blanco). Scientia Horticulturae 160:37−43 doi: 10.1016/j.scienta.2013.05.022
CrossRef Google Scholar
|
[17]
|
Xie Z, Wu S, Chen J, Zhu X, Zhou X, et al. 2019. The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis. Plant Molecular Biology 101:257−68 doi: 10.1007/s11103-019-00902-1
CrossRef Google Scholar
|
[18]
|
Hörtensteiner S, Kräutler B. 2011. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta 1807:977−88 doi: 10.1016/j.bbabio.2010.12.007
CrossRef Google Scholar
|
[19]
|
Qiu K, Li Z, Yang Z, Chen J, Wu S, et al. 2015. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLOS Genetics 11:e1005399 doi: 10.1371/journal.pgen.1005399
CrossRef Google Scholar
|
[20]
|
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140:411−32 doi: 10.1104/pp.105.073783
CrossRef Google Scholar
|
[21]
|
Liu W, Karemera NJU, Wu T, Yang Y, Zhang X, et al. 2017. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. PLoS One 12:e0186580 doi: 10.1371/journal.pone.0186580
CrossRef Google Scholar
|
[22]
|
Liu W, Li Q, Wang Y, Wu T, Yang Y, et al. 2017. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency. Biochemical and Biophysical Research Communications 491:862−68 doi: 10.1016/j.bbrc.2017.04.014
CrossRef Google Scholar
|
[23]
|
Xiao Y, Chen J, Kuang J, Shan W, Xie H, et al. 2013. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Journal of Experimental Botany 64:2499−510 doi: 10.1093/jxb/ert108
CrossRef Google Scholar
|
[24]
|
Han YC, Kuang JF, Chen JY, Liu XC, Xiao YY, et al. 2016. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and E xpansins during fruit ripening. Plant Physiology 171:1070−84 doi: 10.1104/pp.16.00301
CrossRef Google Scholar
|
[25]
|
Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, et al. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719 doi: 10.1186/1471-2164-11-719
CrossRef Google Scholar
|
[26]
|
Lu S, Zhang M, Zhuge Y, Fu W, Ouyang Q, et al. 2022. VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin. Environmental and Experimental Botany 193:104678 doi: 10.1016/j.envexpbot.2021.104678
CrossRef Google Scholar
|
[27]
|
Yu Z, Li J, Yang C, Hu W, Wang L, et al. 2012. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant 5:353−65 doi: 10.1093/mp/ssr087
CrossRef Google Scholar
|
[28]
|
Lee S, Park JH, Lee M, Yu JH, Kim SY. 2010. Isolation and functional characterization of CE1 binding proteins. BMC Plant Biology 10:277 doi: 10.1186/1471-2229-10-277
CrossRef Google Scholar
|
[29]
|
Li Z, Zhang C, Guo Y, Niu W, Wang Y, et al. 2017. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.). BMC Genomics 18:744 doi: 10.1186/s12864-017-4110-y
CrossRef Google Scholar
|
[30]
|
Li Z, Jiao Y, Zhang C, Dou M, Weng K, et al. 2021. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnology Journal 19:1824−38 doi: 10.1111/pbi.13596
CrossRef Google Scholar
|
[31]
|
Lu S, Zhang Y, Zhu K, Yang W, Ye J, et al. 2018. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology 176:2657−76 doi: 10.1104/pp.17.01830
CrossRef Google Scholar
|
[32]
|
Xiang J, Liu RQ, Li TM, Han LJ, Zou Y, et al. 2013. Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata. Protoplasma 250:1315−25 doi: 10.1007/s00709-013-0514-y
CrossRef Google Scholar
|
[33]
|
Ye X, Zheng X, Zhai D, Song W, Tan B, et al. 2017. Expression patterns of ACS and ACO gene families and ethylene production in rachis and berry of grapes. HortScience 52:413−22 doi: 10.21273/HORTSCI11050-16
CrossRef Google Scholar
|
[34]
|
Zhang S, Fu M, Li Z, Li J, Hai L, et al. 2022. VvEIL2 and VvEIL4 regulate ethylene synthesis and carotenoid metabolism during senescence of grape rachis. Postharvest Biology and Technology 187:111853 doi: 10.1016/j.postharvbio.2022.111853
CrossRef Google Scholar
|
[35]
|
Li Z, Li J, Ye X, Zheng X, Tan B, et al. 2022. VvERF95 regulates chlorophyll degradation by transcriptional activation of VvPAO1 causing grape rachis degreening after harvesting. Scientia Horticulturae 303:111224 doi: 10.1016/j.scienta.2022.111224
CrossRef Google Scholar
|
[36]
|
Gao J, Zhang Y, Li Z, Liu M. 2020. Role of ethylene response factors (ERFs) in fruit ripening. Food Quality and Safety 4:15−20 doi: 10.1093/fqsafe/fyz042
CrossRef Google Scholar
|
[37]
|
Hu Y, Han Z, Wang T, Li H, Li Q, et al. 2022. Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes. Plant Physiology 188:2166−81 doi: 10.1093/plphys/kiac016
CrossRef Google Scholar
|
[38]
|
Wu B, Shen F, Wang X, Zheng W, Xiao C, et al. 2021. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. Plant Biotechnology Journal 19:1022−37 doi: 10.1111/pbi.13527
CrossRef Google Scholar
|
[39]
|
Wang X, Pan L, Wang Y, Meng J, Deng L, et al. 2021. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science 313:111084 doi: 10.1016/j.plantsci.2021.111084
CrossRef Google Scholar
|
[40]
|
Li S, Xie X, Liu S, Chen K, Yin X. 2019. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chemistry 299:125163 doi: 10.1016/j.foodchem.2019.125163
CrossRef Google Scholar
|
[41]
|
Catinot J, Huang J, Huang P, Tseng M, Chen Y, et al. 2015. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. Plant, Cell & Environment 38:2721−34 doi: 10.1111/pce.12583
CrossRef Google Scholar
|
[42]
|
Warmerdam S, Sterken MG, Van Schaik C, Oortwijn MEP, Lozano-Torres JL, et al. 2019. Mediator of tolerance to abiotic stress ERF6 regulates susceptibility of Arabidopsis to Meloidogyne incognita. Molecular Plant Pathology 20:137−52 doi: 10.1111/mpp.12745
CrossRef Google Scholar
|
[43]
|
Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, et al. 2018. Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnol J 16:322−36 doi: 10.1111/pbi.12774
CrossRef Google Scholar
|
[44]
|
Illgen S, Zintl S, Zuther E, Hincha DK, Schmülling T. 2020. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Molecular Biology 103:303−20 doi: 10.1007/s11103-020-00993-1
CrossRef Google Scholar
|
[45]
|
Bolt S, Zuther E, Zintl S, Hincha DK, Schmulling T. 2017. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant, Cell & Environment 40:108−20 doi: 10.1111/pce.12838
CrossRef Google Scholar
|
[46]
|
Kim NY, Jang YJ, Park OK. 2018. AP2/ERF family transcription factors ORA59 and RAP2.3 interact in the nucleus and function together in ethylene responses. Frontiers in Plant Science 9:1675 doi: 10.3389/fpls.2018.01675
CrossRef Google Scholar
|
[47]
|
Khan MA, Imtiaz M, Hussain A, Jalal F, Hayat S, et al. 2019. Isolation and functional characterization of an Ethylene Response Factor (RhERF092) from rose (Rosa hybrida). Plant Cell, Tissue and Organ Culture 140:157−72 doi: 10.1007/s11240-019-01719-y
CrossRef Google Scholar
|
[48]
|
Sun X, Zhang L, Wong DCJ, Wang Y, Zhu Z, et al. 2019. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. The Plant Journal 99:988−1002 doi: 10.1111/tpj.14378
CrossRef Google Scholar
|
[49]
|
Wang M, Zhu Y, Han R, Yin W, Guo C, et al. 2018. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana improves resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. International Journal of Molecular Sciences 10:696 doi: 10.3390/ijms19030696
CrossRef Google Scholar
|
[50]
|
Wang L, Luo Z, Li J, Yang M, Yan J, et al. 2019. Morphological and quality characterization of grape berry and rachis in response to postharvest 1-methylcyclopropene and elevated oxygen and carbon dioxide atmospheres. Postharvest Biology and Technology 153:107−17 doi: 10.1016/j.postharvbio.2019.04.001
CrossRef Google Scholar
|
[51]
|
Li L, Kaplunov T, Zutahy Y, Daus A, Porat R, et al. 2015. The effects of 1-methylcyclopropane and ethylene on postharvest rachis browning in table grapes. Postharvest Biology and Technology 107:16−22 doi: 10.1016/j.postharvbio.2015.04.001
CrossRef Google Scholar
|
[52]
|
Wang S, Wang T, Li Q, Xu C, Tian J, et al. 2022. Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions. The Plant Cell 34:1980−2000 doi: 10.1093/plcell/koac049
CrossRef Google Scholar
|