[1]
|
Liu X, Huang B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science 40:503−10 doi: 10.2135/cropsci2000.402503x
CrossRef Google Scholar
|
[2]
|
Taiz L, Zeiger E. 2002. Plant Physiology. 690 pp. USA: Sinaur Associates, Inc. pp. 602−3.
|
[3]
|
Jespersen D, Zhang J, Huang B. 2016. Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science 249:1−12 doi: 10.1016/j.plantsci.2016.04.016
CrossRef Google Scholar
|
[4]
|
Rossi S, Burgess P, Jespersen D, Huang B. 2017. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Science 57:S-169−S-178 doi: 10.2135/cropsci2016.06.0542
CrossRef Google Scholar
|
[5]
|
Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116 doi: 10.1016/j.envexpbot.2020.104116
CrossRef Google Scholar
|
[6]
|
Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4 doi: 10.48130/GR-2021-0004
CrossRef Google Scholar
|
[7]
|
Todorov DT, Karanov EN, Smith AR, Hall MA. 2003. Chlorophyllase activity and chlorophyll content in wild type and eti5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biologia plantarum 46:633−36 doi: 10.1023/A:1024896418839
CrossRef Google Scholar
|
[8]
|
Matile P, Schellenberg M, Vicentini F. 1997. Localization of chlorophyllase in the chloroplast envelope. Planta 201:96−99 doi: 10.1007/BF01258685
CrossRef Google Scholar
|
[9]
|
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell 21:767−85 doi: 10.1105/tpc.108.064089
CrossRef Google Scholar
|
[10]
|
Huff A. 1982. Peroxidase-catalysed oxidation of chlorophyll by hydrogen peroxide. Phytochemistry 21:261−65 doi: 10.1016/S0031-9422(00)95247-6
CrossRef Google Scholar
|
[11]
|
Frydman RB, Frydman B. 1979. Disappearance of porphobilinogen deaminase activity in leaves before the onset of senescence. Plant Physiology 63:1154−57 doi: 10.1104/pp.63.6.1154
CrossRef Google Scholar
|
[12]
|
Jones RM, Jordan PM. 1994. Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochemical Journal 299:895−902 doi: 10.1042/bj2990895
CrossRef Google Scholar
|
[13]
|
Tewari AK, Tripathy BC. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117:851−58 doi: 10.1104/pp.117.3.851
CrossRef Google Scholar
|
[14]
|
Ahmad M, Waraich EA, Hussain S, Ayyub CM, Ahmad Z, et al. 2022. Improving heat stress tolerance in Camelina sativa and Brassica napus through thiourea seed priming. Journal of Plant Growth Regulation 41:2886−902 doi: 10.1007/s00344-021-10482-4
CrossRef Google Scholar
|
[15]
|
Alam MN, Zhang L, Yang L, Islam R, Liu Y, et al. 2018. Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics 19:224 doi: 10.1186/s12864-018-4588-y
CrossRef Google Scholar
|
[16]
|
Llorens E, González-Hernández AI, Scalschi L, Fernández-Crespo E, Camañes G, et al. 2020. Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. In Priming-mediated stress and cross-stress tolerance in crop plants, eds. Hossain MA, Liu F, Burritt DJ, Fujita M, Huang B. London: Academic Press. pp. 1−20. https://doi.org/10.1016/B978-0-12-817892-8.00001-5
|
[17]
|
Li H, Li X, Liu S, Zhu X, Song F, et al. 2020. Induction of cross tolerance by cold priming and acclimation in plants: Physiological, biochemical and molecular mechanisms. In Priming-Mediated Stress and Cross-stress Tolerance in Crop Plants, eds. Hossain MA, Liu F, Burritt DJ, Fujita M, Huang B. London: Academic Press. pp.183−95. https://doi.org/10.1016/B978-0-12-817892-8.00012-X
|
[18]
|
Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6 doi: 10.48130/GR-2022-0006
CrossRef Google Scholar
|
[19]
|
Li Z, Burgess P, Peng Y, Huang B. 2022. Regulation of nutrient accumulation by γ-aminobutyric acid associated with GABA priming-enhanced heat tolerance in creeping bentgrass. Grass Research 2:5 doi: 10.48130/GR-2022-0005
CrossRef Google Scholar
|
[20]
|
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, et al. 2009. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal 60:795−804 doi: 10.1111/j.1365-313X.2009.04000.x
CrossRef Google Scholar
|
[21]
|
Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163:515−23 doi: 10.1016/S0168-9452(02)00159-0
CrossRef Google Scholar
|
[22]
|
Zhang J, Zhang Q, Xing J, Li H, Miao J, et al. 2021. Acetic acid mitigated salt stress by alleviating ionic and oxidative damages and regulating hormone metabolism in perennial ryegrass (Lolium perenne L.). Grass Research 1:3 doi: 10.48130/GR-2021-0003
CrossRef Google Scholar
|
[23]
|
Schneider G. 1970. Morphactins: physiology and performance. Annual Review of Plant Physiology 21:499−536 doi: 10.1146/annurev.pp.21.060170.002435
CrossRef Google Scholar
|
[24]
|
Dybing CD, Yarrow GL. 1984. Morphactin effects on soybean leaf anatomy and chlorophyll content. Journal of Plant Growth Regulation 3:9−21 doi: 10.1007/BF02041988
CrossRef Google Scholar
|
[25]
|
Awad YM, Hassan WM, Ok YS. 2009. Effects of flurenol on soybean (Glycine max L. Merrill) productivity and electrophoretic analysis of seed and root nodule proteins. Journal of Agronomy 8:93−99 doi: 10.3923/ja.2009.93.99
CrossRef Google Scholar
|
[26]
|
El-Desoki ER, Omara SI, Ali ZA, El-Masry RR. 1994. Effect of morphactin CF125 on the growth and development of Vicia faba L. and Orobanche crenata Forsk. Journal of Agricultural Sciences 19:1691−99
Google Scholar
|
[27]
|
Dybing CD, Lay C. 1981. Field evaluations of morphactins and other growth regulators for senescence delay of flax, soybean, wheat, and Oats. Crop Science 21:879−84 doi: 10.2135/cropsci1981.0011183X002100060020x
CrossRef Google Scholar
|
[28]
|
Harada H. 1967. Effects of morphactin on the negative geotropic response and leaf senescence. Naturwissenschaften, 54:95 doi: 10.1007/BF00608779
CrossRef Google Scholar
|
[29]
|
Dalal VK, Tripathy BC. 2012. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell & Environment 35:1685−703 doi: 10.1111/j.1365-3040.2012.02520.x
CrossRef Google Scholar
|
[30]
|
Turan S, Tripathy BC. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiologia Plantarum 153:477−91 doi: 10.111/ppl.12250
CrossRef Google Scholar
|
[31]
|
Gan L, Han L, Yin S, Jiang Y. 2020. Chlorophyll metabolism and gene expression in response to submergence stress and subsequent recovery in perennial ryegrass accessions differing in growth habits. Journal of Plant Physiology 251:153195 doi: 10.1016/j.jplph.2020.153195
CrossRef Google Scholar
|
[32]
|
Kato M, Shimizu S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65:729−35 doi: 10.1139/b87-097
CrossRef Google Scholar
|
[33]
|
Büchert AM, Civello PM, Martínez GA. 2011. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. Journal of Plant Physiology 168:337−43 doi: 10.1016/j.jplph.2010.07.011
CrossRef Google Scholar
|
[34]
|
Rodríguez MT, Gonzélez MP, Linares JM. 1987. Degradation of chlorophyll and chlorophyllase activity in senescing barley leaves. Journal of Plant Physiology 129:369−74 doi: 10.1016/S0176-1617(87)80094-9
CrossRef Google Scholar
|
[35]
|
Seema, Khokhar M, Mukherjee D. 2011. Role of kinetin and a morphactin in leaf disc senescence of Raphanus sativus L. under low light. Physiology and Molecular Biology of Plants 17:247−53 doi: 10.1007/s12298-011-0077-3
CrossRef Google Scholar
|
[36]
|
Hidema J, Makino A, Kurita Y, Mae T, Ojima K. 1992. Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PS II in rice leaves aged under different irradiances from full expansion through senescence. Plant and Cell Physiology 33:1209−14 doi: 10.1093/oxfordjournals.pcp.a078375
CrossRef Google Scholar
|
[37]
|
Lu C, Zhang J. 1998. Changes in photosystem II function during senescence of wheat leaves. Physiologia Plantarum 104:239−47 doi: 10.1034/j.1399-3054.1998.1040212.x
CrossRef Google Scholar
|
[38]
|
Lu C, Zhang J. 1998. Modifications in photosystem II photochemistry in senescent leaves of maize plants. Journal of Experimental Botany 49:1671−79 doi: 10.1093/jxb/49.327.1671
CrossRef Google Scholar
|
[39]
|
Ito H, Tanaka Y, Tsuji H, Tanaka A. 1993. Conversion of chlorophyll b to chlorophyll a by isolated cucumber etioplasts. Archives of Biochemistry and Biophysics 306:148−51 doi: 10.1006/abbi.1993.1492
CrossRef Google Scholar
|
[40]
|
Fang Z, Bouwkamp JC, Solomos T. 1998. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany 49:503−10 doi: 10.1093/jxb/49.320.503
CrossRef Google Scholar
|
[41]
|
Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada, H, et al. 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America 96:15362−67 doi: 10.1073/pnas.96.26.15362
CrossRef Google Scholar
|
[42]
|
Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347:32
Google Scholar
|
[43]
|
Beard JB. 1972. Turfgrass: Science and culture. 672 pp. NJ: Regents/Prentice Hall. pp. 9−13
|
[44]
|
Hiscox JD, Israelstam, GF. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57:1332−34 doi: 10.1139/b79-163
CrossRef Google Scholar
|
[45]
|
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15 doi: 10.1104/pp.24.1.1
CrossRef Google Scholar
|
[46]
|
Blum A, Ebercon, A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47 doi: 10.2135/cropsci1981.0011183X002100010013x
CrossRef Google Scholar
|
[47]
|
Iriyama K, Ogura N, Takamiya A. 1974. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. The Journal of Biochemistry 76:901−4 doi: 10.1093/oxfordjournals.jbchem.a130638
CrossRef Google Scholar
|
[48]
|
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54 doi: 10.1016/0003-2697(76)90527-3
CrossRef Google Scholar
|
[49]
|
Aiamla-or S, Kaewsuksaeng S, Shigyo M, Yamauchi N. 2010. Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chemistry 120:645−51 doi: 10.1016/j.foodchem.2009.10.056
CrossRef Google Scholar
|
[50]
|
Kaewsuksaeng S, Urano Y, Aiamla-or S, Shigyo M, Yamauchi N. 2011. Effect of UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan.) fruit. Postharvest Biology and Technology 61:124−30 doi: 10.1016/j.postharvbio.2011.02.014
CrossRef Google Scholar
|