[1]
|
Rohde A, Bhalerao RP. 2007. Plant dormancy in the perennial context. Trends in Plant Science 12:217−23 doi: 10.1016/j.tplants.2007.03.012
CrossRef Google Scholar
|
[2]
|
Wu J, Wu W, Liang J, Jin Y, Gazzarrini S, et al. 2019. GhTCP19 transcription factor regulates corm dormancy release by repressing GhNCED expression in Gladiolus. Plant and Cell Physiology 60:52−62 doi: 10.1093/pcp/pcy186
CrossRef Google Scholar
|
[3]
|
Shim D, Ko JH, Kim WC, Wang QJ, Keathley DE, Han KH. 2014. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Horticulture Research 1:14059 doi: 10.1038/hortres.2014.59
CrossRef Google Scholar
|
[4]
|
Gubler F, Millar AA, Jacobsen JV. 2005. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8:183−87 doi: 10.1016/j.pbi.2005.01.011
CrossRef Google Scholar
|
[5]
|
Wu J, Seng S, Sui J, Vonapartis E, Luo X, et al. 2015. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Frontiers in Plant Science 6:960 doi: 10.3389/fpls.2015.00960
CrossRef Google Scholar
|
[6]
|
Beauvieux R, Wenden B, Dirlewanger E. 2018. Bud dormancy in perennial fruit tree species: A pivotal role for oxidative cues. Frontiers in Plant Science 9:657 doi: 10.3389/fpls.2018.00657
CrossRef Google Scholar
|
[7]
|
Liu JY, Sherif SM. 2019. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Frontiers in Plant Science 10:1136 doi: 10.3389/fpls.2019.01136
CrossRef Google Scholar
|
[8]
|
Martín-Fontecha ES, Tarancón C, Cubas P. 2018. To grow or not to grow, a power-saving program induced in dormant buds. Current Opinion in Plant Biology 41:102−9 doi: 10.1016/j.pbi.2017.10.001
CrossRef Google Scholar
|
[9]
|
Lloret A, Badenes ML, Ríos G. 2018. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. Frontiers in Plant Science 9:1368 doi: 10.3389/fpls.2018.01368
CrossRef Google Scholar
|
[10]
|
Rohde A, Bastien C, Boerjan W, Thomas S. 2011. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiology 31:472−82 doi: 10.1093/treephys/tpr038
CrossRef Google Scholar
|
[11]
|
Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015. COLD1 confers chilling tolerance in rice. Cell 160:1209−21 doi: 10.1016/j.cell.2015.01.046
CrossRef Google Scholar
|
[12]
|
MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, et al. 2019. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. The Plant Journal 98:277−90 doi: 10.1111/tpj.14211
CrossRef Google Scholar
|
[13]
|
Miotto YE, Tessele C, Czermainski ABC, Porto DD, da Silveira Falavigna V, et al. 2019. Spring is coming: genetic analyses of the bud break date locus reveal candidate genes from the cold perception pathway to dormancy release in apple (Malus × domestica Borkh.). Frontiers in Plant Science 10:33 doi: 10.3389/fpls.2019.00033
CrossRef Google Scholar
|
[14]
|
Takemura Y, Kuroki K, Shida Y, Araki S, Takeuchi Y, et al. 2015. Comparative transcriptome analysis of the less-dormant Taiwanese pear and the dormant Japanese pear during winter season. Plos One 10:e0139595 doi: 10.1371/journal.pone.0139595
CrossRef Google Scholar
|
[15]
|
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. 2008. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536 doi: 10.1186/1471-2164-9-536
CrossRef Google Scholar
|
[16]
|
Fan X, Yang Y, Li M, Fu L, Zang Y, et al. 2020. Transcriptome and targeted metabolome reveal the regulation network of Lilium davidii var. unicolor during dormancy release. Preprint doi: 10.21203/rs.3.rs-126184/v1
CrossRef Google Scholar
|
[17]
|
Wu J, Jin Y, Liu C, Vonapartis E, Liang J, et al. 2019. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany 70:1221−37 doi: 10.1093/jxb/ery428
CrossRef Google Scholar
|
[18]
|
Tang K, Zhao L, Ren Y, Yang S, Zhu J, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62:258−63 doi: 10.1111/jipb.12918
CrossRef Google Scholar
|
[19]
|
Li J, Yan X, Yang Q, Ma Y, Yang B, et al. 2019. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. Plant Molecular Biology 99:575−86 doi: 10.1007/s11103-019-00837-7
CrossRef Google Scholar
|
[20]
|
Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, et al. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4:495−507 doi: 10.1007/s11295-007-0126-9
CrossRef Google Scholar
|
[21]
|
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21:397−402 doi: 10.1101/gad.1518407
CrossRef Google Scholar
|
[22]
|
Takahashi H, Nishihara M, Yoshida C, Itoh K. 2022. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: floral induction and endodormancy release. Plant Physiology 188:1887−99 doi: 10.1093/plphys/kiac007
CrossRef Google Scholar
|
[23]
|
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038
CrossRef Google Scholar
|
[24]
|
Pan W, Liang J, Sui J, Li J, Liu C, et al. 2021. ABA and bud dormancy in perennials: current knowledge and future perspective. Genes 12:1635 doi: 10.3390/genes12101635
CrossRef Google Scholar
|
[25]
|
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886−89 doi: 10.1126/science.aaf6005
CrossRef Google Scholar
|
[26]
|
Qiu Y, Li M, Kim RJA, Moore CM, Chen M. 2019. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nature Communications 10:140 doi: 10.1038/s41467-018-08059-z
CrossRef Google Scholar
|
[27]
|
Le Nard M. 1993. The physiology of flower bulbs: A comprehensive treatise on the physiology and utilization of ornamental flowering bulbous and tuberous plants. Amsterdam: Elsevier
|
[28]
|
Pedmale UV, Huang SSC, Zander M, Cole BJ, Hetzel J, et al. 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233−45 doi: 10.1016/j.cell.2015.12.018
CrossRef Google Scholar
|
[29]
|
Lu X, Zhou C, Xu P, Luo Q, Lian H, et al. 2015. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Molecular Plant 8:467−78 doi: 10.1016/j.molp.2014.11.025
CrossRef Google Scholar
|
[30]
|
Paradiso R, Proietti S. 2022. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41:742−80 doi: 10.1007/s00344-021-10337-y
CrossRef Google Scholar
|
[31]
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. 2010. Light-regulated plant growth and development. In Current Topics in Developmental Biology, Plant Development, ed. Timmermans MCP. 91: 455. USA: Academic Press, Elesvier. pp. 29−66 https://doi.org/10.1016/S0070-2153(10)91002-8html
|
[32]
|
Legris M, Ince YÇ, Fankhauser C. 2019. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications 10:5219 doi: 10.1038/s41467-019-13045-0
CrossRef Google Scholar
|
[33]
|
Ding J, Zhang B, Li Y, André D, Nilsson O. 2021. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. The New Phytologist 232:2339−52 doi: 10.1111/nph.17350
CrossRef Google Scholar
|
[34]
|
de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451:480−84 doi: 10.1038/nature06520
CrossRef Google Scholar
|
[35]
|
Yang L, Liu S, Lin R. 2020. The role of light in regulating seed dormancy and germination. Journal of Integrative Plant Biology 62:1310−26 doi: 10.1111/jipb.13001
CrossRef Google Scholar
|
[36]
|
Gubler F, Hughes T, Waterhouse P, Jacobsen J. 2008. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147:886−96 doi: 10.1104/pp.107.115469
CrossRef Google Scholar
|
[37]
|
Goggin DE, Steadman KJ, Powles SB. 2008. Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. The New Phytologist 180:81−89 doi: 10.1111/j.1469-8137.2008.02570.x
CrossRef Google Scholar
|
[38]
|
Gachango E, Shibairo S, Kabira J, Chemining'wa G, Demo P. 2008. Effects of light intensity on quality of potato seed tubers. African Journal of Agricultural Research 3:732−39
Google Scholar
|
[39]
|
Langens-Gerrits ML, Nashimoto S, Croes A, De Klerk G. 2001. Development of dormancy in different lily genotypes regenerated in vitro. Plant Growth Regulation 34:215−22 doi: 10.1023/A:1013318810119
CrossRef Google Scholar
|
[40]
|
Ben-Hod G, Kigel J, Steinitz B. 1988. Dormancy and flowering in Anemone coronaria L. as affected by photoperiod and temperature. Annals of Botany 61:623−33 doi: 10.1093/oxfordjournals.aob.a087596
CrossRef Google Scholar
|
[41]
|
Masuda J, Urakawa T, Ozaki Y, Okubo H. 2006. Short photoperiod induces dormancy in Lotus (Nelumbo nucifera). Annals of Botany 97:39−45 doi: 10.1093/aob/mcj008
CrossRef Google Scholar
|
[42]
|
Wilkins HF. 2005. Lilium longiflorum Thunb., a classic model to study temperature and photoperiod interactions on dormancy, flower induction, leaf unfolding and flower development. Proc. IX International Symposium on Flower Bulbs, ISHS Acta Horticulturae 673, 2005. Niigata, Japan: ISHS Acta Horticulturae. pp. 293−96 https://doi.org/10.17660/ActaHortic.2005.673.36html
|
[43]
|
Rudnicki RM, Nowak J, Saniewski M. 1976. The effect of gibberellic acid on sprouting and flowering of some tulip cultivars. Scientia Horticulturae 4:387−97 doi: 10.1016/0304-4238(76)90107-2
CrossRef Google Scholar
|
[44]
|
Situma MN, Mwangi M, Mulwa RMS. 2015. Effects of benzyl adenine and gibberellic acid pre-treatments on dormancy release, flowering time and multiplication of oriental lily (Lilium longiflorum) bulbs. Journal of Applied Horticulture 17:26−30 doi: 10.37855/jah.2015.v17i01.06
CrossRef Google Scholar
|
[45]
|
Marković M, Trifunović Momčilov M, Uzelac B, Jevremović S, Subotić A. 2021. Bulb dormancy in vitro—Fritillaria meleagris: initiation, release and physiological parameters. Plants 10:902 doi: 10.3390/plants10050902
CrossRef Google Scholar
|
[46]
|
Edrisi B, Mirzaei S. 2017. An investigation into the effect of gibberellic acid and storage temperature on vegetative and reproductive characteristics of tuberose (Polianthes tuberosa). Journal of Ornamental Plants 7:137−46
Google Scholar
|
[47]
|
Busov VB. 2019. Plant development: dual roles of poplar SVL in vegetative bud dormancy. Current Biology 29:R68−R70 doi: 10.1016/j.cub.2018.11.061
CrossRef Google Scholar
|
[48]
|
Marković M, Trifunović Momčilov M, Uzelac B, Cingel A, Milošević S, et al. 2020. Breaking the dormancy of snake's head fritillary (Fritillaria meleagris L.) in vitro bulbs−Part 1: effect of GA3, GA inhibitors and temperature on fresh weight, sprouting and sugar content. Plants 9:1449 doi: 10.3390/plants9111449
CrossRef Google Scholar
|
[49]
|
Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, et al. 2011. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-β-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell 23:130−46 doi: 10.1105/tpc.110.081307
CrossRef Google Scholar
|
[50]
|
Zhang Y, Yuan Y, Liu Z, Zhang T, Li F, et al. 2021. GA3 is superior to GA4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC Plant Biology 21:323 doi: 10.1186/s12870-021-03106-2
CrossRef Google Scholar
|
[51]
|
Lv L, Huo X, Wen L, Gao Z, Khalil-Ur-Rehman M. 2018. Isolation and role of PmRGL2 in GA-mediated floral bud dormancy release in Japanese apricot (Prunus mume Siebold et Zucc.). Frontiers in Plant Science 9:27 doi: 10.3389/fpls.2018.00027
CrossRef Google Scholar
|
[52]
|
Subbaraj AK, Funnell KA, Woolley DJ. 2010. Dormancy and flowering are regulated by the reciprocal interaction between cytokinin and gibberellin in Zantedeschia. Journal of Plant Growth Regulation 29:487−99 doi: 10.1007/s00344-010-9160-1
CrossRef Google Scholar
|
[53]
|
Letham DS, Smith NG, Willcocks DA. 2003. Cytokinin metabolism in Narcissus bulbs: chilling promotes acetylation of zeatin riboside. Functional Plant Biology 30:525−32 doi: 10.1071/FP02097
CrossRef Google Scholar
|
[54]
|
Bromley JR, Warnes BJ, Newell CA, Thomson JCP, James CM, et al. 2014. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. The Biochemical Journal 458:225−37 doi: 10.1042/BJ20130792
CrossRef Google Scholar
|
[55]
|
Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. 2011. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiology 155:776−96 doi: 10.1104/pp.110.168252
CrossRef Google Scholar
|
[56]
|
Ormenese S, Bernier G, Périlleux C. 2006. Cytokinin application to the shoot apical meristem of Sinapis alba enhances secondary plasmodesmata formation. Planta 224:1481−4 doi: 10.1007/s00425-006-0317-x
CrossRef Google Scholar
|
[57]
|
Horner W, Brunkard JO. 2021. Cytokinins stimulate plasmodesmatal transport in leaves. Frontiers in Plant Science 12:674128 doi: 10.3389/fpls.2021.674128
CrossRef Google Scholar
|
[58]
|
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, et al. 2020. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. Postharvest Biology and Technology 168:111267 doi: 10.1016/j.postharvbio.2020.111267
CrossRef Google Scholar
|
[59]
|
Keren-Paz V, Borochov A. 1984. Involvement of ethylene in liatris corm dormancy. In Ethylene: Biochemical, Physiological and Applied Aspects, ed. Fuchs Y, Chalutz E. Dordrecht: Springer Netherlands. pp. 163−64 https://doi.org/10.1007/978-94-009-6178-4_24
|
[60]
|
Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, et al. 2006. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. The Plant Journal 46:628−40 doi: 10.1111/j.1365-313X.2006.02722.x
CrossRef Google Scholar
|
[61]
|
Sumitomo K, Narumi T, Satoh S, Hisamatsu T. 2008. Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. Journal of Experimental Botany 59:4075−82 doi: 10.1093/jxb/ern247
CrossRef Google Scholar
|
[62]
|
Ginzburg C. 1974. Studies on the role of ethylene in gladiolus cormel germination. Plant Science Letters 2:133−38 doi: 10.1016/0304-4211(74)90011-X
CrossRef Google Scholar
|
[63]
|
Uyemura S, Imanishi H. 1984. Effects of duration of exposure to ethylene on dormancy release in freesia corms. Scientia Horticulturae 22:383−90 doi: 10.1016/S0304-4238(84)80010-2
CrossRef Google Scholar
|
[64]
|
Imanishi H, Fortanier EJ. 1983. Effects of exposing freesia corms to ethylene or to smoke on dormancy-breaking and flowering. Scientia Horticulturae 18:381−89 doi: 10.1016/0304-4238(83)90019-5
CrossRef Google Scholar
|
[65]
|
Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, et al. 2009. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology 149:863−73 doi: 10.1104/pp.108.131516
CrossRef Google Scholar
|
[66]
|
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 2004. A compound from smoke that promotes seed germination. Science 305:977 doi: 10.1126/science.1099944
CrossRef Google Scholar
|
[67]
|
Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM. 2012. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63:107−30 doi: 10.1146/annurev-arplant-042811-105545
CrossRef Google Scholar
|
[68]
|
Wang L, Xu Q, Yu H, Ma H, Li X, et al. 2020. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. The Plant Cell 32:2251−70 doi: 10.1105/tpc.20.00140
CrossRef Google Scholar
|
[69]
|
Wang L, Waters MT, Smith SM. 2018. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. The New Phytologist 219:605−18 doi: 10.1111/nph.15192
CrossRef Google Scholar
|
[70]
|
Sami A, Rehman S, Tanvir MA, Zhou X, Zhu Z, et al. 2020. Assessment of the germination potential of Brassica oleracea seeds treated with karrikin 1 and cyanide, which modify the ethylene biosynthetic pathway. Journal of Plant Growth Regulation 40:1257−69 doi: 10.1007/s00344-020-10186-1
CrossRef Google Scholar
|
[71]
|
Chandel NS. 2021. Glycolysis. Cold Spring Harbor Perspectives in Biology 13:a040535 doi: 10.1101/cshperspect.a040535
CrossRef Google Scholar
|
[72]
|
Amir J, Kahn V, Unterman M. 1977. Respiration, ATP level, and sugar accumulation in potato tubers during storage at 4°. Phytochemistry 16:1495−98 doi: 10.1016/0031-9422(77)84008-9
CrossRef Google Scholar
|
[73]
|
Chrungoo NK. 1992. Concepts of dormancy regulation in vegetative plant propagules: A review. Environmental and Experimental Botany 32:309−18 doi: 10.1016/0098-8472(92)90043-2
CrossRef Google Scholar
|
[74]
|
Argüello JA, de Bottini GA, Luna R, Bottini R. 1986. Dormancy in Garlic (Allium sativum L.) cv. Rosado Paraguayo II. The onset of the process during plant ontogeny. Plant Cell Physiol 27:553−57 doi: 10.1093/OXFORDJOURNALS.PCP.A077132
CrossRef Google Scholar
|
[75]
|
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. 2019. The proof is in the bulb: glycerol influences key stages of lily development. The Plant Journal 97:321−40 doi: 10.1111/tpj.14122
CrossRef Google Scholar
|
[76]
|
Kamenetsky R, Zemah H, Ranwala AP, Vergeldt F, Ranwala NK, et al. 2003. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytologist 158:109−18 doi: 10.1046/j.1469-8137.2003.00719.x
CrossRef Google Scholar
|
[77]
|
Han H, Yi M. 2012. MRI can reveal metabolic changes in lily bulbs in vivo during dormancy release. Science China Life Sciences 55:1002−6 doi: 10.1007/s11427-012-4394-8
CrossRef Google Scholar
|
[78]
|
Yang C, Li Q, Jiang X, Fan Y, Gao J, et al. 2016. Dynamic changes in α- and β-amylase activities and gene expression in bulbs of the Oriental hybrid lily 'Siberia' during dormancy release. The Journal of Horticultural Science and Biotechnology 90:753−59 doi: 10.1080/14620316.2015.11668742
CrossRef Google Scholar
|
[79]
|
Sonnewald S, Sonnewald U. 2014. Regulation of potato tuber sprouting. Planta 239:27−38 doi: 10.1007/s00425-013-1968-z
CrossRef Google Scholar
|
[80]
|
Chen Q, Zhang J, Li G. 2022. Dynamic epigenetic modifications in plant sugar signal transduction. Trends in Plant Science 27:379−90 doi: 10.1016/j.tplants.2021.10.009
CrossRef Google Scholar
|
[81]
|
Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, et al. 2011. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiology 156:1754−71 doi: 10.1104/pp.111.179903
CrossRef Google Scholar
|
[82]
|
Ríos G, Leida C, Conejero A, Badenes ML. 2014. Epigenetic regulation of bud dormancy events in perennial plants. Frontiers in Plant Science 5:247 doi: 10.3389/fpls.2014.00247
CrossRef Google Scholar
|
[83]
|
Li W, Yong Y, Zhang Y, Lyu Y. 2019. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily. International Journal of Molecular Sciences 20:2694 doi: 10.3390/ijms20112694
CrossRef Google Scholar
|
[84]
|
Luján-Soto E, Dinkova TD. 2021. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. Plants 10:236 doi: 10.3390/plants10020236
CrossRef Google Scholar
|
[85]
|
Saito T, Bai S, Imai T, Ito A, Nakajima I, et al. 2015. Histone modification and signalling cascade of thedormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant, Cell & Environment 38:1157−66 doi: 10.1111/pce.12469
CrossRef Google Scholar
|
[86]
|
Leida C, Conesa A, Llácer G, Badenes ML, Ríos G. 2012. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. The New Phytologist 193:67−80 doi: 10.1111/j.1469-8137.2011.03863.x
CrossRef Google Scholar
|
[87]
|
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123 doi: 10.1038/s41467-021-21449-0
CrossRef Google Scholar
|
[88]
|
David Law R, Suttle JC. 2004. Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiologia Plantarum 120:642−49 doi: 10.1111/j.0031-9317.2004.0273.x
CrossRef Google Scholar
|
[89]
|
Iwasaki M, Penfield S, Lopez-Molina L. 2022. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annual Review of Plant Biology 73:355−78 doi: 10.1146/annurev-arplant-102820-090750
CrossRef Google Scholar
|
[90]
|
Zhou Y, Wang W, Yang L, Su X, He M. 2021. Identification and expression analysis of microRNAs in response to dormancy release during cold storage of Lilium pumilum bulbs. Journal of Plant Growth Regulation 40:388−404 doi: 10.1007/s00344-020-10108-1
CrossRef Google Scholar
|
[91]
|
Guyomarc'h S, Bertrand C, Delarue M, Zhou D. 2005. Regulation of meristem activity by chromatin remodelling. Trends in Plant Science 10:332−38 doi: 10.1016/j.tplants.2005.05.003
CrossRef Google Scholar
|
[92]
|
Genger RK, Peacock JW, Dennis ES, Finnegan JE. 2003. Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216:461−66 doi: 10.1007/s00425-002-0855-9
CrossRef Google Scholar
|
[93]
|
Yang Z, Qian S, Scheid RN, Lu L, Chen X, et al. 2018. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nature Genetics 50:1247−53 doi: 10.1038/s41588-018-0187-8
CrossRef Google Scholar
|
[94]
|
Cao Y, Dai Y, Cui S, Ma L. 2008. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. The Plant Cell 20:2586−602 doi: 10.1105/tpc.108.062760
CrossRef Google Scholar
|
[95]
|
Bu Z, Yu Y, Li Z, Liu Y, Jiang W, et al. 2014. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genetics 10:e1004617 doi: 10.1371/journal.pgen.1004617
CrossRef Google Scholar
|
[96]
|
Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B. 2009. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. PNAS 106:8386−91 doi: 10.1073/pnas.0903566106
CrossRef Google Scholar
|
[97]
|
Wu J, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, et al. 2019. Abscisic acid-dependent histone demethylation during postgermination growth arrest in Arabidopsis. Plant, Cell & Environment 42:2198−214 doi: 10.1111/pce.13547
CrossRef Google Scholar
|
[98]
|
Willmann MR, Poethig RS. 2007. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology 10:503−11 doi: 10.1016/j.pbi.2007.07.004
CrossRef Google Scholar
|
[99]
|
Rubio-Somoza I, Weigel D. 2011. MicroRNA networks and developmental plasticity in plants. Trends in Plant Science 16:258−64 doi: 10.1016/j.tplants.2011.03.001
CrossRef Google Scholar
|
[100]
|
Megha S, Basu U, Kav NNV. 2018. Regulation of low temperature stress in plants by microRNAs. Plant, Cell & Environment 41:1−15 doi: 10.1111/pce.12956
CrossRef Google Scholar
|
[101]
|
Gao J, Ni X, Li H, Hayat F, Shi T, et al. 2021. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol 105:83−97 doi: 10.1007/s11103-020-01070-3
CrossRef Google Scholar
|
[102]
|
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, et al. 2021. The identification of small RNAs differentially expressed in apple buds reveals a potential role of the Mir159-MYB regulatory module during dormancy. Plants 10:2665 doi: 10.3390/plants10122665
CrossRef Google Scholar
|
[103]
|
Niu Q, Li J, Cai D, Qian M, Jia H, et al. 2016. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. Journal of Experimental Botany 67:239−57 doi: 10.1093/jxb/erv454
CrossRef Google Scholar
|
[104]
|
Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, et al. 2017. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiologia Plantarum 159:244−61 doi: 10.1111/ppl.12517
CrossRef Google Scholar
|
[105]
|
Zhang Y, Wang Y, Gao X, Liu C, Gai S. 2018. Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Scientific Reports 8:4537 doi: 10.1038/s41598-018-22415-5
CrossRef Google Scholar
|
[106]
|
Potkar R, Recla J, Busov V. 2013. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochemical and Biophysical Research Communications 431:512−18 doi: 10.1016/j.bbrc.2013.01.027
CrossRef Google Scholar
|
[107]
|
Liu S, Mi X, Zhang R, An Y, Zhou Q, et al. 2019. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta 250:1111−29 doi: 10.1007/s00425-019-03207-1
CrossRef Google Scholar
|
[108]
|
Bai S, Saito T, Ito A, Tuan PA, Xu Y, et al. 2016. Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics 17:230 doi: 10.1186/s12864-016-2514-8
CrossRef Google Scholar
|
[109]
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, et al. 2019. The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany 70:4429−39 doi: 10.1093/jxb/erz197
CrossRef Google Scholar
|
[110]
|
Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, et al. 2018. Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany 69:3425−38 doi: 10.1093/jxb/ery072
CrossRef Google Scholar
|
[111]
|
Wang Z, Ma R, Zhao M, Wang F, Zhang N, Si H. 2020. NO and ABA Interaction Regulates Tuber Dormancy and Sprouting in Potato. Frontiers in Plant Science 11:311 doi: 10.3389/fpls.2020.00311
CrossRef Google Scholar
|
[112]
|
Tang L, Chhajed S, Vashisth T, Olmstead MA, Olmstead JW, et al. 2019. Transcriptomic study of early responses to the bud dormancy-breaking agent hydrogen cyanamide in 'TropicBeauty' peach. Journal of the American Society for Horticultural Science 144:244−56 doi: 10.21273/JASHS04686-19
CrossRef Google Scholar
|
[113]
|
Sudawan B, Chang CS, Chao HF, Ku MSB, Yen YF. 2016. Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biology 16:202 doi: 10.1186/s12870-016-0889-y
CrossRef Google Scholar
|
[114]
|
Coleman WK. 1983. An evaluation of bromoethane for breaking tuber dormancy in Solanum tuberosum L. American Potato Journal 60:161−67 doi: 10.1007/BF02853997
CrossRef Google Scholar
|
[115]
|
Destefano-Beltrán L, Knauber D, Huckle L, Suttle J. 2006. Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. Journal of Experimental Botany 57:2879−86 doi: 10.1093/jxb/erl050
CrossRef Google Scholar
|
[116]
|
Reis RC, Côrrea PC, Devilla IA, Santos ES, Ascheri DPR, et al. 2013. Drying of yam starch (Discorea ssp.) and glycerol filmogenic solutions at different temperatures. LWT - Food Science and Technology 50:651−56 doi: 10.1016/j.lwt.2012.07.033
CrossRef Google Scholar
|
[117]
|
Koo AJK, Howe GA. 2009. The wound hormone jasmonate. Phytochemistry 70:1571−80 doi: 10.1016/j.phytochem.2009.07.018
CrossRef Google Scholar
|
[118]
|
Sadawarti MJ, Pandey KK, Singh BP, Samadiya RK. 2016. A review on potato microtuber storability and dormancy. Journal of Applied and Natural Science 8:2319−24 doi: 10.31018/jans.v8i4.1132
CrossRef Google Scholar
|
[119]
|
Khokhar KM. 2020. A short review on onion bulb dormancy metabolism. Advances in Biotechology & Microbiology 15:555915
Google Scholar
|
[120]
|
Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122:403−14 doi: 10.1104/pp.122.2.403
CrossRef Google Scholar
|
[121]
|
Fugate KK, Ribeiro WS, Lulai EC, Deckard EL, Finger FL. 2016. Cold temperature delays wound healing in postharvest sugarbeet roots. Frontiers in Plant Science 7:499 doi: 10.3389/fpls.2016.00499
CrossRef Google Scholar
|
[122]
|
Mustefa G, Mohammed W, Dechassa N, Gelmesa D. 2017. Effects of different dormancy-breaking and storage methods on seed tuber sprouting and subsequent yield of two potato (Solanum tuberosum L.) varieties. Open Agriculture 2:220−29 doi: 10.1515/opag-2017-0023
CrossRef Google Scholar
|
[123]
|
Struik PC, van der Putten PEL, Caldiz DO, Scholte K. 2006. Response of stored potato seed tubers from contrasting cultivars to accumulated day-degrees. Crop Science 46:1156−68 doi: 10.2135/cropsci2005.08-0267
CrossRef Google Scholar
|
[124]
|
Konze JR, Kwiatkowski GM. 1981. Rapidly induced ethylene formation after wounding is controlled by the regulation of 1-aminocyclopropane-1-carboxylic acid synthesis. Planta 151:327−30 doi: 10.1007/BF00393286
CrossRef Google Scholar
|
[125]
|
Lulai EC, Suttle JC, Pederson SM. 2008. Regulatory involvement of abscisic acid in potato tuber wound-healing. Journal of Experimental Botany 59:1175−86 doi: 10.1093/jxb/ern019
CrossRef Google Scholar
|
[126]
|
Footitt S, Clewes R, Feeney M, Finch-Savage WE, Frigerio L. 2019. Aquaporins influence seed dormancy and germination in response to stress. Plant, Cell & Environment 42:2325−39 doi: 10.1111/pce.13561
CrossRef Google Scholar
|