[1]
|
USDA NASS. 2022. United States Department of Agriculture National Agricultural Statistics Service. (Accessed Apr. 6, 2023). https://quickstats.nass.usda.gov
|
[2]
|
Kritzman A, Lampel M, Raccah B, Gera A. 2001. Distribution and transmission of Iris yellow spot virus. Plant Disease 85:838−42 doi: 10.1094/PDIS.2001.85.8.838
CrossRef Google Scholar
|
[3]
|
Nagata T, Almeida ACL, de O. Resende R, de Ávila AC. 1999. The identification of the vector species of Iris yellow spot tospovirus occurring on onion in Brazil. Plant Disease 83:399 doi: 10.1094/PDIS.1999.83.4.399A
CrossRef Google Scholar
|
[4]
|
Gent DH, du Toit LJ, Fichtner SF, Mohan SK, Pappu HR, et al. 2006. Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Disease 90:1468−80 doi: 10.1094/PD-90-1468
CrossRef Google Scholar
|
[5]
|
Srinivasan R, Sundaraj S, Pappu HR, Diffie S, Riley DG, et al. 2012. Transmission of Iris yellow spot virus by Frankliniella fusca and Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology 105:40−47 doi: 10.1603/EC11094
CrossRef Google Scholar
|
[6]
|
Szostek S, Schwartz HF. 2015. Overwintering sites of Iris yellow spot virus and Thrips tabaci (Thysanoptera: Thripidae) in Colorado. Southwestern Entomologist 40:273−90
Google Scholar
|
[7]
|
Derks AFLM, Lemmers MEC. 1996. Detection of tospoviruses in bulbous crops and transmissibility by vegetative propagation. Acta Horticulturae 432:132−39 doi: 10.17660/ActaHortic.1996.432.17
CrossRef Google Scholar
|
[8]
|
Hall JM, Mohan K, Knott EA, Moyer JW. 1993. Tospoviruses associated with scape blight of onion (Allium cepa) seed crops in Idaho. Plant Disease 77:952 doi: 10.1094/PD-77-0952B
CrossRef Google Scholar
|
[9]
|
Schwartz HF, Brown WM Jr, Blunt T, Gent DH. 2002. Iris yellow spot virus on onion in Colorado. Plant Disease 86:560 doi: 10.1094/PDIS.2002.86.5.560D
CrossRef Google Scholar
|
[10]
|
Bag S, Singh J, Davis RM, Chounet W, Pappu HR. 2009. Iris yellow spot virus in onion in Nevada and northern California. Plant Disease 93:674 doi: 10.1094/PDIS-93-6-0674C
CrossRef Google Scholar
|
[11]
|
Creamer R, Sanogo S, Moya A, Romero J, Molina-Bravo R, et al. 2004. Iris yellow spot virus on onion in New Mexico. Plant Disease 88:1049 doi: 10.1094/PDIS.2004.88.9.1049C
CrossRef Google Scholar
|
[12]
|
Crowe FJ, Pappu HR. 2005. Outbreak of Iris yellow spot virus in onion seed crops in central Oregon. Plant Disease 89:105 doi: 10.1094/PD-89-0105C
CrossRef Google Scholar
|
[13]
|
du Toit LJ, Pappu HR, Druffel KL, Pelter GQ. 2004. Iris yellow spot virus in onion bulb and seed crops in Washington. Plant Disease 88:222 doi: 10.1094/PDIS.2004.88.2.222A
CrossRef Google Scholar
|
[14]
|
Hoepting CA, Schwartz HF, Pappu HR. 2007. First report of Iris yellow spot virus on onion in New York. Plant Disease 91:327 doi: 10.1094/PDIS-91-3-0327A
CrossRef Google Scholar
|
[15]
|
Miller ME, Saldana RR, Black MC, Pappu HR. 2006. First report of Iris yellow spot virus on onion (Allium cepa) in Texas. Plant Disease 90:1359 doi: 10.1094/PD-90-1359B
CrossRef Google Scholar
|
[16]
|
Mullis SW, Langston DB Jr, Gitaitis RD, Sherwood JL, Csinos AC, et al. 2004. First report of Vidalia onion (Allium cepa) naturally infected with Tomato spotted wilt virus and Iris yellow spot virus (family Bunyaviridae, genus Tospovirus) in Georgia. Plant Disease 88:1285 doi: 10.1094/PDIS.2004.88.11.1285B
CrossRef Google Scholar
|
[17]
|
Pappu H, Matheron M. 2008. Characterization of Iris yellow spot virus from Onion in Arizona. Plant Health Progress 9:44 doi: 10.1094/PHP-2008-0711-01-BR
CrossRef Google Scholar
|
[18]
|
Gent DH, Schwartz HF, Khosla R. 2004. Distribution and Incidence of Iris yellow spot virus in Colorado and its relation to onion plant population and yield. Plant Disease 88:446−52 doi: 10.1094/PDIS.2004.88.5.446
CrossRef Google Scholar
|
[19]
|
MacIntyre Allen JK, Scott-Dupree CD, Tolman JH, Ron Harris C. 2005. Resistance of Thrips tabaci to pyrethroid and organophosphorus insecticides in Ontario, Canada. Pest Management Science 61:809−15 doi: 10.1002/ps.1068
CrossRef Google Scholar
|
[20]
|
Martin NA, Workman PJ, Butler RC. 2003. Insecticide resistance in onion thrips (Thrips tabaci) (Thysanoptera: Thripidae). New Zealand Journal of Crop and Horticultural Science 31:99−106 doi: 10.1080/01140671.2003.9514242
CrossRef Google Scholar
|
[21]
|
Buckland KR, Alston DG, Reeve JR, Nischwitz C, Drost D. 2017. Trap Crops in onion to reduce onion thrips and Iris yellow spot virus. Southwestern Entomologist 42:73−90 doi: 10.3958/059.042.0108
CrossRef Google Scholar
|
[22]
|
Boateng CO, Schwartz HF, Havey MJ, Otto K. 2014. Evaluation of onion germplasm for resistance to Iris yellow spot (Iris yellow spot virus) and onion Thrips, Thrips tabaci. Southwestern Entomologist 39:237−60 doi: 10.3958/059.039.0218
CrossRef Google Scholar
|
[23]
|
du Toit L, Pelter G, Pappu H. 2004. IYSV challenges to the onion seed industry in Washington. Proc. National Allium Research Conference, Grand Junction, 2004, 213–17. Colorado State University, Fort Collins, CO. https://s3.wp.wsu.edu/uploads/sites/2193/2017/08/Pappu-2004-NARC-IYSV-Challenges-to-Seed-Industry-in-WA1.pdf
|
[24]
|
Mohseni-Moghadam M, Cramer CS, Steiner RL, Creamer R. 2011. Evaluating winter-sown onion entries for Iris yellow spot virus susceptibility. HortScience 46:1224−29 doi: 10.21273/HORTSCI.46.9.1224
CrossRef Google Scholar
|
[25]
|
Multani PS, Cramer CS, Steiner RL, Creamer R. 2009. Screening winter-sown onion entries for Iris yellow spot virus tolerance. HortScience 44:627−32 doi: 10.21273/HORTSCI.44.3.627
CrossRef Google Scholar
|
[26]
|
Schwartz HF, Gent DH, Fichtner SF, Hammon RW, Khosla R. 2004. Integrated management of Iris yellow spot virus in onion. Proc. National Allium Research Conference, Grand Junction, 2004, 207–12. Colorado State University, Fort Collins, CO.
|
[27]
|
Cramer CS, Kamal N, Singh N. 2017. Evaluating Iris yellow spot disease incidence and severity in onion germplasm of varying leaf characteristics. HortScience 52:527−32 doi: 10.21273/HORTSCI11770-17
CrossRef Google Scholar
|
[28]
|
Cramer CS, Singh N, Kamal N, Pappu HR. 2014. Screening onion plant introduction accessions for tolerance to onion thrips and Iris yellow spot. HortScience 49:1253−61 doi: 10.21273/HORTSCI.49.10.1253
CrossRef Google Scholar
|
[29]
|
Cramer CS, Mandal S, Sharma S, Nourbakhsh SS, Goldman I, et al. 2021. Recent advances in onion genetic improvement. Agronomy 11:482 doi: 10.3390/agronomy11030482
CrossRef Google Scholar
|
[30]
|
Singh N, Cramer CS. 2019. Improved tolerance for onion thrips and iris yellow spot in onion plant introductions after two selection cycles. Horticulturae 5:18 doi: 10.3390/horticulturae5010018
CrossRef Google Scholar
|
[31]
|
Kamal N, Cramer CS. 2018. Selection progress for resistance to Iris yellow spot in onions. HortScience 53:1088−94 doi: 10.21273/HORTSCI13041-18
CrossRef Google Scholar
|
[32]
|
Singh N. 2013. Selection progress for reduced Iris yellow spot symptom expression in onion. Ph. D. thesis. New Mexico State University, US.
|
[33]
|
Kamal N, Nourbakhsh SS, Cramer CS. 2021. Reduced Iris yellow spot symptoms through selection within onion breeding lines. Horticulturae 7:12 doi: 10.3390/horticulturae7020012
CrossRef Google Scholar
|
[34]
|
Walker SJ. 2009. Bulb onion culture and management for southern New Mexico. New Mexico State University Cooperative Extension Service, College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, US. https://pubs.nmsu.edu/_circulars/CR563/
|
[35]
|
Shahabeddin Nourbakhsh S, Cramer CS. 2022. Onion germplasm possesses lower early season thrips numbers. Horticulturae 8:123 doi: 10.3390/horticulturae8020123
CrossRef Google Scholar
|
[36]
|
Damon SJ, Groves RL, Havey MJ. 2014. Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. Journal of the American Society for Horticultural Science 139:495−501 doi: 10.21273/JASHS.139.4.495
CrossRef Google Scholar
|
[37]
|
Diaz-Montano J, Fuchs M, Nault BA, Shelton AM. 2010. Evaluation of onion cultivars for resistance to onion thrips (Thysanoptera: Thripidae) and Iris yellow spot virus. Journal of Economic Entomology 103:925−37 doi: 10.1603/EC09263
CrossRef Google Scholar
|
[38]
|
Ibrahim ND, Adesiyun AA. 2010. Effect of rainfall in the control of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) in Sokoto, Nigeria. Agriculture and Biology Journal of North America 1:377−86 doi: 10.5251/ABJNA.2010.1.3.377.386
CrossRef Google Scholar
|
[39]
|
Hsu CL, Hoepting CA, Fuchs M, Shelton AM, Nault BA. 2010. Temporal dynamics of Iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields. Environmental Entomology 39:266−77 doi: 10.1603/EN09165
CrossRef Google Scholar
|
[40]
|
Birithia RK, Subramanian S, Muthomi JW, Narla RD. 2014. Resistance to Iris yellow spot virus and onion thrips among onion varieties grown in Kenya. International Journal of Tropical Insect Science 34:73−79 doi: 10.1017/S1742758414000289
CrossRef Google Scholar
|
[41]
|
Schwartz HF, Gent DH, Fichtner SM, Hammon R, Cranshaw WS, et al. 2009. Straw mulch and reduced-risk pesticide impacts on thrips and Iris yellow spot virus on western-grown onions. Southwestern Entomologist 34:13−29 doi: 10.3958/059.034.0102
CrossRef Google Scholar
|
[42]
|
Birithia RK, Subramanian S, Muthomi JW, Narla RD. 2018. Seasonal dynamics and alternate hosts of thrips transmitted Iris yellow spot virus in Kenya. African Crop Science Journal 26:365−76 doi: 10.4314/acsj.v26i3.3
CrossRef Google Scholar
|
[43]
|
Shock CC, Feibert EBG, Riveira A, Saunders LD. 2015. Response of onion yield, grade, and financial return to plant population and irrigation system. HortScience 50:1312−18 doi: 10.21273/HORTSCI.50.9.1312
CrossRef Google Scholar
|
[44]
|
National Onion Association. 2021. Cutting, preparation tips and more. (Accessed 7 Apr. 2023). www.onions-usa.org/chefs-educators/foodservice/cutting-preparation-tips-and-more
|
[45]
|
Leach A, Reiners S, Fuchs M, Nault B. 2017. Evaluating integrated pest management tactics for onion thrips and pathogens they transmit to onion. Agriculture, Ecosystems, and Environment 250:89−101 doi: 10.1016/j.agee.2017.08.031
CrossRef Google Scholar
|
[46]
|
Shock CC, Feibert E, Jensen L, Mohan SK, Saunders LD. 2008. Onion variety response to Iris yellow spot virus. HortTechnology 18:539−44 doi: 10.21273/HORTTECH.18.3.539
CrossRef Google Scholar
|
[47]
|
Nourbakhsh SS, Cramer CS. 2022. Onion plant size measurements as predictors for onion bulb size. Horticulturae 8:682 doi: 10.3390/horticulturae8080682
CrossRef Google Scholar
|
[48]
|
Wood JB, Cramer CS, Steiner R, Heerema R, Schutte BJ, et al. 2023. Onions selected for reduced symptom expression of Iris yellow spot have higher photosynthetic rates. HortScience 58:254−58 doi: 10.21273/HORTSCI16878-22
CrossRef Google Scholar
|
[49]
|
United States Department of Agriculture. 2013. Onion genetic improvement. https://portal.nifa.usda.gov/web/crisprojectpages/0217588-onion-genetic-improvement.html
|