[1]
|
Uemura M, Steponkus PL. 1994. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology 104:479−96 doi: 10.1104/pp.104.2.479
CrossRef Google Scholar
|
[2]
|
Rodrigo MJ, Alquezar B, Zacarías L. 2006. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). Journal of Experimental Botany 57:633−43 doi: 10.1093/jxb/erj048
CrossRef Google Scholar
|
[3]
|
Priya R, Siva R. 2015. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family. Journal of Plant Research 128:519−34 doi: 10.1007/s10265-015-0726-7
CrossRef Google Scholar
|
[4]
|
An S, Liu Y, Sang K, Wang T, Yu J, et al. 2023. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato. Journal of Integrative Plant Biology 65:10−24 doi: 10.1111/jipb.13356
CrossRef Google Scholar
|
[5]
|
Chi C, Xu X, Wang M, Zhang H, Fang P, et al. 2021. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research 8:237 doi: 10.1038/s41438-021-00668-y
CrossRef Google Scholar
|
[6]
|
Zhang Y, Peng Y, Liu J, Yan J, Zhu K, et al. 2023. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. Plant Physiology 192:648−65 doi: 10.1093/plphys/kiad085
CrossRef Google Scholar
|
[7]
|
Wang F, Wang X, Zhang Y, Yan J, Ahammed GJ, et al. 2022. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato. New Phytologist 233:2127−43 doi: 10.1111/nph.17934
CrossRef Google Scholar
|
[8]
|
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, et al. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130:2129−41 doi: 10.1104/pp.008532
CrossRef Google Scholar
|
[9]
|
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, et al. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America 97:11632−37 doi: 10.1073/pnas.190309197
CrossRef Google Scholar
|
[10]
|
Tamminen I, Mäkelä P, Heino P, Palva ET. 2001. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. The Plant Journal 25:1−8 doi: 10.1111/j.1365-313X.2001.00927.x
CrossRef Google Scholar
|
[11]
|
Liu Y, He J, Chen Z, Ren X, Hong X, et al. 2010. ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. The Plant Journal 63:749−65 doi: 10.1111/j.1365-313X.2010.04280.x
CrossRef Google Scholar
|
[12]
|
He J, Duan Y, Hua D, Fan G, Wang L, et al. 2012. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. The Plant Cell 24:1815−33 doi: 10.1105/tpc.112.098707
CrossRef Google Scholar
|
[13]
|
Murayama M, Hayashi S, Nishimura N, Ishide M, Kobayashi K, et al. 2012. Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. Journal of Experimental Botany 63:5301−10 doi: 10.1093/jxb/ers188
CrossRef Google Scholar
|
[14]
|
González B, Vera P. 2019. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. Molecular Plant 12:1227−42 doi: 10.1016/j.molp.2019.04.013
CrossRef Google Scholar
|
[15]
|
Yan X, Ma L, Pang H, Wang P, Liu L, et al. 2019. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiology 181:249−61 doi: 10.1104/pp.19.00528
CrossRef Google Scholar
|
[16]
|
Guo Z, Tan J, Zhuo C, Wang C, Xiang B, et al. 2014. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnology Journal 12:601−12 doi: 10.1111/pbi.12166
CrossRef Google Scholar
|
[17]
|
Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, et al. 1994. Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Molecular Biology 26:781−90 doi: 10.1007/BF00028848
CrossRef Google Scholar
|
[18]
|
Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31:777−86 doi: 10.1046/j.1365-313x.2002.01394.x
CrossRef Google Scholar
|
[19]
|
Liu W, Zhang R, Xiang C, Zhang R, Wang Q, et al. 2021. Transcriptomic and physiological analysis reveal that α-linolenic acid biosynthesis responds to early chilling tolerance in pumpkin rootstock varieties. Frontiers in Plant Science 12:669565 doi: 10.3389/fpls.2021.669565
CrossRef Google Scholar
|
[20]
|
Liu W, Xiang C, Li X, Wang T, Lu X, et al. 2020. Identification of long-distance transmissible mRNA between scion and rootstock in cucurbit seedling heterografts. International Journal of Molecular Sciences 21:5253 doi: 10.3390/ijms21155253
CrossRef Google Scholar
|
[21]
|
Xiong L, Schumaker KS, Zhu JK. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell 14:S165−S183 doi: 10.1105/tpc.000596
CrossRef Google Scholar
|
[22]
|
Ji K, Kai W, Zhao B, Sun Y, Yuan B, et al. 2014. SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. Journal of Experimental Botany 65:5243−55 doi: 10.1093/jxb/eru288
CrossRef Google Scholar
|
[23]
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, et al. 2021. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. Plant, Cell & Environment 44:2966−86 doi: 10.1111/pce.14121
CrossRef Google Scholar
|
[24]
|
Jiao J, Cheng F, Zhang X, Xie L, Li Z, et al. 2016. Preparation of graphene oxide and its mechanism in promoting tomato roots growth. Journal of Nanoscience and Nanotechnology 16:4216−23 doi: 10.1166/jnn.2016.12601
CrossRef Google Scholar
|
[25]
|
Wang X, Xu N, Dong K, Li H, Shi S, et al. 2021. SlNCED1 affects pollen maturation in tomato by regulating the expression of anther-specific genes. Plant Growth Regulation 95:191−205 doi: 10.1007/s10725-021-00732-6
CrossRef Google Scholar
|
[26]
|
Sun L, Yuan B, Zhang M, Wang L, Cui M, et al. 2012. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany 63:3097−108 doi: 10.1093/jxb/ers026
CrossRef Google Scholar
|
[27]
|
Ding F, Wang X, Li Z, Wang M. 2023. Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato. Plants 12:60 doi: 10.3390/plants12010060
CrossRef Google Scholar
|
[28]
|
Wang F, Zhang L, Chen X, Wu X, Xiang X, et al. 2019. SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiology 179:749−60 doi: 10.1104/pp.18.01140
CrossRef Google Scholar
|
[29]
|
Lindroth AM, Saarikoski P, Flygh G, Clapham D, Grönroos R, et al. 2001. Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Molecular Biology 46:335−46 doi: 10.1023/A:1010637012528
CrossRef Google Scholar
|
[30]
|
Pulla RK, Kim YJ, Parvin S, Shim JS, Lee JH, et al. 2009. Isolation of S-adenosyl-L-methionine synthetase gene from Panax ginseng C.A. meyer and analysis of its response to abiotic stresses. Physiology and Molecular Biology of Plants 15:267−75 doi: 10.1007/s12298-009-0030-x
CrossRef Google Scholar
|
[31]
|
Notaguchi M, Higashiyama T, Suzuki T. 2015. Identification of mRNAs that move over long distances using an RNA-seq analysis of Arabidopsis/Nicotiana benthamiana heterografts. Plant and Cell Physiology 56:311−21 doi: 10.1093/pcp/pcu210
CrossRef Google Scholar
|
[32]
|
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1:15025 doi: 10.1038/nplants.2015.25
CrossRef Google Scholar
|
[33]
|
Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, et al. 2015. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biology 15:251 doi: 10.1186/s12870-015-0626-y
CrossRef Google Scholar
|
[34]
|
Zhang Z, Zheng Y, Ham BK, Chen J, Yoshida A, et al. 2016. Vascular-mediated signalling involved in early phosphate stress response in plants. Nature Plants 2:16033 doi: 10.1038/nplants.2016.33
CrossRef Google Scholar
|