[1]
|
Brantley SL, Shaughnessy A, Lebedeva MI, Balashov VN. 2023. How temperature-dependent silicate weathering acts as Earth's geological thermostat. Science 379:382−89 doi: 10.1126/science.add2922
CrossRef Google Scholar
|
[2]
|
Possan E, Thomaz WA, Aleandri GA, Felix EF, dos Santos ACP. 2017. CO2 uptake potential due to concrete carbonation: a case study. Case Studies in Construction Materials 6:147−61 doi: 10.1016/j.cscm.2017.01.007
CrossRef Google Scholar
|
[3]
|
Renforth P. 2019. The negative emission potential of alkaline materials. Nature Communications 10:1401 doi: 10.1038/s41467-019-09475-5
CrossRef Google Scholar
|
[4]
|
Azeem M, Raza S, Li G, Smith P, Zhu YG. 2022. Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters 4:293−306 doi: 10.1007/s42832-022-0136-4
CrossRef Google Scholar
|
[5]
|
Beerling DJ, Kantzas EP, Lomas MR, Wade P, Eufrasio RM, et al. 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583:242−48 doi: 10.1038/s41586-020-2448-9
CrossRef Google Scholar
|
[6]
|
Bertagni MB, Porporato A. 2022. The Carbon-Capture Efficiency of Natural Water Alkalinization: implications For Enhanced weathering. The Science of the Total Environment 838:156524 doi: 10.1016/j.scitotenv.2022.156524
CrossRef Google Scholar
|
[7]
|
Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, et al. 2016. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change 6:402−6 doi: 10.1038/nclimate2882
CrossRef Google Scholar
|
[8]
|
Edwards DP, Lim F, James RH, Pearce CR, Scholes J, et al. 2017. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biology Letters 13:20160715 doi: 10.1098/rsbl.2016.0715
CrossRef Google Scholar
|
[9]
|
Seifritz W. 1990. CO2 disposal by means of silicates. Nature 345:486 doi: 10.1038/345486b0
CrossRef Google Scholar
|
[10]
|
Hartmann J, Jansen N, Dürr HH, Kempe S, Köhler P. 2009. Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions? Global and Planetary Change 69:185−94 doi: 10.1016/j.gloplacha.2009.07.007
CrossRef Google Scholar
|
[11]
|
Gaillardet J, Dupré B, Louvat P, Allègre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159:3−30 doi: 10.1016/s0009-2541(99)00031-5
CrossRef Google Scholar
|
[12]
|
Strefler J, Amann T, Bauer N, Kriegler E, Hartmann J. 2018. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters 13:034010 doi: 10.1088/1748-9326/aaa9c4
CrossRef Google Scholar
|
[13]
|
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. 2013. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, et al. Cambridge, United Kingdom and New York, USA: Cambridge University Press. pp. 465−670. https://doi.org/10.1017/CBO9781107415324.015
|
[14]
|
Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Gregor L, Hauck J, et al. 2022. Global Carbon Budget 2022. Earth System Science Data 14:4811−900 doi: 10.5194/essd-14-4811-2022
CrossRef Google Scholar
|
[15]
|
Beaulieu E, Goddéris Y, Donnadieu Y, Labat D, Roelandt C. 2012. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change 2:346−49 doi: 10.1038/nclimate1419
CrossRef Google Scholar
|
[16]
|
Goll DS, Moosdorf N, Hartmann J, Brovkin V. 2014. Climate-driven changes in chemical weathering and associated phosphorus release since 1850: implications for the land carbon balance. Geophysical Research Letters 41:3553−58 doi: 10.1002/2014gl059471
CrossRef Google Scholar
|
[17]
|
Snæbjörnsdóttir SÓ, Sigfússon B, Marieni C, Goldberg D, Gislason SR, et al. 2020. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment 1:90−102 doi: 10.1038/s43017-019-0011-8
CrossRef Google Scholar
|
[18]
|
Zhang Y, Jackson C, Krevor S. 2022. An estimate of the amount of geological CO2 storage over the period of 1996–2020. Environmental Science & Technology Letters 9(8):693−98 doi: 10.1021/acs.estlett.2c00296
CrossRef Google Scholar
|
[19]
|
Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, et al. 2016. Substantial global carbon uptake by cement carbonation. Nature Geoscience 9:880−83 doi: 10.1038/ngeo2840
CrossRef Google Scholar
|
[20]
|
Cao Z, Myers RJ, Lupton RC, Duan H, Sacchi R, et al. 2020. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications 11:3777 doi: 10.1038/s41467-020-17583-w
CrossRef Google Scholar
|
[21]
|
Guo R, Wang J, Bing L, Tong D, Ciais P, et al. 2021. Global CO2 uptake by cement from 1930 to 2019. Earth System Science Data 13:1791−805 doi: 10.5194/essd-13-1791-2021
CrossRef Google Scholar
|
[22]
|
Goll DS, Ciais P, Amann T, Buermann W, Chang J, et al. 2021. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nature Geoscience 14:545−49 doi: 10.1038/s41561-021-00798-x
CrossRef Google Scholar
|
[23]
|
Fuhrman J, Bergero C, Weber M, Monteith S, Wang FM, et al. 2023. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nature Climate Change 13:341−50 doi: 10.1038/s41558-023-01604-9
CrossRef Google Scholar
|
[24]
|
Zhang N, Duan H, Miller TR, Tam VWY, Liu G, et al. 2020. Mitigation of carbon dioxide by accelerated sequestration in concrete debris. Renewable and Sustainable Energy Reviews 117:109495 doi: 10.1016/j.rser.2019.109495
CrossRef Google Scholar
|
[25]
|
Renforth P, Washbourne CL, Taylder J, Manning DAC. 2011. Silicate production and availability for mineral carbonation. Environmental Science & Technology 45:2035−41 doi: 10.1021/es103241w
CrossRef Google Scholar
|
[26]
|
Xiao J, Ding T. 2013. Research on recycled concrete and its utilization in building structures in China. Frontiers of Structural and Civil Engineering 7(3):215−26 doi: 10.1007/s11709-013-0212-z
CrossRef Google Scholar
|
[27]
|
Huang B, Wang X, Kua H, Geng Y, Bleischwitz R, et al. 2018. Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling 129:36−44 doi: 10.1016/j.resconrec.2017.09.029
CrossRef Google Scholar
|
[28]
|
Kelly TD. 1998. Crushed cement concrete substitution for construction aggregates, a materials flow analysis. Report. US Department of the Interior, US Geological Survey, Reston, VA. https://doi.org/10.3133/cir1177
|
[29]
|
Kapur A, Keoleian G, Kendall A, Kesler SE. 2008. Dynamic modeling of In-use cement stocks in the United States. Journal of Industrial Ecology 12:539−56 doi: 10.1111/j.1530-9290.2008.00055.x
CrossRef Google Scholar
|
[30]
|
Pommer K, Pade C. 2005. Guidelines: Uptake of carbon dioxide in the life cycle inventory of concrete. NI-project 03018. Denmark: Nordic Innovation Centre, Danish Technological Institute. www.dti.dk/_/media/21046%5F769418%5FTask%204%5F%20Guidelines%5Ffinal%20report%5FDTI%5F%2031%2D01%2D2006.pdf
|
[31]
|
Pade C, Guimaraes M. 2007. The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research 37:1348−56 doi: 10.1016/j.cemconres.2007.06.009
CrossRef Google Scholar
|
[32]
|
Tang Z, Li W, Tam VWY, Xue C. 2020. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X 6:100036 doi: 10.1016/j.rcrx.2020.100036
CrossRef Google Scholar
|
[33]
|
Toghroli A, Mehrabi P, Shariati M, Trung NT, Jahandari S, et al. 2020. Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers. Construction and Building Materials 252:118997 doi: 10.1016/j.conbuildmat.2020.118997
CrossRef Google Scholar
|
[34]
|
Galan I, Andrade C, Mora P, Sanjuan MA. 2010. Sequestration of CO2 by concrete carbonation. Environmental Science & Technology 44:3181−86 doi: 10.1021/es903581d
CrossRef Google Scholar
|
[35]
|
Pacheco Torgal F, Miraldo S, Labrincha JA, De Brito J. 2012. An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC. Construction and Building Materials 36:141−50 doi: 10.1016/j.conbuildmat.2012.04.066
CrossRef Google Scholar
|
[36]
|
Haselbach L, Thomas A. 2014. Carbon sequestration in concrete sidewalk samples. Construction and Building Materials 54:47−52 doi: 10.1016/j.conbuildmat.2013.12.055
CrossRef Google Scholar
|
[37]
|
Ashraf W. 2016. Carbonation of cement-based materials: Challenges and opportunities. Construction and Building Materials 120:558−70 doi: 10.1016/j.conbuildmat.2016.05.080
CrossRef Google Scholar
|
[38]
|
Almaraz M, Bingham NL, Holzer IO, Geoghegan EK, Goertzen H, et al. 2022. Methods for determining the CO2 removal capacity of enhanced weathering in agronomic settings. Frontiers in Climate 4:970429 doi: 10.3389/fclim.2022.970429
CrossRef Google Scholar
|
[39]
|
Son Y, Stott K, Manning DAC, Cooper JM. 2021. Carbon sequestration in artificial silicate soils facilitated by arbuscular mycorrhizal fungi and glomalin-related soil protein. European Journal of Soil Science 72:863−70 doi: 10.1111/ejss.13058
CrossRef Google Scholar
|
[40]
|
Ramos CG, dos Santos de Medeiros D, Gomez L, Oliveira LFS, Schneider IAH, et al. 2020. Evaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize crops. Natural Resources Research 29:1583−600 doi: 10.1007/s11053-019-09529-x
CrossRef Google Scholar
|
[41]
|
Kelland ME, Wade PW, Lewis AL, Taylor LL, Sarkar B, et al. 2020. Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global Change Biology 26:3658−76 doi: 10.1111/gcb.15089
CrossRef Google Scholar
|
[42]
|
Buckingham FL, Henderson GM, Holdship P, Renforth P. 2022. Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK. Applied Geochemistry 147:105482 doi: 10.1016/j.apgeochem.2022.105482
CrossRef Google Scholar
|
[43]
|
Larkin CS, Andrews MG, Pearce CR, Yeong KL, Beerling DJ, et al. 2022. Quantification of CO2 removal in a large-scale enhanced weathering field trial on an oil palm plantation in Sabah, Malaysia. Frontiers in Climate 4:959229 doi: 10.3389/fclim.2022.959229
CrossRef Google Scholar
|
[44]
|
Vienne A, Poblador S, Portillo-Estrada M, Hartmann J, Ijiehon S, et al. 2022. Enhanced weathering using basalt rock powder: carbon sequestration, co-benefits and risks in a mesocosm study with Solanumtuberosum. Frontiers in Climate 4:869456 doi: 10.3389/fclim.2022.869456
CrossRef Google Scholar
|
[45]
|
Taylor LL, Driscoll CT, Groffman PM, Rau GH, Blum JD, et al. 2021. Increased carbon capture by a silicate-treated forested watershed affected by acid deposition. Biogeosciences 18:169−88 doi: 10.5194/bg-18-169-2021
CrossRef Google Scholar
|
[46]
|
Haque F, Santos RM, Dutta A, Thimmanagari M, Chiang YW. 2019. Co-benefits of wollastonite weathering in agriculture: CO2 sequestration and promoted plant growth. ACS Omega 4:1425−33 doi: 10.1021/acsomega.8b02477
CrossRef Google Scholar
|
[47]
|
Blanc-Betes E, Kantola IB, Gomez-Casanovas N, Hartman MD, Parton WJ, Lewis AL, et al. 2021. In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops. GCB Bioenergy 13:224−41 doi: 10.1111/gcbb.12757
CrossRef Google Scholar
|
[48]
|
Lefebvre D, Goglio P, Williams A, Manning DAC, de Azevedo AC, et al. 2019. Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil. Journal of Cleaner Production 233:468−81 doi: 10.1016/j.jclepro.2019.06.099
CrossRef Google Scholar
|
[49]
|
de Oliveira Garcia W, Amann T, Hartmann J, Karstens K, Popp A, et al. 2020. Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences 17:2107−33 doi: 10.5194/bg-17-2107-2020
CrossRef Google Scholar
|
[50]
|
Lewis AL, Sarkar B, Wade P, Kemp SJ, Hodson ME, et al. 2021. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering. Applied Geochemistry 132:105023 doi: 10.1016/j.apgeochem.2021.105023
CrossRef Google Scholar
|
[51]
|
Kantzas EP, Val Martin M, Lomas MR, Eufrasio RM, Renforth P, et al. 2022. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nature Geoscience 15:382−89 doi: 10.1038/s41561-022-00925-2
CrossRef Google Scholar
|
[52]
|
Emma Bedford. 2023. Total land area used for arable crops in the United Kingdom (UK) 2003-2022. www.statista.com/statistics/315942/total-area-used-for-arable-crops-in-the-united-kingdom-uk/#:~:text=In%202020%2C%20approximately%204.3%20million%20hectares%20of%20land,United%20Kingdom%20can%20be%20found%20at%20the%20following
|
[53]
|
FAO. 2020. Land use in agriculture by the numbers. www.fao.org/sustainability/news/detail/en/c/1274219/#:~:text=Globally%20agricultural%20land%20area%20is%20approximately%20five%20billion,consist%20of%20meadows%20and%20pastures%29%20for%20grazing%20livestock
|
[54]
|
Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, et al. 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13:063002 doi: 10.1088/1748-9326/aabf9f
CrossRef Google Scholar
|
[55]
|
Schuiling RD, Krijgsman P. 2006. Enhanced weathering: an effective and cheap tool to sequester Co2. Climatic Change 74:349−54 doi: 10.1007/s10584-005-3485-y
CrossRef Google Scholar
|
[56]
|
Köhler P, Hartmann J, Wolf-Gladrow DA. 2010. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences of the United States of America 107:20228−33 doi: 10.1073/pnas.1000545107
CrossRef Google Scholar
|
[57]
|
Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, et al. 2018. Farming with crops and rocks to address global climate, food and soil security. Nature Plants 4:138−47 doi: 10.1038/s41477-018-0108-y
CrossRef Google Scholar
|
[58]
|
Renforth P, Manning DAC, Lopez-Capel E. 2009. Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Applied Geochemistry 24:1757−64 doi: 10.1016/j.apgeochem.2009.05.005
CrossRef Google Scholar
|
[59]
|
Washbourne CL, Renforth P, Manning DAC. 2012. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. The Science of the Total Environment 431:166−75 doi: 10.1016/j.scitotenv.2012.05.037
CrossRef Google Scholar
|
[60]
|
Pan SY, Chen YH, Fan LS, Kim H, Gao X, et al. 2020. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nature Sustainability 3:399−405 doi: 10.1038/s41893-020-0486-9
CrossRef Google Scholar
|
[61]
|
Engelsen CJ, Sæther DH, Mehus J, Pade C. 2005. Carbon dioxide uptake in demolished and crushed concrete: CO2 uptake during the concrete life cycle. Nordic Innovation Centre project number: 03018. https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2418901/Prosjektrapport395.pdf?sequence=1
|
[62]
|
Tam VWY, Butera A, Le KN, Li W. 2020. Utilising CO2 technologies for recycled aggregate concrete: a critical review. Construction and Building Materials 250:118903 doi: 10.1016/j.conbuildmat.2020.118903
CrossRef Google Scholar
|
[63]
|
Stefaniuk D, Hajduczek M, Weaver JC, Ulm FJ, Masic A. 2023. Cementing CO2 into C-S-H: a step toward concrete carbon neutrality. PNAS Nexus 2:pgad052 doi: 10.1093/pnasnexus/pgad052
CrossRef Google Scholar
|
[64]
|
Xiao J, Xie H, Zhang C. 2012. Investigation on building waste and reclaim in Wenchuan earthquake disaster area. Resources, Conservation and Recycling 61:109−17 doi: 10.1016/j.resconrec.2012.01.012
CrossRef Google Scholar
|
[65]
|
Leelawat N, Suppasri A, Charvet I, Imamura F. 2014. Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors: A new perspective on building damage analysis. Natural Hazards 73:449−71 doi: 10.1007/s11069-014-1081-z
CrossRef Google Scholar
|
[66]
|
Hayes GP, Myers EK, Dewey JW, Briggs RW, Earle PS, et al. 2016. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015. Report 2016–1192. Reston (VA): US Geological Survey. https://doi.org/10.3133/ofr20161192
|
[67]
|
The World Bank. 2023. Earthquake direct damage in Syria estimated at $5.1 billion in areas already severely ravaged by long conflict and displacement. www.worldbank.org/en/news/press-release/2023/02/28/earthquake-direct-damage-in-syria-estimated-at-5-1-billion-in-areas-already-severely-ravaged-by-long-conflict-and-displa
|
[68]
|
The World Bank. 2023. Global Rapid Post-Disaster Damage Estimation (GRADE) Report : Mw 7.8 Türkiye-Syria Earthquake - Assessment of the Impact on Syria : Results as of February 20, 2023 (English). Report. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099084502282328299
|
[69]
|
Alcalde J, Smith P, Haszeldine RS, Bond CE. 2018. The potential for implementation of Negative Emission Technologies in Scotland. International Journal of Greenhouse Gas Control 76:85−91 doi: 10.1016/j.ijggc.2018.06.021
CrossRef Google Scholar
|
[70]
|
Myers C, Nakagaki T. 2020. Direct mineralization of atmospheric CO2 using natural rocks in Japan. Environmental Research Letters 15:124018 doi: 10.1088/1748-9326/abc217
CrossRef Google Scholar
|
[71]
|
Kolosz BW, Goddard MA, Jorat ME, Aumonier J, Sohi SP, et al. 2017. A sustainability framework for engineering carbon capture soil in transport infrastructure. International Journal of Transport Development and Integration 1:74−83 doi: 10.2495/tdi-v1-n1-74-83
CrossRef Google Scholar
|
[72]
|
Tuğrul Tunç E. 2018. Effects of basalt aggregates on concrete properties. Qualitative Studies 13(2):68−79 doi: 10.12739/NWSA.2018.13.2.E0043
CrossRef Google Scholar
|
[73]
|
Karasin A, Hadzima-Nyarko M, Işık E, Doğruyol M, Karasin IB, et al. 2022. The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks. Materials 15:1581 doi: 10.3390/ma15041581
CrossRef Google Scholar
|
[74]
|
Porder S. 2019. How plants enhance weathering and how weathering is important to Plants. Elements 15:241−46 doi: 10.2138/gselements.15.4.241
CrossRef Google Scholar
|
[75]
|
Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, et al. 1997. Rock-eating fungi. Nature 389:682−83 doi: 10.1038/39493
CrossRef Google Scholar
|
[76]
|
van Breemen N, Finlay R, Lundström U, Jongmans AG, Giesler R, et al. 2000. Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49:53−67 doi: 10.1023/A:1006256231670
CrossRef Google Scholar
|
[77]
|
Li Z, Liu L, Chen J, Teng HH. 2016. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44:319−22 doi: 10.1130/g37561.1
CrossRef Google Scholar
|
[78]
|
Rosenstock NP, van Hees PAW, Fransson PMA, Finlay RD, Rosling A. 2019. Biological enhancement of mineral weathering by Pinus sylvestris seedlings–effects of plants, ectomycorrhizal fungi, and elevated CO2. Biogeosciences 16:3637−49 doi: 10.5194/bg-16-3637-2019
CrossRef Google Scholar
|
[79]
|
Vicca S, Goll DS, Hagens M, Hartmann J, Janssens IA, et al. 2022. Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes? Global Change Biology 28:711−26 doi: 10.1111/gcb.15993
CrossRef Google Scholar
|
[80]
|
Wild B, Gerrits R, Bonneville S. 2022. The contribution of living organisms to rock weathering in the critical zone. NPJ Materials Degradation 6:98 doi: 10.1038/s41529-022-00312-7
CrossRef Google Scholar
|
[81]
|
Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, et al. 2009. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615−18 doi: 10.1130/G25699A.1
CrossRef Google Scholar
|
[82]
|
Quirk J, Beerling DJ, Banwart SA, Kakonyi G, Romero-Gonzalez ME, et al. 2012. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biology Letters 8:1006−11 doi: 10.1098/rsbl.2012.0503
CrossRef Google Scholar
|
[83]
|
Verbruggen E, Struyf E, Vicca S. 2021. Can arbuscular mycorrhizal fungi speed up carbon sequestration by enhanced weathering? Plants, People, Planet 3:445−53 doi: 10.1002/ppp3.10179
CrossRef Google Scholar
|
[84]
|
Schaefer DA, Gui H, Mortimer PE, Xu J. 2021. Arbuscular mycorrhiza and sustainable agriculture. Circular Agricultural Systems 1:6 doi: 10.48130/cas-2021-0006
CrossRef Google Scholar
|
[85]
|
Rinder T, von Hagke C. 2021. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal - Insights from a regional assessment. Journal of Cleaner Production 315:128178 doi: 10.1016/j.jclepro.2021.128178
CrossRef Google Scholar
|
[86]
|
Kanzaki Y, Planavsky NJ, Reinhard CT. 2023. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering. PNAS Nexus 2:pgad059 doi: 10.1093/pnasnexus/pgad059
CrossRef Google Scholar
|
[87]
|
Meysman FJR, Montserrat F. 2017. Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biology Letters 13:20160905 doi: 10.1098/rsbl.2016.0905
CrossRef Google Scholar
|
[88]
|
Bach LT, Gill SJ, Rickaby REM, Gore S, Renforth R. 2019. CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate 1:7 doi: 10.3389/fclim.2019.00007
CrossRef Google Scholar
|
[89]
|
Scherer L, Gürdal İ, van Bodegom PM. 2022. Characterization factors for ocean acidification impacts on marine biodiversity. Journal of Industrial Ecology 26:2069−79 doi: 10.1111/jiec.13274
CrossRef Google Scholar
|
[90]
|
Smith P, Adams J, Beerling DJ, Beringer T, Calvin KV, et al. 2019. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annual Review of Environment and Resources 44:255−86 doi: 10.1146/annurev-environ-101718-033129
CrossRef Google Scholar
|
[91]
|
Haque F, Chiang YW, Santos RM. 2019b. Alkaline mineral soil amendment: a climate change 'stabilization wedge'? Energies 12:2299 doi: 10.3390/en12122299
CrossRef Google Scholar
|
[92]
|
Zomer RJ, Bossio DA, Trabucco A, van Noordwijk M, Xu J. 2022. Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land. Circular Agricultural Systems 2:3 doi: 10.48130/CAS-2022-0003
CrossRef Google Scholar
|