[1]
|
Wang Z, Gong J, Wang Q, Qiao X. 2021. Emergency Management Science and Technology: An international transdisciplinary platform. Emergency Management Science and Technology 1:1 doi: 10.48130/EMST-2021-0001
CrossRef Google Scholar
|
[2]
|
Chan JFW, Yuan S, Kok KH, To KKW, Chu H, et al. 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 395(10223):514−23 doi: 10.1016/S0140-6736(20)30154-9
CrossRef Google Scholar
|
[3]
|
Palese P. 2004. Influenza: Old and new threats. Nature Medicine 10:S82−S87 doi: 10.1038/nm1141
CrossRef Google Scholar
|
[4]
|
World Health Organization. 2019. Coronavirus Disease (COVID-19) Situation Reports. www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
|
[5]
|
Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, et al. 2021. Airborne transmission of respiratory viruses. Science 373(6558):eabd9149 doi: 10.1126/science.abd9149
CrossRef Google Scholar
|
[6]
|
Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, et al. 2001. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11(3):231−52 doi: 10.1038/sj.jea.7500165
CrossRef Google Scholar
|
[7]
|
Qian H, Miao T, Liu L, Zheng X, Luo D, et al. 2021. Indoor transmission of SARS-CoV-2. Indoor Air 31(3):639−45 doi: 10.1111/ina.12766
CrossRef Google Scholar
|
[8]
|
Bulfone TC, Malekinejad M, Rutherford GW, Razani N. 2021. Outdoor transmission of SARS-CoV-2 and other respiratory viruses: A systematic review. The Journal of Infectious Diseases 223(4):550−61 doi: 10.1093/infdis/jiaa742
CrossRef Google Scholar
|
[9]
|
Morawska L, Milton DK. 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases 71(9):2311−13 doi: 10.1093/cid/ciaa939
CrossRef Google Scholar
|
[10]
|
Feng B, Xu K, Gu S, Zheng S, Zou Q, et al. 2021. Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. Journal of Hazardous Materials 402:123771 doi: 10.1016/j.jhazmat.2020.123771
CrossRef Google Scholar
|
[11]
|
Woodward H, de Kreij RJB, Kruger ES, Fan S, Tiwari A, et al. 2022. An evaluation of the risk of airborne transmission of COVID-19 on an inter-city train carriage. Indoor Air 32(10):e13121 doi: 10.1111/ina.13121
CrossRef Google Scholar
|
[12]
|
Morawska L, Allen J, Bahnfleth W, Bluyssen PM, Boerstra A, et al. 2021. A paradigm shift to combat indoor respiratory infection. Science 372(6543):689−91 doi: 10.1126/science.abg2025
CrossRef Google Scholar
|
[13]
|
Hang J, Li Y, Jin R. 2014. The influence of human walking on the flow and airborne transmission in a six-bed isolation room: Tracer gas simulation. Building and Environment 77:119−34 doi: 10.1016/j.buildenv.2014.03.029
CrossRef Google Scholar
|
[14]
|
Mangili A, Gendreau MA. 2005. Transmission of infectious diseases during commercial air travel. Lancet 365(9463):989−96 doi: 10.1016/S0140-6736(05)71089-8
CrossRef Google Scholar
|
[15]
|
Wang Z, Galea ER, Grandison A, Ewer J, Jia F. 2022. A coupled Computational Fluid Dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains. Safety Science 147:105572 doi: 10.1016/j.ssci.2021.105572
CrossRef Google Scholar
|
[16]
|
Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, et al. 2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 40(2):122−33 doi: 10.1016/j.jaerosci.2008.10.003
CrossRef Google Scholar
|
[17]
|
Zhu N, Zhang D, Wang W, Li X, Yang B, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine 382(8):727−33 doi: 10.1056/NEJMoa2001017
CrossRef Google Scholar
|
[18]
|
Fabian P, McDevitt JJ, DeHaan WH, Fung ROP, Cowling BJ, et al. 2008. Influenza virus in human exhaled breath: An observational study. PLoS One 3(7):e2691 doi: 10.1371/journal.pone.0002691
CrossRef Google Scholar
|
[19]
|
Coleman K, Tay D, Tan K, Xiang Ong S, Than T, et al. 2021. Viral load of SARS-CoV-2 in respiratory aerosols emitted by COVID-19 patients while breathing, talking, and singing. Clinical Infectious Diseases 74(10):1722−28 doi: 10.1093/cid/ciab691
CrossRef Google Scholar
|
[20]
|
Kutter JS, Spronken MI, Fraaij PL, Fouchier RA, Herfst S. 2018. Transmission routes of respiratory viruses among humans. Current Opinion in Virology 28:142−51 doi: 10.1016/j.coviro.2018.01.001
CrossRef Google Scholar
|
[21]
|
Fennelly KP. 2020. Particle sizes of infectious aerosols: Implications for infection control. The Lancet Respiratory Medicine 8(9):914−24 doi: 10.1016/S2213-2600(20)30323-4
CrossRef Google Scholar
|
[22]
|
Morawska L, Buonanno G, Mikszewski A, Stabile L. 2022. The physics of respiratory particle generation, fate in the air, and inhalation. Nature Reviews Physics 4:723−34 doi: 10.1038/s42254-022-00506-7
CrossRef Google Scholar
|
[23]
|
Gralton J, Tovey E, McLaws ML, Rawlinson WD. 2011. The role of particle size in aerosolised pathogen transmission: A review. The Journal of Infection 62(1):1−13 doi: 10.1016/j.jinf.2010.11.010
CrossRef Google Scholar
|
[24]
|
Wang Q, Gu J, An T. 2022. The emission and dynamics of droplets from human expiratory activities and COVID-19 transmission in public transport system: A review. Building and Environment 219:109224 doi: 10.1016/j.buildenv.2022.109224
CrossRef Google Scholar
|
[25]
|
Liu L, Wei J, Li Y, Ooi A. 2017. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 27(1):179−90 doi: 10.1111/ina.12297
CrossRef Google Scholar
|
[26]
|
Wang B, Wu H, Wan XF. 2020. Transport and fate of human expiratory droplets − a modeling approach. Physics of Fluids 32(8):083307 doi: 10.1063/5.0021280
CrossRef Google Scholar
|
[27]
|
Silva PG, Branco PTBS, Soares RRG, Mesquita JR, Sousa SIV. 2022. SARS-CoV-2 air sampling: A systematic review on the methodologies for detection and infectivity. Indoor Air 32(8):e13083 doi: 10.1111/ina.13083
CrossRef Google Scholar
|
[28]
|
Alsaad H, Schälte G, Schneeweiß M, Becher L, Pollack M, et al. 2023. The spread of exhaled air and aerosols during physical exercise. Journal of Clinical Medicine 12(4):1300 doi: 10.3390/jcm12041300
CrossRef Google Scholar
|
[29]
|
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, et al. 2020. Virological assessment of hospitalized patients with COVID-2019. Nature 581:465−69 doi: 10.1038/s41586-020-2196-x
CrossRef Google Scholar
|
[30]
|
Guo Y, Wei J, Ou C, Liu L, Sadrizadeh S, et al. 2020. Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. Aerosol Science and Technology 54(8):869−79 doi: 10.1080/02786826.2020.1772459
CrossRef Google Scholar
|
[31]
|
Wu J, Weng W. 2021. COVID-19 virus released from larynx might cause a higher exposure dose in indoor environment. Environmental Research 199:111361 doi: 10.1016/j.envres.2021.111361
CrossRef Google Scholar
|
[32]
|
Riley RL, Mills CC, O’Grady F, Sultan LU, Wittstadt F, et al. 1962. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: Comparative infectiousness of different patients. The American Review of Respiratory Disease 85:511−25
Google Scholar
|
[33]
|
Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, et al. 2013. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 23(6):462−87 doi: 10.1111/ina.12044
CrossRef Google Scholar
|
[34]
|
Qian H, Li Y, Nielsen PV, Hyldgaard CE, Wong TW, et al. 2006. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems. Indoor Air 16(2):111−28 doi: 10.1111/j.1600-0668.2005.00407.x
CrossRef Google Scholar
|
[35]
|
Li Y, Leung GM, Tang JW, Yang X, Chao CYH, et al. 2007. Role of ventilation in airborne transmission of infectious agents in the built environment − a multidisciplinary systematic review. Indoor Air 17(1):2−18 doi: 10.1111/j.1600-0668.2006.00445.x
CrossRef Google Scholar
|
[36]
|
Melikov AK. 2004. Personalized ventilation. Indoor Air 14:157−67 doi: 10.1111/j.1600-0668.2004.00284.x
CrossRef Google Scholar
|
[37]
|
Xie X, Li Y, Chwang ATY, Ho PL, Seto WH. 2007. How far droplets can move in indoor environments—revisiting the Wells evaporation-falling curve. Indoor Air 17(3):211−25 doi: 10.1111/j.1600-0668.2007.00469.x
CrossRef Google Scholar
|
[38]
|
Wei J, Li Y. 2015. Enhanced spread of expiratory droplets by turbulence in a cough jet. Building and Environment 93:86−96 doi: 10.1016/j.buildenv.2015.06.018
CrossRef Google Scholar
|
[39]
|
Liu L, Li Y, Nielsen PV, Wei J, Jensen RL. 2017. Short-range airborne transmission of expiratory droplets between two people. Indoor Air 27(2):452−62 doi: 10.1111/ina.12314
CrossRef Google Scholar
|
[40]
|
Jimenez JL, Marr LC, Randall K, Ewing ET, Tufekci Z, et al. 2022. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? Indoor Air 32(8):e13070 doi: 10.1111/ina.13070
CrossRef Google Scholar
|
[41]
|
Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, et al. 2021. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 397(10285):1603−5 doi: 10.1016/S0140-6736(21)00869-2
CrossRef Google Scholar
|
[42]
|
Bu Y, Ooka R, Kikumoto H, Oh W. 2021. Recent research on expiratory particles in respiratory viral infection and control strategies: A review. Sustainable Cities and Society 73:103106 doi: 10.1016/j.scs.2021.103106
CrossRef Google Scholar
|
[43]
|
Tang JW, Tellier R, Li Y. 2022. Hypothesis: All respiratory viruses (including SARS-CoV-2) are aerosol-transmitted. Indoor Air 32(1):e12937 doi: 10.1111/ina.12937
CrossRef Google Scholar
|
[44]
|
Li Y, Qian H, Hang J, Chen X, Cheng P, et al. 2021. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Building and Environment 196:107788 doi: 10.1016/j.buildenv.2021.107788
CrossRef Google Scholar
|
[45]
|
Wang Q, Lin Z, Niu J, Choi GKY, Fung JCH, et al. 2022. Spread of SARS-CoV-2 aerosols via two connected drainage stacks in a high-rise housing outbreak of COVID-19. Journal of Hazardous Materials 430:128475 doi: 10.1016/j.jhazmat.2022.128475
CrossRef Google Scholar
|
[46]
|
Li Y. 2021. The respiratory infection inhalation route continuum. Indoor Air 31(2):279−81 doi: 10.1111/ina.12806
CrossRef Google Scholar
|
[47]
|
World Health Organization. 2023. Coronavirus disease (COVID-19): How is it transmitted? www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted
|
[48]
|
Li Y. 2021. Basic routes of transmission of respiratory pathogens − a new proposal for transmission categorization based on respiratory spray, inhalation, and touch. Indoor Air 31(1):3−6 doi: 10.1111/ina.12786
CrossRef Google Scholar
|
[49]
|
Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM, et al. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications 11:3496 doi: 10.1038/s41467-020-17367-2
CrossRef Google Scholar
|
[50]
|
Jayaweera M, Perera H, Gunawardana B, Manatunge J. 2020. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research 188:109819 doi: 10.1016/j.envres.2020.109819
CrossRef Google Scholar
|
[51]
|
Alsved M, Nygren D, Thuresson S, Fraenkel CJ, Medstrand P, et al. 2023. Size distribution of exhaled aerosol particles containing SARS-CoV-2 RNA. Infectious Diseases 55(2):158−63 doi: 10.1080/23744235.2022.2140822
CrossRef Google Scholar
|
[52]
|
Alsved M, Nygren D, Thuresson S, Medstrand P, Fraenkel CJ, et al. 2022. SARS-CoV-2 in exhaled aerosol particles from COVID-19 cases and its association to household transmission. Clinical Infectious Diseases 75(1):e50−e56 doi: 10.1093/cid/ciac202
CrossRef Google Scholar
|
[53]
|
Feng Y, Marchal T, Sperry T, Yi H. 2020. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. Journal of Aerosol Science 147:105585 doi: 10.1016/j.jaerosci.2020.105585
CrossRef Google Scholar
|
[54]
|
Zhang N, Chen W, Chan PT, Yen HL, Tang JWT, et al. 2020. Close contact behavior in indoor environment and transmission of respiratory infection. Indoor Air 30(4):645−61 doi: 10.1111/ina.12673
CrossRef Google Scholar
|
[55]
|
Chen W, Zhang N, Wei J, Yen HL, Li Y. 2020. Short-range airborne route dominates exposure of respiratory infection during close contact. Building and Environment 176:106859 doi: 10.1016/j.buildenv.2020.106859
CrossRef Google Scholar
|
[56]
|
Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathogens 9(3):e1003205 doi: 10.1371/journal.ppat.1003205
CrossRef Google Scholar
|
[57]
|
Su W, Yang B, Melikov A, Liang C, Lu Y, et al. 2022. Infection probability under different air distribution patterns. Building and Environment 207:108555 doi: 10.1016/j.buildenv.2021.108555
CrossRef Google Scholar
|
[58]
|
Dai H, Zhao B. 2020. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Building Simulation 13(6):1321−27 doi: 10.1007/s12273-020-0703-5
CrossRef Google Scholar
|
[59]
|
Liu F, Zhang C, Qian H, Zheng X, Nielsen PV. 2019. Direct or indirect exposure of exhaled contaminants in stratified environments using an integral model of an expiratory jet. Indoor Air 29(4):591−603 doi: 10.1111/ina.12563
CrossRef Google Scholar
|
[60]
|
Dbouk T, Drikakis D. 2020. On coughing and airborne droplet transmission to humans. Physics of Fluids 32(5):053310 doi: 10.1063/5.0011960
CrossRef Google Scholar
|
[61]
|
Han M, Ooka R, Kikumoto H, Oh W, Bu Y, et al. 2021. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry. Building and Environment 205:108293 doi: 10.1016/j.buildenv.2021.108293
CrossRef Google Scholar
|
[62]
|
Ai ZT, Melikov AK. 2018. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air 28(4):500−24 doi: 10.1111/ina.12465
CrossRef Google Scholar
|
[63]
|
Ferrari S, Blázquez T, Cardelli R, Puglisi G, Suárez R, et al. 2022. Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature. Building and Environment 222:109366 doi: 10.1016/j.buildenv.2022.109366
CrossRef Google Scholar
|
[64]
|
Tsang TW, Mui KW, Wong LT. 2023. Computational Fluid Dynamics (CFD) studies on airborne transmission in hospitals: A review on the research approaches and the challenges. Journal of Building Engineering 63:105533 doi: 10.1016/j.jobe.2022.105533
CrossRef Google Scholar
|
[65]
|
Castellini JE Jr, Faulkner CA, Zuo W, Lorenzetti DM, Sohn MD. 2022. Assessing the use of portable air cleaners for reducing exposure to airborne diseases in a conference room with thermal stratification. Building and Environment 207:108441 doi: 10.1016/j.buildenv.2021.108441
CrossRef Google Scholar
|
[66]
|
Wang F, Zhang TT, You R, Chen Q. 2023. Evaluation of infection probability of Covid-19 in different types of airliner cabins. Building and Environment 234:110159 doi: 10.1016/j.buildenv.2023.110159
CrossRef Google Scholar
|
[67]
|
Sze To GN, Chao CYH. 2010. Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air 20(1):2−16 doi: 10.1111/j.1600-0668.2009.00621.x
CrossRef Google Scholar
|
[68]
|
Buonanno G, Stabile L, Morawska L. 2020. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International 141:105794 doi: 10.1016/j.envint.2020.105794
CrossRef Google Scholar
|
[69]
|
Jones B, Sharpe P, Iddon C, Hathway EA, Noakes CJ, et al. 2021. Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Building and Environment 191:107617 doi: 10.1016/j.buildenv.2021.107617
CrossRef Google Scholar
|
[70]
|
Garcia W, Mendez S, Fray B, Nicolas A. 2021. Model-based assessment of the risks of viral transmission in non-confined crowds. Safety Science 144:105453 doi: 10.1016/j.ssci.2021.105453
CrossRef Google Scholar
|
[71]
|
Zhao X, Liu S, Yin Y, Zhang TT, Chen Q. 2022. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Indoor Air 32(6):e13056 doi: 10.1111/ina.13056
CrossRef Google Scholar
|
[72]
|
Riley EC, Murphy G, Riley RL. 1978. Airborne spread of measles in a suburban elementary school. American Journal of Epidemiology 107(5):421−32 doi: 10.1093/oxfordjournals.aje.a112560
CrossRef Google Scholar
|
[73]
|
Qian H, Li Y, Nielsen PV, Huang X. 2009. Spatial distribution of infection risk of SARS transmission in a hospital ward. Building and Environment 44(8):1651−58 doi: 10.1016/j.buildenv.2008.11.002
CrossRef Google Scholar
|
[74]
|
Guo Y, Qian H, Sun Z, Cao J, Liu F, et al. 2021. Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sustainable Cities and Society 67:102719 doi: 10.1016/j.scs.2021.102719
CrossRef Google Scholar
|
[75]
|
Zhang S, Lin Z. 2021. Dilution-based evaluation of airborne infection risk − Thorough expansion of Wells-Riley model. Building and Environment 194:107674 doi: 10.1016/j.buildenv.2021.107674
CrossRef Google Scholar
|
[76]
|
Rudnick SN, Milton DK. 2003. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13(3):237−45 doi: 10.1034/j.1600-0668.2003.00189.x
CrossRef Google Scholar
|
[77]
|
Peng Z, Jimenez JL. 2021. Exhaled CO2 as a COVID-19 infection risk proxy for different indoor environments and activities. Environmental Science & Technology Letters 8(5):392−97 doi: 10.1021/acs.estlett.1c00183
CrossRef Google Scholar
|
[78]
|
Wu J, Weng W. 2021. Quantitative infection risk assessment of indoor COVID-19 airborne transmission based on rebreathed fraction//ISHVAC2021. The 12th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC2021), Seoul, Korea, 2021. www.researchgate.net/publication/357151005_Quantitative_infection_risk_assessment_of_indoor_COVID-19_airborne_transmission_based_on_rebreathed_fraction
|
[79]
|
Deng Z, Chen Q. 2022. What is suitable social distancing for people wearing face masks during the COVID-19 pandemic? Indoor Air 32(1):e12935 doi: 10.1111/ina.12935
CrossRef Google Scholar
|
[80]
|
Zhang C, Nielsen PV, Liu L, Sigmer ET, Mikkelsen SG, Jensen RL. 2022. The source control effect of personal protection equipment and physical barrier on short-range airborne transmission. Building and Environment 211:108751 doi: 10.1016/j.buildenv.2022.108751
CrossRef Google Scholar
|
[81]
|
Yao M, Zhang L, Ma J, Zhou L. 2020. On airborne transmission and control of SARS-Cov-2. The Science of the Total Environment 731:139178 doi: 10.1016/j.scitotenv.2020.139178
CrossRef Google Scholar
|
[82]
|
Sun C, Zhai Z. 2020. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustainable Cities and Society 62:102390 doi: 10.1016/j.scs.2020.102390
CrossRef Google Scholar
|
[83]
|
Liu F, Luo Z, Li Y, Zheng X, Zhang C, et al. 2021. Revisiting physical distancing threshold in indoor environment using infection-risk-based modeling. Environment International 153:106542 doi: 10.1016/j.envint.2021.106542
CrossRef Google Scholar
|
[84]
|
Wei J, Li Y. 2016. Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control 44:S102−S108 doi: 10.1016/j.ajic.2016.06.003
CrossRef Google Scholar
|
[85]
|
Zhang Y, Li J, Liu J. 2021. Experimental study of the impact of passenger behavior on the aircraft cabin environment. Science and Technology for the Built Environment 27(4):427−35 doi: 10.1080/23744731.2020.1849795
CrossRef Google Scholar
|
[86]
|
Liu Z, Liu H, Rong R, Cao G. 2020. Effect of a circulating nurse walking on airflow and bacteria-carrying particles in the operating room: An experimental and numerical study. Building and Environment 186:107315 doi: 10.1016/j.buildenv.2020.107315
CrossRef Google Scholar
|
[87]
|
Liu F, Zhang L, Luo Z, Zhang C, Qian H. 2023. Interactions of exhaled buoyant jet flow and human motion-induced airflow: An experiment study in a water tank. Building and Environment 242:110603 doi: 10.1016/j.buildenv.2023.110603
CrossRef Google Scholar
|
[88]
|
Han ZY, Weng WG, Huang QY, Fu M, Yang J, et al. 2015. Aerodynamic characteristics of human movement behaviours in full-scale environment: Comparison of limbs pendulum and body motion. Indoor and Built Environment 24(1):87−100 doi: 10.1177/1420326X13504122
CrossRef Google Scholar
|
[89]
|
Luo N, Weng WG, Fu M, Yang J, Han ZY. 2014. Experimental study of the effects of human movement on the convective heat transfer coefficient. Experimental Thermal and Fluid Science 57:40−56 doi: 10.1016/j.expthermflusci.2014.04.001
CrossRef Google Scholar
|
[90]
|
Kalliomäki P, Saarinen P, Tang JW, Koskela H. 2016. Airflow patterns through single hinged and sliding doors in hospital isolation rooms - Effect of ventilation, flow differential and passage. Building and Environment 107:154−68 doi: 10.1016/j.buildenv.2016.07.009
CrossRef Google Scholar
|
[91]
|
Kalliomäki P, Hagström K, Itkonen H, Grönvall I, Koskela H. 2019. Effectiveness of directional airflow in reducing containment failures in hospital isolation rooms generated by door opening. Building and Environment 158:83−93 doi: 10.1016/j.buildenv.2019.04.034
CrossRef Google Scholar
|
[92]
|
Halvoňová B, Melikov AK. 2010. Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person(s). Building and Environment 45(2):427−36 doi: 10.1016/j.buildenv.2009.06.023
CrossRef Google Scholar
|
[93]
|
Bhattacharya A, Pantelic J, Ghahramani A, Mousavi ES. 2021. Three-dimensional analysis of the effect of human movement on indoor airflow patterns. Indoor Air 31(2):587−601 doi: 10.1111/ina.12735
CrossRef Google Scholar
|
[94]
|
Poussou SB, Mazumdar S, Plesniak MW, Sojka PE, et al. 2010. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions. Atmospheric Environment 44(24):2830−9 doi: 10.1016/j.atmosenv.2010.04.053
CrossRef Google Scholar
|
[95]
|
Tao Y, Inthavong K, Petersen P, Mohanarangam K, Yang W, et al. 2018. Experimental visualisation of wake flows induced by different shaped moving manikins. Building and Environment 142:361−70 doi: 10.1016/j.buildenv.2018.06.018
CrossRef Google Scholar
|
[96]
|
Luo N, Weng W, Xu X, Fu M. 2018. Human-walking-induced wake flow – PIV experiments and CFD simulations. Indoor and Built Environment 27(8):1069−84 doi: 10.1177/1420326X17701279
CrossRef Google Scholar
|
[97]
|
Mazumdar S, Poussou SB, Lin CH, Isukapalli SS, Plesniak MW, et al. 2011. Impact of scaling and body movement on contaminant transport in airliner cabins. Atmospheric Environment 45(33):6019−28 doi: 10.1016/j.atmosenv.2011.07.049
CrossRef Google Scholar
|
[98]
|
Wu J, Weng W, Shen L, Fu M. 2022. Transient and continuous effects of indoor human movement on nanoparticle concentrations in a sitting person’s breathing zone. Science of the Total Environment 805:149970 doi: 10.1016/j.scitotenv.2021.149970
CrossRef Google Scholar
|
[99]
|
Wu J, Weng W, Fu M, Li Y, Lan M. 2022. Enhancement effect of human movement on the high risk range of viral aerosols exhaled by a sitting person. Building and Environment 218:109136 doi: 10.1016/j.buildenv.2022.109136
CrossRef Google Scholar
|
[100]
|
Nielsen P. 1975. Prediction of air flow and comfort in air conditioned spaces. Ashrae Transactions 81:247−59
Google Scholar
|
[101]
|
Yang X, Ou C, Yang H, Liu L, Song T, et al. 2020. Transmission of pathogen-laden expiratory droplets in a coach bus. Journal of Hazardous Materials 397:122609 doi: 10.1016/j.jhazmat.2020.122609
CrossRef Google Scholar
|
[102]
|
Picard CF, Cony Renaud Salis L, Abadie M. 2022. Home quarantine: A numerical evaluation of SARS-CoV-2 spread in a single-family house. Indoor Air 32(5):e13035 doi: 10.1111/ina.13035
CrossRef Google Scholar
|
[103]
|
Luo N, Weng W, Xu X, Hong T, Fu M, et al. 2019. Assessment of occupant-behavior-based indoor air quality and its impacts on human exposure risk: A case study based on the wildfires in Northern California. Science of the Total Environment 686:1251−61 doi: 10.1016/j.scitotenv.2019.05.467
CrossRef Google Scholar
|
[104]
|
Mohamadi F, Fazeli A. 2022. A review on applications of CFD modeling in COVID-19 pandemic. Archives of Computational Methods in Engineering 29(6):3567−86 doi: 10.1007/s11831-021-09706-3
CrossRef Google Scholar
|
[105]
|
Nielsen PV. 2015. Fifty years of CFD for room air distribution. Building and Environment 91:78−90 doi: 10.1016/j.buildenv.2015.02.035
CrossRef Google Scholar
|
[106]
|
Cao Q, Liu M, Li X, Lin CH, Wei D, et al. 2022. Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD. Building and Environment 207:108413 doi: 10.1016/j.buildenv.2021.108413
CrossRef Google Scholar
|
[107]
|
Wu Y, Gao N. 2014. The dynamics of the body motion induced wake flow and its effects on the contaminant dispersion. Building and Environment 82:63−74 doi: 10.1016/j.buildenv.2014.08.003
CrossRef Google Scholar
|
[108]
|
Choi JI, Edwards JR. 2008. Large eddy simulation and zonal modeling of human-induced contaminant transport. Indoor Air 18(3):233−49 doi: 10.1111/j.1600-0668.2008.00527.x
CrossRef Google Scholar
|
[109]
|
Tao Y, Inthavong K, Tu JY. 2017. Dynamic meshing modelling for particle resuspension caused by swinging manikin motion. Building and Environment 123:529−42 doi: 10.1016/j.buildenv.2017.07.026
CrossRef Google Scholar
|
[110]
|
Han Z, Weng W, Huang Q. 2014. Numerical and experimental investigation on the dynamic airflow of human movement in a full-scale cabin. HVAC& R Research 20(4):444−57 doi: 10.1080/10789669.2014.882677
CrossRef Google Scholar
|
[111]
|
Tan H, Wong KY, Othman MHD, Nyakuma BB, Vui Sheng DDC, et al. 2023. Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach Energy and Buildings 283:112810 doi: 10.1016/j.enbuild.2023.112810
CrossRef Google Scholar
|
[112]
|
Han Z, To GNS, Fu SC, Chao CYH, Weng W, et al. 2014. Effect of human movement on airborne disease transmission in an airplane cabin: Study using numerical modeling and quantitative risk analysis. BMC Infectious Diseases 14:434 doi: 10.1186/1471-2334-14-434
CrossRef Google Scholar
|
[113]
|
Choi JI, Edwards JR. 2012. Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor Air 22(1):77−87 doi: 10.1111/j.1600-0668.2011.00741.x
CrossRef Google Scholar
|
[114]
|
Shih YC, Chiu CC, Wang O. 2007. Dynamic airflow simulation within an isolation room. Building and Environment 42(9):3194−209 doi: 10.1016/j.buildenv.2006.08.008
CrossRef Google Scholar
|
[115]
|
Wang J, Chow TT. 2011. Numerical investigation of influence of human walking on dispersion and deposition of expiratory droplets in airborne infection isolation room. Building and Environment 46(10):1993−2002 doi: 10.1016/j.buildenv.2011.04.008
CrossRef Google Scholar
|
[116]
|
Cao SJ, Cen D, Zhang W, Feng Z. 2017. Study on the impacts of human walking on indoor particles dispersion using momentum theory method. Building and Environment 126:195−206 doi: 10.1016/j.buildenv.2017.10.001
CrossRef Google Scholar
|
[117]
|
Chen Q. 2009. Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment 44(4):848−58 doi: 10.1016/j.buildenv.2008.05.025
CrossRef Google Scholar
|
[118]
|
Blocken B. 2018. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Building Simulation 11(5):821−70 doi: 10.1007/s12273-018-0459-3
CrossRef Google Scholar
|
[119]
|
Luo N, Weng W, Xu X, Fu M. 2018. Experimental and numerical investigation of the wake flow of a human-shaped manikin: Experiments by PIV and simulations by CFD. Building Simulation 11(6):1189−205 doi: 10.1007/s12273-018-0446-8
CrossRef Google Scholar
|
[120]
|
Li Z, Wang H, Zhang X, Wu T, Yang X. 2020. Effects of space sizes on the dispersion of cough-generated droplets from a walking person. Physics of Fluids 32(12):121705 doi: 10.1063/5.0034874
CrossRef Google Scholar
|
[121]
|
Chen W, Liu L, Zhang N, Hang J, Li Y. 2023. Conversational head movement decreases close-contact exposure to expired respiratory droplets. Journal of Hazardous Materials 444:130406 doi: 10.1016/j.jhazmat.2022.130406
CrossRef Google Scholar
|
[122]
|
Zhao Y, Feng Y, Ma L. 2022. Impacts of human movement and ventilation mode on the indoor environment, droplet evaporation, and aerosol transmission risk at airport terminals. Building and Environment 224:109527 doi: 10.1016/j.buildenv.2022.109527
CrossRef Google Scholar
|
[123]
|
Liu S, Zhao X, Nichols SR, Bonilha MW, Derwinski T, et al. 2022. Evaluation of airborne particle exposure for riding elevators. Building and Environment 207:108543 doi: 10.1016/j.buildenv.2021.108543
CrossRef Google Scholar
|
[124]
|
Wu J, Geng J, Fu M, Weng W. 2022. Multi-person movement-induced airflow and the effects on virus-laden expiratory droplet dispersion in indoor environments. Indoor Air 32(9):e13119 doi: 10.1111/ina.13119
CrossRef Google Scholar
|
[125]
|
Schmitt J, Wang J. 2022. A critical review on the role of leakages in the facemask protection against SARS-CoV-2 infection with consideration of vaccination and virus variants. Indoor Air 32(10):e13127 doi: 10.1111/ina.13127
CrossRef Google Scholar
|
[126]
|
Akhtar J, Garcia AL, Saenz L, Kuravi S, Shu F, et al. 2020. Can face masks offer protection from airborne sneeze and cough droplets in close-up, face-to-face human interactions? − a quantitative study Physics of Fluids 32(12):127112 doi: 10.1063/5.0035072
CrossRef Google Scholar
|
[127]
|
Xi J, Barari K, Si XA, Abdollahzadeh Jamalabadi MY, Park JH, et al. 2022. Inspiratory leakage flow fraction for surgical masks with varying gaps and filter materials. Physics of Fluids 34(4):041908 doi: 10.1063/5.0090356
CrossRef Google Scholar
|
[128]
|
Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, et al. 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet 395:1973−87 doi: 10.1016/S0140-6736(20)31142-9
CrossRef Google Scholar
|
[129]
|
Bartoszko JJ, Farooqi MAM, Alhazzani W, Loeb M. 2020. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: A systematic review and meta-analysis of randomized trials. Influenza and Other Respiratory Viruses 14(4):365−73 doi: 10.1111/irv.12745
CrossRef Google Scholar
|
[130]
|
Adjodah D, Dinakar K, Chinazzi M, Fraiberger SP, Pentland A, et al. 2021. Association between COVID-19 outcomes and mask mandates, adherence, and attitudes. PLoS One 16(6):e0252315 doi: 10.1371/journal.pone.0252315
CrossRef Google Scholar
|
[131]
|
Liang M, Gao L, Cheng C, Zhou Q, Uy JP, et al. 2020. Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis. Travel Medicine and Infectious Disease 36:101751 doi: 10.1016/j.tmaid.2020.101751
CrossRef Google Scholar
|
[132]
|
Baker MA, Rhee C, Tucker R, Badwaik A, Coughlin C, et al. 2022. Rapid control of hospital-based severe acute respiratory syndrome coronavirus 2 omicron clusters through daily testing and universal use of N95 respirators. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 75(1):e296−e299 doi: 10.1093/cid/ciac113
CrossRef Google Scholar
|
[133]
|
Lindsley WG, Blachere FM, Beezhold DH, Law BF, Derk RC, et al. 2021. A comparison of performance metrics for cloth face masks as source control devices for simulated cough and exhalation aerosols. Aerosol Science and Technology 55:1125−41 doi: 10.1080/02786826.2021.1933377
CrossRef Google Scholar
|
[134]
|
Ni C, Solano T, Shoele K, Seo JH, Mittal R. 2023. Face masks provide high outward protection despite peripheral leakage: Insights from a reduced-order model of face mask aerodynamics. Physics of Fluids 35(6):061911 doi: 10.1063/5.0153513
CrossRef Google Scholar
|
[135]
|
Tang JW, Liebner TJ, Craven BA, Settles GS. 2009. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. Journal of the Royal Society, Interface 6:S727−S736 doi: 10.1098/rsif.2009.0295.focus
CrossRef Google Scholar
|
[136]
|
Bhagat RK, Davies Wykes MS, Dalziel SB, Linden PF. 2020. Effects of ventilation on the indoor spread of COVID-19. Journal of Fluid Mechanics 903:F1 doi: 10.1017/jfm.2020.720
CrossRef Google Scholar
|
[137]
|
Bourrianne P, Xue N, Nunes J, Abkarian M, Stone HA. 2021. Quantifying the effect of a mask on expiratory flows. Physical Review Fluids 6:110511 doi: 10.1103/PhysRevFluids.6.110511
CrossRef Google Scholar
|
[138]
|
van der Sande M, Teunis P, Sabel R. 2008. Professional and home-made face masks reduce exposure to respiratory infections among the general population. PLoS One 3(7):e2618 doi: 10.1371/journal.pone.0002618
CrossRef Google Scholar
|
[139]
|
Hu B. 2022. Recent advances in facemask devices for in vivo sampling of human exhaled breath aerosols and inhalable environmental exposures. TrAC Trends in Analytical Chemistry 151:116600 doi: 10.1016/j.trac.2022.116600
CrossRef Google Scholar
|
[140]
|
Cheng VCC, Wong SC, Chuang VWM, So SYC, Chen JHK, et al. 2020. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. The Journal of Infection 81(1):107−14 doi: 10.1016/j.jinf.2020.04.024
CrossRef Google Scholar
|
[141]
|
Mniszewski SM, Del Valle SY, Priedhorsky R, Hyman JM, Hickman KS. 2014. Understanding the impact of face mask usage through epidemic simulation of large social networks. In Theories and Simulations of Complex Social Systems. Berlin, Heidelberg: Springer. pp. 97-115. https://doi.org/10.1007/978-3-642-39149-1_8
|
[142]
|
Maged A, Ahmed A, Haridy S, Baker AW, Xie M. 2023. SEIR Model to address the impact of face masks amid COVID-19 pandemic. Risk Analysis 43:129−43 doi: 10.1111/risa.13958
CrossRef Google Scholar
|
[143]
|
Kai D, Goldstein GP, Morgunov A, Nangalia V, Rotkirch A. 2020. Universal masking is urgent in the COVID-19 pandemic: SEIR and agent based models, empirical validation, policy recommendation. arXivPreprint doi: 10.48550/arXiv.2004.13553
CrossRef Google Scholar
|
[144]
|
Yadav S, Singh B. 2022. Efficacy of vaccine and face mask in a COVID-19 enlarged SEIAQR model. Journal of Algebraic Statistics 13(2):2404−21
Google Scholar
|
[145]
|
Hui DS, Chow BK, Chu L, Ng SS, Lee N, et al. 2012. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS One 7(12):e50845 doi: 10.1371/journal.pone.0050845
CrossRef Google Scholar
|
[146]
|
Darby S, Chulliyallipalil K, Przyjalgowski M, McGowan P, Jeffers S, et al. 2021. COVID-19: Mask efficacy is dependent on both fabric and fit. Future Microbiology 16:5−11 doi: 10.2217/fmb-2020-0292
CrossRef Google Scholar
|
[147]
|
Roberge RJ, Monaghan WD, Palmiero AJ, Shaffer R, Bergman MS. 2011. Infrared imaging for leak detection of N95 filtering facepiece respirators: A pilot study. American Journal of Industrial Medicine 54(8):628−36 doi: 10.1002/ajim.20970
CrossRef Google Scholar
|
[148]
|
Oestenstad RK, Dillion HK, Perkins LL. 1990. Distribution of faceseal leak sites on a half-mask respirator and their association with facial dimensions. American Industrial Hygiene Association Journal 51(5):285−90 doi: 10.1080/15298669091369664
CrossRef Google Scholar
|
[149]
|
Dbouk T, Drikakis D. 2020. On respiratory droplets and face masks. Physics of Fluids 32(6):063303 doi: 10.1063/5.0015044
CrossRef Google Scholar
|
[150]
|
Buxton GA, Minutolo MC. 2012. The role that gaiters, masks and face shields can play in limiting the transmission of respiratory droplets. arXiv Preprint doi: 10.48550/arXiv.2012.04480
CrossRef Google Scholar
|
[151]
|
Liu X, Dou Z, Wang L, Su B, Jin T, et al. 2022. Close contact behavior-based COVID-19 transmission and interventions in a subway system. Journal of Hazardous Materials 436:129233 doi: 10.1016/j.jhazmat.2022.129233
CrossRef Google Scholar
|