[1]
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, et al. 2022. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications. Molecular Plant 15:104−24 doi: 10.1016/j.molp.2021.12.005
CrossRef Google Scholar
|
[2]
|
Wang Y, Chen Y, Wu W. 2021. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology 63:34−52 doi: 10.1111/jipb.13053
CrossRef Google Scholar
|
[3]
|
Marschner P. 2012. Marschner's Mineral nutrition of higher plants, 3rd Edition. Academic Press. pp. 158−65. https://doi.org/10.1016/C2009-0-63043-9
|
[4]
|
Malhotra H, Vandana, Sharma S, Pandey R. 2018. Phosphorus nutrition: plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance, eds Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B. Singapore: Springer Singapore. pp. 171–90. https://doi.org/10.1007/978-981-10-9044-8_7
|
[5]
|
Liu D. 2021. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology 63:1065−90 doi: 10.1111/jipb.13090
CrossRef Google Scholar
|
[6]
|
White PJ, Veneklaas EJ. 2012. Nature and nurture: the importance of seed phosphorus content. Plant and Soil 357:1−8 doi: 10.1007/s11104-012-1128-4
CrossRef Google Scholar
|
[7]
|
Havlin LJ, Tisdale LS, Nelson LW, Beaton DJ. 2013. Soil fertility and fertilizers: an introduction to nutrient management, 8th edition. Boston: Pearson. pp. 189−225.
|
[8]
|
Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, et al. 2011. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiology 156:2141−54 doi: 10.1104/pp.111.180646
CrossRef Google Scholar
|
[9]
|
Chen W, Li J, Zhu H, Xu P, Chen J, et al. 2017. Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) as revealed by RNA-Seq analysis. Frontiers in Plant Science 8:2039 doi: 10.3389/fpls.2017.02039
CrossRef Google Scholar
|
[10]
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/FR-2022-0011
CrossRef Google Scholar
|
[11]
|
He Y, Lin X, Wang L, Ma X, Fang L, et al. 2023. Effects of long-term irrigation on soil phosphorus fractions and microbial communities in Populus euphratica plantations. Forestry Research 3:17 doi: 10.48130/FR-2023-0017
CrossRef Google Scholar
|
[12]
|
Yang S, Zong W, Shi L, Li R, Ma Z, et al. 2024. PPGR: a comprehensive perennial plant genomes and regulation database. Nucleic Acids Research 52:D1588−D1596 doi: 10.1093/nar/gkad963
CrossRef Google Scholar
|
[13]
|
Zheng Z, Wang Z, Wang X, Liu D. 2019. Blue light-triggered chemical reactions underlie phosphate deficiency-Induced inhibition of root elongation of Arabidopsis seedlings grown in petri dishes. Molecular Plant 12:1515−23 doi: 10.1016/j.molp.2019.08.001
CrossRef Google Scholar
|
[14]
|
Gruber BD, Giehl RFH, Friedel S, von Wirén N. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163:161−79 doi: 10.1104/pp.113.218453
CrossRef Google Scholar
|
[15]
|
Anuradha M, Narayanan A. 1991. Promotion of root elongation by phosphorus deficiency. Plant and Soil 136:273−75 doi: 10.1007/BF02150060
CrossRef Google Scholar
|
[16]
|
Yang Z, Gao Z, Zhou H, He Y, Liu Y, et al. 2021. GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. The Plant Journal 107:525−43 doi: 10.1111/tpj.15307
CrossRef Google Scholar
|
[17]
|
Chen N, Tong S, Yang J, Qin J, Wang W, et al. 2022. PtoWRKY40 interacts with PtoPHR1-LIKE3 while regulating the phosphate starvation response in poplar. Plant Physiology 190:2688−705 doi: 10.1093/plphys/kiac404
CrossRef Google Scholar
|
[18]
|
Kavka M, Polle A. 2016. Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC Plant Biology 16:206 doi: 10.1186/s12870-016-0892-3
CrossRef Google Scholar
|
[19]
|
Li H, Xia M, Wu P. 2001. Effect of phosphorus deficiency stress on rice lateral root growth and nutrient absorption. Acta Botanica Sinica 43:1154−60
Google Scholar
|
[20]
|
Wang H, Pak S, Yang J, Wu Y, Li W, et al. 2022. Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis. Plant Biotechnology Journal 20:1561−77 doi: 10.1111/pbi.13833
CrossRef Google Scholar
|
[21]
|
Zhao S, Zhao X, Xu X, Han Z, Qiu C. 2022. Transcription factor IAA27 positively regulates P uptake through promoted adventitious root development in apple plants. International Journal of Molecular Sciences 23:14029 doi: 10.3390/ijms232214029
CrossRef Google Scholar
|
[22]
|
Chen W, Zhou M, Zhao M, Chen R, Tigabu M, et al. 2021. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. BMC Plant Biology 21:525 doi: 10.1186/s12870-021-03245-6
CrossRef Google Scholar
|
[23]
|
Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98:693−713 doi: 10.1093/aob/mcl114
CrossRef Google Scholar
|
[24]
|
Güsewell S. 2017. Regulation of dauciform root formation and root phosphatase activities of sedges (Carex) by nitrogen and phosphorus. Plant and Soil 415:57−72 doi: 10.1007/s11104-016-3142-4
CrossRef Google Scholar
|
[25]
|
Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, et al. 2011. White lupin cluster root acclimation to Phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiology 156:1131−48 doi: 10.1104/pp.111.173724
CrossRef Google Scholar
|
[26]
|
Lambers H, Shane M, Laliberté E, Swarts N, Teste F, et al. 2014. Plant mineral nutrition. In Plant Life on the Sandplains in Southwest Australia A Global Biodiversity Hotspot, ed. Lambers H. Australia: UWA Publishing. pp. 101−27.
|
[27]
|
Neumann G, Martinoia E. 2002. Cluster roots – an underground adaptation for survival in extreme environments. Trends in Plant Science 7:162−67 doi: 10.1016/S1360-1385(02)02241-0
CrossRef Google Scholar
|
[28]
|
Liao H, Yan X, Rubio G, Beebe SE, Blair MW, et al. 2004. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology 31:959−70 doi: 10.1071/FP03255
CrossRef Google Scholar
|
[29]
|
Zhao J, Fu J, Liao H, He Y, Nian H, et al. 2004. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Science Bulletin 49:1611−20 doi: 10.1007/BF03184131
CrossRef Google Scholar
|
[30]
|
Li J, Xie Y, Dai A, Liu L, Li Z. 2009. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics 36:173−83 doi: 10.1016/S1673-8527(08)60104-6
CrossRef Google Scholar
|
[31]
|
Zhao H, Wu Y, Shen L, Hou Q, Wu R, et al. 2022. Cross-talk between transcriptome analysis and physiological characterization identifies the genes in response to the low phosphorus stress in Malus mandshurica. International Journal of Molecular Sciences 23:4896 doi: 10.3390/ijms23094896
CrossRef Google Scholar
|
[32]
|
Meng X, Chen W, Wang Y, Huang Z, Ye X, et al. 2021. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One 16:e0246944 doi: 10.1371/journal.pone.0246944
CrossRef Google Scholar
|
[33]
|
Carstensen A, Herdean A, Schmidt SB, Sharma A, Spetea C, et al. 2018. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177:271−84 doi: 10.1104/pp.17.01624
CrossRef Google Scholar
|
[34]
|
Nam HI, Shahzad Z, Dorone Y, Clowez S, Zhao K, et al. 2021. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nature Communications 12:7211 doi: 10.1038/s41467-021-27548-2
CrossRef Google Scholar
|
[35]
|
Ruan W, Guo M, Xu L, Wang X, Zhao H, et al. 2018. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. The Plant Cell 30:853−70 doi: 10.1105/tpc.17.00738
CrossRef Google Scholar
|
[36]
|
Lin C, Hang T, Jiang C, Yang P, Zhou M. 2023. Effects of different phosphorus levels on tiller bud development in hydroponic Phyllostachys edulis seedlings. Tree Physiology 43:1416−31 doi: 10.1093/treephys/tpad055
CrossRef Google Scholar
|
[37]
|
Wang T, Jin Y, Deng L, Li F, Wang Z, et al. 2024. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. The Plant Cell 36:koad268 doi: 10.1093/plcell/koad268
CrossRef Google Scholar
|
[38]
|
Ottmar RD. 2020. Diameter at breast height. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, ed. Manzello SL. Cham: Springer International Publishing. pp. 218−20. https://doi.org/10.1007/978-3-319-52090-2_234
|
[39]
|
Sumida A, Miyaura T, Torii H. 2013. Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiology 33:106−18 doi: 10.1093/treephys/tps127
CrossRef Google Scholar
|
[40]
|
Mizrachi E, Myburg AA. 2016. Systems genetics of wood formation. Current Opinion in Biotechnology 30:94−100 doi: 10.1016/j.pbi.2016.02.007
CrossRef Google Scholar
|
[41]
|
Cherbuy B, Joffre R, Gillon D, Rambal S. 2001. Internal remobilization of carbohydrates, lipids, nitrogen and phosphorus in the Mediterranean evergreen oak Quercus ilex. Tree Physiology 21:9−17 doi: 10.1093/treephys/21.1.9
CrossRef Google Scholar
|
[42]
|
Fromm J. 2010. Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiology 30:1140−47 doi: 10.1093/treephys/tpq024
CrossRef Google Scholar
|
[43]
|
Wang N, Yang C, Pan Z, Liu Y, Peng S. 2015. Boron deficiency in woody plants: various responses and tolerance mechanisms. Frontiers in Plant Science 6:916 doi: 10.3389/fpls.2015.00916
CrossRef Google Scholar
|
[44]
|
Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93:10519−23 doi: 10.1073/pnas.93.19.10519
CrossRef Google Scholar
|
[45]
|
Dai C, Dai X, Qu H, Men Q, Liu J, et al. 2022. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. Plant Physiology 188:2272−88 doi: 10.1093/plphys/kiac030
CrossRef Google Scholar
|
[46]
|
Che X, Lai W, Wang S, Wang X, Hu W, et al. 2022. Multiple PHT1 family phosphate transporters are recruited for mycorrhizal symbiosis in Eucalyptus grandis and conserved PHT1;4 is a requirement for the arbuscular mycorrhizal symbiosis. Tree Physiology 42:2020−39 doi: 10.1093/treephys/tpac050
CrossRef Google Scholar
|
[47]
|
Sun T, Li M, Shao Y, Yu L, Ma F. 2017. Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple. Frontiers in Plant Science 8:426 doi: 10.3389/fpls.2017.00426
CrossRef Google Scholar
|
[48]
|
Shu B, Xia R, Wang P. 2012. Differential regulation of Pht1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Scientia Horticulturae 146:115−23 doi: 10.1016/j.scienta.2012.08.014
CrossRef Google Scholar
|
[49]
|
Hu W, Zhang H, Zhang X, Chen H, Tang M. 2017. Characterization of six PHT1 members in Lycium barbarum and their response to arbuscular mycorrhiza and water stress. Tree Physiology 37:351−66 doi: 10.1093/treephys/tpw125
CrossRef Google Scholar
|
[50]
|
Cao D, Liu Y, Ma L, Liu Z, Li J, et al. 2021. Genome-wide identification and characterization of phosphate transporter gene family members in tea plants (Camellia sinensis L. O. kuntze) under different selenite levels. Plant Physiology and Biochemistry 166:668−76 doi: 10.1016/j.plaphy.2021.06.038
CrossRef Google Scholar
|
[51]
|
Sun Y, Gao L, Wang D, Wu B, Tong Z, et al. 2021. Identification and expression analysis of the Hevea brasiliensis phosphate transporter 1 gene family. Trees 35:407−19 doi: 10.1007/s00468-020-02042-2
CrossRef Google Scholar
|
[52]
|
Liu J, Yang L, Luan M, Wang Y, Zhang C, et al. 2015. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 112:E6571−E6578 doi: 10.1073/pnas.1514598112
CrossRef Google Scholar
|
[53]
|
Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, et al. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7:11095 doi: 10.1038/ncomms11095
CrossRef Google Scholar
|
[54]
|
Xu L, Zhao H, Wan R, Liu Y, Xu Z, et al. 2019. Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants 5:84−94 doi: 10.1038/s41477-018-0334-3
CrossRef Google Scholar
|
[55]
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, et al. 2023. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. Plant, Cell & Environment 46:1264−77 doi: 10.1111/pce.14414
CrossRef Google Scholar
|
[56]
|
Lee Y, Nishizawa T, Takemoto M, Kumazaki K, Yamashita K, et al. 2017. Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity. Nature Plants 3:825−32 doi: 10.1038/s41477-017-0022-8
CrossRef Google Scholar
|
[57]
|
Wang Q, Chen J, Wang X, Sun J, Sha W. 2002. Molecular cloning and expression analysis of the rice triose phosphate/phosphate translocator gene. Plant Science 162:785−90 doi: 10.1016/S0168-9452(02)00023-7
CrossRef Google Scholar
|
[58]
|
Versaw WK, Harrison MJ. 2002. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. The Plant Cell 14:1751−66 doi: 10.1105/tpc.002220
CrossRef Google Scholar
|
[59]
|
Liu X, Wang L, Wang X, Yan Y, Yang X, et al. 2020. Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice. The Plant Journal 102:53−67 doi: 10.1111/tpj.14611
CrossRef Google Scholar
|
[60]
|
Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, et al. 1989. The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. The EMBO Journal 8:39−46 doi: 10.1002/j.1460-2075.1989.tb03346.x
CrossRef Google Scholar
|
[61]
|
Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK. 2008. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytologist 177:889−98 doi: 10.1111/j.1469-8137.2007.02331.x
CrossRef Google Scholar
|
[62]
|
Streatfield SJ, Weber A, Kinsman EA, Häusler RE, Li J, et al. 1999. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. The Plant Cell 11:1609−21 doi: 10.1105/tpc.11.9.1609
CrossRef Google Scholar
|
[63]
|
Eicks M, Maurino V, Knappe S, Flügge UI, Fischer K. 2002. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiology 128:512−22 doi: 10.1104/pp.010576
CrossRef Google Scholar
|
[64]
|
Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, et al. 1998. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. The Plant Cell 10:105−17 doi: 10.1105/tpc.10.1.105
CrossRef Google Scholar
|
[65]
|
Zhu W, Miao Q, Sun D, Yang G, Wu C, et al. 2012. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One 7:e43530 doi: 10.1371/journal.pone.0043530
CrossRef Google Scholar
|
[66]
|
Lorenz A, Lorenz M, Vothknecht UC, Niopek-Witz S, Neuhaus HE, et al. 2015. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca2+-effects. BMC Plant Biology 15:238 doi: 10.1186/s12870-015-0616-0
CrossRef Google Scholar
|
[67]
|
Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, et al. 2012. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. The Plant Journal 71:479−91 doi: 10.1111/j.1365-313X.2012.05004.x
CrossRef Google Scholar
|
[68]
|
Cubero B, Nakagawa Y, Jiang XY, Miura KJ, Li F, et al. 2009. The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Molecular Plant 2:535−52 doi: 10.1093/mp/ssp013
CrossRef Google Scholar
|
[69]
|
Poirier Y, Thoma S, Somerville C, Schiefelbein J. 1991. Mutant of Arabidopsis deficient in xylem loading of Phosphate 1. Plant Physiology 97:1087−93 doi: 10.1104/pp.97.3.1087
CrossRef Google Scholar
|
[70]
|
Wang Y, Ribot C, Rezzonico E, Poirier Y. 2004. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic Phosphate homeostasis. Plant Physiology 135:400−11 doi: 10.1104/pp.103.037945
CrossRef Google Scholar
|
[71]
|
Secco D, Baumann A, Poirier Y. 2010. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in Phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiology 152:1693−704 doi: 10.1104/pp.109.149872
CrossRef Google Scholar
|
[72]
|
Zhang C, Meng S, Li M, Zhao Z. 2016. Genomic identification and expression analysis of the Phosphate transporter gene family in Poplar. Frontiers in Plant Science 7:1398 doi: 10.3389/fpls.2016.01398
CrossRef Google Scholar
|
[73]
|
Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, et al. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist 195:306−20 doi: 10.1111/j.1469-8137.2012.04190.x
CrossRef Google Scholar
|
[74]
|
Li Y, Zhang J, Zhang X, Fan H, Gu M, et al. 2015. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Science 230:23−32 doi: 10.1016/j.plantsci.2014.10.001
CrossRef Google Scholar
|
[75]
|
Wang F, Cui P, Tian Y, Huang Y, Wang H, et al. 2020. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. Plant Biotechnology Journal 18:2406−19 doi: 10.1111/pbi.13414
CrossRef Google Scholar
|
[76]
|
Guo M, Ruan W, Li R, Xu L, Hani S, et al. 2024. Visualizing plant intracellular inorganic orthophosphate distribution. Nature Plants 10:315−26 doi: 10.1038/s41477-023-01612-9
CrossRef Google Scholar
|
[77]
|
Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, et al. 2017. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541:92−95 doi: 10.1038/nature20610
CrossRef Google Scholar
|
[78]
|
Gu M, Huang H, Hisano H, Ding G, Huang S, et al. 2022. A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains. New Phytologist 234:1249−61 doi: 10.1111/nph.18057
CrossRef Google Scholar
|
[79]
|
Che J, Yamaji N, Miyaji T, Mitani-Ueno N, Kato Y, et al. 2020. Node-localized transporters of Phosphorus essential for seed development in rice. Plant and Cell Physiology 61:1387−98 doi: 10.1093/pcp/pcaa074
CrossRef Google Scholar
|
[80]
|
Ding G, Lei G, Yamaji N, Yokosho K, Mitani-Ueno N, et al. 2020. Vascular cambium-localized AtSPDT mediates xylem-to-phloem transfer of Phosphorus for Its preferential distribution in Arabidopsis. Molecular Plant 13:99−111 doi: 10.1016/j.molp.2019.10.002
CrossRef Google Scholar
|
[81]
|
Ma B, Zhang L, Gao Q, Wang J, Li X, et al. 2021. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics 53:906−15 doi: 10.1038/s41588-021-00855-6
CrossRef Google Scholar
|
[82]
|
Shi J, Wang X, Wang E. 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology 74:569−607 doi: 10.1146/annurev-arplant-061722-090342
CrossRef Google Scholar
|
[83]
|
Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.e18 doi: 10.1016/j.cell.2021.09.030
CrossRef Google Scholar
|
[84]
|
Teste FP, Jones MD, Dickie IA. 2020. Dual-mycorrhizal plants: their ecology and relevance. New Phytologist 225:1835−51 doi: 10.1111/nph.16190
CrossRef Google Scholar
|
[85]
|
Paparokidou C, Leake JR, Beerling DJ, Rolfe SA. 2021. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. Mycorrhiza 31:69−83 doi: 10.1007/s00572-020-01001-6
CrossRef Google Scholar
|
[86]
|
Zhang T, Wen X, Ding G. 2017. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana). Acta Physiologiae Plantarum 39:101 doi: 10.1007/s11738-017-2392-y
CrossRef Google Scholar
|
[87]
|
Kariman K, Barker SJ, Jost R, Finnegan PM, Tibbett M. 2016. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza 26:401−15 doi: 10.1007/s00572-015-0674-z
CrossRef Google Scholar
|
[88]
|
Cai B, Vancov T, Si H, Yang W, Tong K, et al. 2021. Isolation and characterization of endomycorrhizal fungi associated with growth promotion of blueberry plants. Journal of Fungi 7:584 doi: 10.3390/jof7080584
CrossRef Google Scholar
|
[89]
|
Wei X, Chen J, Zhang C, Liu H, Zheng X, et al. 2020. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Horticulture Research 7:140 doi: 10.1038/s41438-020-00361-6
CrossRef Google Scholar
|
[90]
|
Chen X, Zhu Q, Nie Y, Han F, Li Y, et al. 2021. Determination of conifer age biomarker DAL1 interactome using Y2H-seq. Forestry Research 1:12 doi: 10.48130/FR-2021-0012
CrossRef Google Scholar
|
[91]
|
Huang XY, Salt DE. 2016. Plant ionomics: from elemental profiling to environmental adaptation. Molecular Plant 9:787−97 doi: 10.1016/j.molp.2016.05.003
CrossRef Google Scholar
|
[92]
|
Burleigh SH, Harrison MJ. 1999. The down-regulation of Mt4-Like genes by Phosphate fertilization occurs systemically and involves Phosphate translocation to the shoots. Plant Physiology 119:241−48 doi: 10.1104/pp.119.1.241
CrossRef Google Scholar
|
[93]
|
Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, et al. 2010. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal 64:775−89 doi: 10.1111/j.1365-313X.2010.04375.x
CrossRef Google Scholar
|
[94]
|
Bates TR, Lynch JP. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell & Environment 19:529−38 doi: 10.1111/j.1365-3040.1996.tb00386.x
CrossRef Google Scholar
|
[95]
|
Ma Z, Bielenberg DG, Brown KM, Lynch JP. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell & Environment 24:459−67 doi: 10.1046/j.1365-3040.2001.00695.x
CrossRef Google Scholar
|
[96]
|
Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, et al. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39:792−96 doi: 10.1038/ng2041
CrossRef Google Scholar
|
[97]
|
Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, et al. 2017. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications 8:15300 doi: 10.1038/ncomms15300
CrossRef Google Scholar
|
[98]
|
Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, et al. 2017. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proceedings of the National Academy of Sciences of the United States of America 114:E3563−E3572 doi: 10.1073/pnas.1701952114
CrossRef Google Scholar
|
[99]
|
Secco D, Jabnoune M, Walker H, Shou H, Wu P, et al. 2013. Spatio-temporal transcript profiling of rice roots and shoots in response to Phosphate starvation and recovery. The Plant Cell 25:4285−304 doi: 10.1105/tpc.113.117325
CrossRef Google Scholar
|
[100]
|
Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, et al. 2009. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology 150:281−94 doi: 10.1104/pp.108.134700
CrossRef Google Scholar
|
[101]
|
Tokizawa M, Enomoto T, Chandnani R, Mora-Macías J, Burbridge C, et al. 2023. The transcription factors, STOP1 and TCP20, are required for root system architecture alterations in response to nitrate deficiency. Proceedings of the National Academy of Sciences of the United States of America 120:e2300446120 doi: 10.1073/pnas.2300446120
CrossRef Google Scholar
|
[102]
|
Kochian LV, Piñeros MA, Liu J, Magalhaes JV. 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology 66:571−98 doi: 10.1146/annurev-arplant-043014-114822
CrossRef Google Scholar
|
[103]
|
Müller J, Toev T, Heisters M, Teller J, Moore KL, et al. 2015. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Developmental Cell 33:216−30 doi: 10.1016/j.devcel.2015.02.007
CrossRef Google Scholar
|
[104]
|
Tian W, Ye J, Cui M, Chang J, Liu Y, et al. 2021. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Molecular Plant 14:1554−68 doi: 10.1016/j.molp.2021.06.024
CrossRef Google Scholar
|
[105]
|
Straub T, Ludewig U, Neuhäuser B. 2017. The kinase CIPK23 inhibits Ammonium transport in Arabidopsis thaliana. The Plant Cell 29:409−22 doi: 10.1105/tpc.16.00806
CrossRef Google Scholar
|
[106]
|
Ye J, Tian W, Zhou M, Zhu Q, Du W, et al. 2021. STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. The Plant Cell 33:3658−74 doi: 10.1093/plcell/koab226
CrossRef Google Scholar
|
[107]
|
Fang Q, Zhou F, Zhang Y, Singh S, Huang C. 2021. Degradation of STOP1 mediated by the F-box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in Arabidopsis thaliana. The Plant Journal 106:493−506 doi: 10.1111/tpj.15181
CrossRef Google Scholar
|
[108]
|
Zhang Z, Li Z, Wang W, Jiang Z, Guo L, et al. 2021. Modulation of nitrate-induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Molecular Plant 14:517−29 doi: 10.1016/j.molp.2020.12.005
CrossRef Google Scholar
|
[109]
|
Wang C, Bian C, Li J, Han L, Guo D, et al. 2023. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis. Plant Physiology 193:821−39 doi: 10.1093/plphys/kiad339
CrossRef Google Scholar
|
[110]
|
Sawaki Y, Kobayashi Y, Kihara-Doi T, Nishikubo N, Kawazu T, et al. 2014. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Science 223:8−15 doi: 10.1016/j.plantsci.2014.02.011
CrossRef Google Scholar
|
[111]
|
Zhang H, Yin W, Xia X. 2010. Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K+ stress. Plant Cell Reports 29:1007−12 doi: 10.1007/s00299-010-0886-9
CrossRef Google Scholar
|
[112]
|
Li C, Liang B, Chang C, Wei Z, Zhou S, et al. 2016. Exogenous melatonin improved potassium content in Malus under different stress conditions. Journal of Pineal Research 61:218−29 doi: 10.1111/jpi.12342
CrossRef Google Scholar
|
[113]
|
Cardoso TB, Pinto RT, Paiva LV. 2020. Comprehensive characterization of the ALMT and MATE families on Populus trichocarpa and gene co-expression network analysis of its members during aluminium toxicity and phosphate starvation stresses. 3 Biotech 10:525 doi: 10.1007/s13205-020-02528-3
CrossRef Google Scholar
|
[114]
|
Wu X, Yang H, Qu C, Xu Z, Li W, et al. 2015. Sequence and expression analysis of the AMT gene family in poplar. Frontiers in Plant Science 6:337 doi: 10.3389/fpls.2015.00337
CrossRef Google Scholar
|
[115]
|
Wang Y, Xuan Y, Wang S, Fan D, Wang X, et al. 2022. Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.). Physiologia Plantarum 174:e13646 doi: 10.1111/ppl.13646
CrossRef Google Scholar
|
[116]
|
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62:1049−60 doi: 10.1093/jxb/erq335
CrossRef Google Scholar
|
[117]
|
Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG. 2002. Phosphite, an analog of Phosphate, suppresses the coordinated expression of genes under Phosphate starvation. Plant Physiology 129:1232−40 doi: 10.1104/pp.010835
CrossRef Google Scholar
|
[118]
|
Péret B, Clément M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16:442−50 doi: 10.1016/j.tplants.2011.05.006
CrossRef Google Scholar
|
[119]
|
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, et al. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development 15:2122−33 doi: 10.1101/gad.204401
CrossRef Google Scholar
|
[120]
|
Zhou J, Jiao F, Wu Z, Li Y, Wang X, et al. 2008. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiology 146:1673−86 doi: 10.1104/pp.107.111443
CrossRef Google Scholar
|
[121]
|
Guo M, Ruan W, Li C, Huang F, Zeng M, et al. 2015. Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiology 168:1762−76 doi: 10.1104/pp.15.00736
CrossRef Google Scholar
|
[122]
|
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, et al. 2010. A central regulatory system largely controls transcriptional activation and repression responses to Phosphate starvation in Arabidopsis. PLoS Genetics 6:e1001102 doi: 10.1371/journal.pgen.1001102
CrossRef Google Scholar
|
[123]
|
Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, et al. 2015. The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. Journal of Experimental Botany 66:1907−18 doi: 10.1093/jxb/eru535
CrossRef Google Scholar
|
[124]
|
Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, et al. 2014. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:14947−52 doi: 10.1073/pnas.1404654111
CrossRef Google Scholar
|
[125]
|
Wang Z, Ruan W, Shi J, Zhang L, Xiang D, et al. 2014. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences of the United States of America 111:14953−58 doi: 10.1073/pnas.1404680111
CrossRef Google Scholar
|
[126]
|
Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, et al. 2014. SPX4 negatively regulates Phosphate signaling and Homeostasis through Its interaction with PHR2 in rice. The Plant Cell 26:1586−97 doi: 10.1105/tpc.114.123208
CrossRef Google Scholar
|
[127]
|
Ruan W, Guo M, Wang X, Guo Z, Xu Z, et al. 2019. Two RING-Finger ubiquitin E3 ligases regulate the degradation of SPX4, an internal Phosphate sensor, for Phosphate homeostasis and signaling in rice. Molecular Plant 12:1060−74 doi: 10.1016/j.molp.2019.04.003
CrossRef Google Scholar
|
[128]
|
Dong J, Ma G, Sui L, Wei M, Satheesh V, et al. 2019. Inositol pyrophosphate InsP8 acts as an intracellular Phosphate signal in Arabidopsis. Molecular Plant 12:1463−73 doi: 10.1016/j.molp.2019.08.002
CrossRef Google Scholar
|
[129]
|
Duan K, Yi K, Dang L, Huang H, Wu W, et al. 2008. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. The Plant Journal 54:965−75 doi: 10.1111/j.1365-313X.2008.03460.x
CrossRef Google Scholar
|
[130]
|
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, et al. 2012. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytologist 193:842−51 doi: 10.1111/j.1469-8137.2011.04002.x
CrossRef Google Scholar
|
[131]
|
Zhong Y, Wang Y, Guo J, Zhu X, Shi J, et al. 2018. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytologist 219:135−48 doi: 10.1111/nph.15155
CrossRef Google Scholar
|
[132]
|
Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, et al. 2017. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Current Opinion in Biotechnology 39:40−49 doi: 10.1016/j.pbi.2017.05.007
CrossRef Google Scholar
|
[133]
|
Jung JY, Ried MK, Hothorn M, Poirier Y. 2018. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Current Opinion in Biotechnology 49:156−62 doi: 10.1016/j.copbio.2017.08.012
CrossRef Google Scholar
|
[134]
|
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, et al. 2016. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986−90 doi: 10.1126/science.aad9858
CrossRef Google Scholar
|
[135]
|
Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, et al. 2019. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 8:e43582 doi: 10.7554/eLife.43582
CrossRef Google Scholar
|
[136]
|
Zhou J, Hu Q, Xiao X, Yao D, Ge S, et al. 2021. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nature Communications 12:7040 doi: 10.1038/s41467-021-27391-5
CrossRef Google Scholar
|
[137]
|
Li R, An J, You C, Wang X, Hao Y. 2021. Overexpression of MdPHR1 enhanced tolerance to Phosphorus deficiency by increasing MdPAP10 transcription in apple (Malus × Domestica). Journal of Plant Growth Regulation 40:1753−63 doi: 10.1007/s00344-020-10225-x
CrossRef Google Scholar
|
[138]
|
Yue C, Chen Q, Hu J, Li C, Luo L, et al. 2022. Genome-wide identification and characterization of GARP transcription factor gene family members reveal their diverse functions in tea plant (Camellia sinensis). Frontiers in Plant Science 13:947072 doi: 10.3389/fpls.2022.947072
CrossRef Google Scholar
|
[139]
|
Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, et al. 2013. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for Citrus Huanglongbing disease. Molecular Plant 6:301−10 doi: 10.1093/mp/sst002
CrossRef Google Scholar
|
[140]
|
Shi W, Liu W, Ma C, Zhang Y, Ding S, et al. 2020. Dissecting microRNA–mRNA regulatory networks underlying sulfur assimilation and cadmium accumulation in poplar leaves. Plant and Cell Physiology 61:1614−30 doi: 10.1093/pcp/pcaa084
CrossRef Google Scholar
|
[141]
|
Bao H, Chen H, Chen M, Xu H, Huo X, et al. 2019. Transcriptome-wide identification and characterization of microRNAs responsive to phosphate starvation in Populus tomentosa. Functional & Integrative Genomics 19:953−72 doi: 10.1007/s10142-019-00692-1
CrossRef Google Scholar
|
[142]
|
Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, et al. 2015. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiology 167:1511−26 doi: 10.1104/pp.114.252338
CrossRef Google Scholar
|
[143]
|
Lin WY, Huang TK, Chiou TJ. 2013. NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized Phosphate transporters to maintain Phosphate homeostasis in Arabidopsis. The Plant Cell 25:4061−74 doi: 10.1105/tpc.113.116012
CrossRef Google Scholar
|
[144]
|
Bari R, Datt Pant B, Stitt M, Scheible WR. 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology 141:988−99 doi: 10.1104/pp.106.079707
CrossRef Google Scholar
|
[145]
|
Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, et al. 2008. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology 147:732−46 doi: 10.1104/pp.108.116269
CrossRef Google Scholar
|
[146]
|
Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, et al. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology 151:2120−32 doi: 10.1104/pp.109.147280
CrossRef Google Scholar
|
[147]
|
Huen AK, Rodriguez-Medina C, Ho AYY, Atkins CA, Smith PMC. 2017. Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis. Plant Biology 19:643−49 doi: 10.1111/plb.12568
CrossRef Google Scholar
|
[148]
|
Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, et al. 2012. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. The Plant Cell 24:2168−83 doi: 10.1105/tpc.112.096636
CrossRef Google Scholar
|
[149]
|
Guo M, Ruan W, Zhang Y, Zhang Y, Wang X, et al. 2022. A reciprocal inhibitory module for Pi and iron signaling. Molecular Plant 15:138−50 doi: 10.1016/j.molp.2021.09.011
CrossRef Google Scholar
|
[150]
|
Güsewell S. 2004. N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164:243−66 doi: 10.1111/j.1469-8137.2004.01192.x
CrossRef Google Scholar
|
[151]
|
Hu B, Chu C. 2020. Nitrogen–phosphorus interplay: old story with molecular tale. New Phytologist 225:1455−60 doi: 10.1111/nph.16102
CrossRef Google Scholar
|
[152]
|
Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, et al. 2019. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants 5:401−13 doi: 10.1038/s41477-019-0384-1
CrossRef Google Scholar
|
[153]
|
Liu KH, Niu Y, Konishi M, Wu Y, Du H, et al. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 545:311−16 doi: 10.1038/nature22077
CrossRef Google Scholar
|
[154]
|
Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138:1184−94 doi: 10.1016/j.cell.2009.07.004
CrossRef Google Scholar
|
[155]
|
Fan X, Feng H, Tan Y, Xu Y, Miao Q, et al. 2016. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. Journal of Integrative Plant Biology 58:590−99 doi: 10.1111/jipb.12382
CrossRef Google Scholar
|
[156]
|
Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−38 doi: 10.1038/ng.3337
CrossRef Google Scholar
|
[157]
|
Zhang Z, Xia J, Alfatih A, Song Y, Huang Y, et al. 2022. Rice NIN-LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate-sufficient conditions. Plant, Cell & Environment 45:1520−36 doi: 10.1111/pce.14294
CrossRef Google Scholar
|
[158]
|
Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, et al. 2015. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications 6:6274 doi: 10.1038/ncomms7274
CrossRef Google Scholar
|
[159]
|
Kiba T, Inaba J, Kudo T, Ueda N, Konishi M, et al. 2018. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-Type transcription factor NIGT1/HRS1 subfamily. The Plant Cell 30:925−45 doi: 10.1105/tpc.17.00810
CrossRef Google Scholar
|
[160]
|
Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, et al. 2018. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nature Communications 9:1376 doi: 10.1038/s41467-018-03832-6
CrossRef Google Scholar
|
[161]
|
Lin Z, Guo C, Lou S, Jin S, Zeng W, et al. 2021. Functional analyses unveil the involvement of moso bamboo (Phyllostachys edulis) group I and II NIN-LIKE PROTEINS in nitrate signaling regulation. Plant Science 306:110862 doi: 10.1016/j.plantsci.2021.110862
CrossRef Google Scholar
|
[162]
|
Zhang T, Kang H, Fu L, Sun W, Gao W, et al. 2021. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2. Plant Science 303:110771 doi: 10.1016/j.plantsci.2020.110771
CrossRef Google Scholar
|
[163]
|
Wei M, Zhang M, Sun J, Zhao Y, Pak S, et al. 2023. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. Journal of Integrative Plant Biology 65:791−809 doi: 10.1111/jipb.13389
CrossRef Google Scholar
|
[164]
|
Wang YH, Garvin DF, Kochian LV. 2002. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiology 130:1361−70 doi: 10.1104/pp.008854
CrossRef Google Scholar
|
[165]
|
Ródenas R, Martínez V, Nieves-Cordones M, Rubio F. 2019. High external K+ concentrations impair Pi nutrition, induce the Phosphate starvation response, and reduce Arsenic toxicity in Arabidopsis plants. International Journal of Molecular Sciences 20:2237 doi: 10.3390/ijms20092237
CrossRef Google Scholar
|
[166]
|
Kumar S, Kumar S, Mohapatra T. 2021. Interaction between macro- and micro-nutrients in plants. Frontiers in Plant Science 12:665583 doi: 10.3389/fpls.2021.665583
CrossRef Google Scholar
|
[167]
|
Yu B, Xu C, Benning C. 2002. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proceedings of the National Academy of Sciences of the United States of America 99:5732−37 doi: 10.1073/pnas.082696499
CrossRef Google Scholar
|
[168]
|
Rouached H, Secco D, Arpat B, Poirier Y. 2011. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biology 11:19 doi: 10.1186/1471-2229-11-19
CrossRef Google Scholar
|
[169]
|
Long Y, Peng J. 2023. Interaction between Boron and other elements in plants. Genes 14:130 doi: 10.3390/genes14010130
CrossRef Google Scholar
|
[170]
|
Kaya C, Tuna AL, Dikilitas M, Ashraf M, Koskeroglu S, et al. 2009. Supplementary phosphorus can alleviate boron toxicity in tomato. Scientia Horticulturae 121:284−88 doi: 10.1016/j.scienta.2009.02.011
CrossRef Google Scholar
|
[171]
|
Gunes A, Alpaslan M. 2000. Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. Journal of Plant Nutrition 23:541−50 doi: 10.1080/01904160009382038
CrossRef Google Scholar
|
[172]
|
Robertson GA, Loughman BC. 1974. Reversible effects of boron on the absorption and incorporation of Phosphate in Vicia fabal. New Phytologist 73:291−98 doi: 10.1111/j.1469-8137.1974.tb04762.x
CrossRef Google Scholar
|
[173]
|
Chatterjee C, Sinha P, Agarwala SC. 1990. Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Canadian Journal of Plant Science 70:455−60 doi: 10.4141/cjps90-053
CrossRef Google Scholar
|
[174]
|
Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil 419:447−55 doi: 10.1007/s11104-017-3364-0
CrossRef Google Scholar
|
[175]
|
Ma J, Takahashi E. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil 126:115−19 doi: 10.1007/BF00041376
CrossRef Google Scholar
|
[176]
|
Soratto RP, Fernandes AM, Pilon C, Souza MR. 2019. Phosphorus and silicon effects on growth, yield, and phosphorus forms in potato plants. Journal of Plant Nutrition 42:218−33 doi: 10.1080/01904167.2018.1554072
CrossRef Google Scholar
|
[177]
|
Zhang Y, Liang Y, Zhao X, Jin X, Hou L, et al. 2019. Silicon compensates Phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9:733 doi: 10.3390/agronomy9110733
CrossRef Google Scholar
|
[178]
|
Hu A, Che J, Shao J, Yokosho K, Zhao X, et al. 2018. Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant and Soil 423:317−25 doi: 10.1007/s11104-017-3512-6
CrossRef Google Scholar
|
[179]
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. 2021. Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science 12:697592 doi: 10.3389/fpls.2021.697592
CrossRef Google Scholar
|
[180]
|
Li Y, Brooks M, Yeoh-Wang J, McCoy RM, Rock TM, et al. 2020. SDG8-mediated histone methylation and RNA processing function in the response to nitrate signaling. Plant Physiology 182:215−27 doi: 10.1104/pp.19.00682
CrossRef Google Scholar
|
[181]
|
Wang T, Ye W, Zhang J, Li H, Zeng W, et al. 2023. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora. Plant Physiology 191:2570−87 doi: 10.1093/plphys/kiad030
CrossRef Google Scholar
|
[182]
|
Yu Y, Zhong Z, Ma L, Xiang C, Chen J, et al. 2022. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. New Phytologist 236:1326−38 doi: 10.1111/nph.18441
CrossRef Google Scholar
|
[183]
|
Ye W, Wang T, Wei W, Lou S, Lan F, et al. 2020. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant and Cell Physiology 61:882−96 doi: 10.1093/pcp/pcaa013
CrossRef Google Scholar
|