[1]
|
Barros J, Serk H, Granlund I, Pesquet E. 2015. The cell biology of lignification in higher plants. Annals of Botany 115:1053−74 doi: 10.1093/aob/mcv046
CrossRef Google Scholar
|
[2]
|
Lourenço A, Pereira A. 2018. Compositional variability of lignin in biomass. In Lignin - Trends and Applications, ed. Poletto M. UK: IntechOpen. pp. 65−98. doi: 10.5772/intechopen.71208
|
[3]
|
Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, et al. 2019. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. Embo Journal 38:e101948 doi: 10.15252/embj.2019101948
CrossRef Google Scholar
|
[4]
|
Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R. 2010. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiology 154:555−61 doi: 10.1104/pp.110.161281
CrossRef Google Scholar
|
[5]
|
Kocaturk E, Salan T, Ozcelik O, Alma MH, Candan Z. 2023. Recent advances in lignin-based biofuel production. Energies 16:3382 doi: 10.3390/en16083382
CrossRef Google Scholar
|
[6]
|
Díaz-Sala C, Cabezas JA, de Simón BF, Abarca D, Guevara MÁ, et al. 2013. The uniqueness of conifers. In From Plant Genomics to Plant Biotechnology, eds Poltronieri P, Burbulis N, Fogher C. UK: Woodhead Publishing. pp. 67−96. doi: 10.1533/9781908818478.67
|
[7]
|
Pratyusha DS, Sarada DVL. 2022. MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60 doi: 10.1007/s00299-022-02927-1
CrossRef Google Scholar
|
[8]
|
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81 doi: 10.1016/j.tplants.2010.06.005
CrossRef Google Scholar
|
[9]
|
Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4:447−56 doi: 10.1016/S1369-5266(00)00199-0
CrossRef Google Scholar
|
[10]
|
Xiao R, Zhang C, Guo X, Li H, Lu H. 2021. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences 22:3560 doi: 10.3390/ijms22073560
CrossRef Google Scholar
|
[11]
|
Behr M, Guerriero G, Grima-Pettenati J, Baucher M. 2019. A molecular blueprint of lignin repression. Trends in Plant Science 24:1052−64 doi: 10.1016/j.tplants.2019.07.006
CrossRef Google Scholar
|
[12]
|
Ma DW, Constabel CP. 2019. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science 24:275−89 doi: 10.1016/j.tplants.2018.12.003
CrossRef Google Scholar
|
[13]
|
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, et al. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal 19:6150−61 doi: 10.1093/emboj/19.22.6150
CrossRef Google Scholar
|
[14]
|
Zhou M, Sun Z, Wang C, Zhang X, Tang Y, et al. 2015. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. The Plant Journal 84:395−403 doi: 10.1111/tpj.13008
CrossRef Google Scholar
|
[15]
|
Kagale S, Rozwadowski K. 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141−46 doi: 10.4161/epi.6.2.13627
CrossRef Google Scholar
|
[16]
|
Liu Q, Luo L, Zheng L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19:335 doi: 10.3390/ijms19020335
CrossRef Google Scholar
|
[17]
|
Legay S, Lacombe E, Goicoechea M, Brière C, Séguin A, et al. 2007. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Science 173:542−49 doi: 10.1016/j.plantsci.2007.08.007
CrossRef Google Scholar
|
[18]
|
Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, et al. 2012. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytologist 193:121−36 doi: 10.1111/j.1469-8137.2011.03922.x
CrossRef Google Scholar
|
[19]
|
Sonbol FM, Fornalé S, Capellades M, Encina A, Touriño S, et al. 2009. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology 70:283−96 doi: 10.1007/s11103-009-9473-2
CrossRef Google Scholar
|
[20]
|
Fornalé S, Shi X, Chai C, Encina A, Irar S, et al. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. The Plant Journal 64:633−44 doi: 10.1111/j.1365-313X.2010.04363.x
CrossRef Google Scholar
|
[21]
|
Zhou J, Lee C, Zhong R, Ye ZH. 2009. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. The Plant Cell 21:248−66 doi: 10.1105/tpc.108.063321
CrossRef Google Scholar
|
[22]
|
Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal 43:553−67 doi: 10.1111/j.1365-313X.2005.02480.x
CrossRef Google Scholar
|
[23]
|
Li C, Wang X, Ran L, Tian Q, Fan D, et al. 2015. PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant and Cell Physiology 56:2436−46 doi: 10.1093/pcp/pcv157
CrossRef Google Scholar
|
[24]
|
Tian Q, Wang X, Li C, Lu W, Yang L, et al. 2013. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS One 8:e76369 doi: 10.1371/journal.pone.0076369
CrossRef Google Scholar
|
[25]
|
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, et al. 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology 151:1513−30 doi: 10.1104/pp.109.142059
CrossRef Google Scholar
|
[26]
|
Prouse MB, Campbell MM. 2013. Interactions between the R2R3-MYB transcription factor, MYB61, and target DNA binding sites. PLoS One 8:e65132 doi: 10.1371/journal.pone.0065132
CrossRef Google Scholar
|
[27]
|
Li S. 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signaling & Behavior 9:e27522 doi: 10.4161/psb.27522
CrossRef Google Scholar
|
[28]
|
Zhou H, Kui LW, Wang F, Espley RV, Ren F, et al. 2019. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist 221:1919−34 doi: 10.1111/nph.15486
CrossRef Google Scholar
|
[29]
|
Ko JH, Jeon HW, Kim WC, Kim JY, Han KH. 2014. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. Annals of Botany 114:1099−107 doi: 10.1093/aob/mcu126
CrossRef Google Scholar
|
[30]
|
Su X, Xia Y, Jiang W, Shen G, Pang Y. 2020. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta 252:68 doi: 10.1007/s00425-020-03476-1
CrossRef Google Scholar
|
[31]
|
Yang J, Xu J, Zhang Y, Cui J, Hu H, et al. 2023. Two R2R3-MYB transcription factors from Chinese cedar (Cryptomeria fortunei Hooibrenk) are involved in the regulation of secondary cell wall formation. Plant Physiology and Biochemistry 201:107879 doi: 10.1016/j.plaphy.2023.107879
CrossRef Google Scholar
|
[32]
|
Ranade SS, Seipel G, Gorzsás A, García-Gil MR. 2022. Enhanced lignin synthesis and ecotypic variation in defense-related gene expression in response to shade in Norway spruce. Plant, Cell & Environment 45:2671−81 doi: 10.1111/pce.14387
CrossRef Google Scholar
|
[33]
|
Ranade SS, Seipel G, Gorzsás A, García-Gil MR. 2022. Adaptive strategies of Scots pine under shade: increase in lignin synthesis and ecotypic variation in defence-related gene expression. Physiologia Plantarum 174:e13792 doi: 10.1111/ppl.13792
CrossRef Google Scholar
|
[34]
|
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, et al. 2014. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196:875−90 doi: 10.1534/genetics.113.159715
CrossRef Google Scholar
|
[35]
|
Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37:1713−26 doi: 10.1093/treephys/tpx093
CrossRef Google Scholar
|
[36]
|
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, et al. 2008. Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36:W465−W469 doi: 10.1093/nar/gkn180
CrossRef Google Scholar
|
[37]
|
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43:D222−D226 doi: 10.1093/nar/gku1221
CrossRef Google Scholar
|
[38]
|
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97 doi: 10.1093/nar/gkh340
CrossRef Google Scholar
|
[39]
|
Li SF, Milliken ON, Pham H, Seyit R, Napoli R, et al. 2009. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. The Plant Cell 21:72−89 doi: 10.1105/tpc.108.063503
CrossRef Google Scholar
|
[40]
|
Wang XC, Wu J, Guan ML, Zhao CH, Geng P, et al. 2020. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. The Plant Journal 101:637−52 doi: 10.1111/tpj.14570
CrossRef Google Scholar
|
[41]
|
Bedon F, Grima-Pettenati J, Mackay J. 2007. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology 7:17 doi: 10.1186/1471-2229-7-17
CrossRef Google Scholar
|
[42]
|
Zhou M, Zhang K, Sun Z, Yan M, Chen C, et al. 2017. LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiology 174:1348−58 doi: 10.1104/pp.17.00160
CrossRef Google Scholar
|
[43]
|
Agarwal T, Grotewold E, Doseff AI, Gray J. 2016. MYB31/MYB42 syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum and rice. Scientific Reports 6:28502 doi: 10.1038/srep28502
CrossRef Google Scholar
|
[44]
|
Miyamoto T, Tobimatsu Y, Umezawa T. 2020. MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology 24:100174 doi: 10.1016/j.cpb.2020.100174
CrossRef Google Scholar
|
[45]
|
Hussain S, Iqbal N, Pang T, Khan MN, Liu WG, et al. 2019. Weak stem under shade reveals the lignin reduction behavior. Journal of Integrative Agriculture 18:496−505 doi: 10.1016/S2095-3119(18)62111-2
CrossRef Google Scholar
|
[46]
|
Wu L, Zhang W, Ding Y, Zhang J, Cambula ED, et al. 2017. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in Japonica rice (Oryza sativa L.). Frontiers in Plant Science 8:881 doi: 10.3389/fpls.2017.00881
CrossRef Google Scholar
|
[47]
|
Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, et al. 2017. The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3 Genes|Genomes| Genetics 7:3157−67 doi: 10.1534/g3.117.300078
CrossRef Google Scholar
|