[1]
|
Ahmed E, Arshad M, Khan MZ, Amjad MS, Sadaf HM, et al. 2017. Secondary metabolites and their multidimensional prospective in plant life. Journal of Pharmacognosy and Phytochemistry 6:205−14
Google Scholar
|
[2]
|
Dias MC, Pinto DCGA, Silva AMS. 2021. Plant flavonoids: chemical characteristics and biological activity. Molecules 26:5377 doi: 10.3390/molecules26175377
CrossRef Google Scholar
|
[3]
|
Markham KR, Porter LJ. 1969. Flavonoids in the green algae (chlorophyta). Phytochemistry 8:1777−81 doi: 10.1016/S0031-9422(00)85968-3
CrossRef Google Scholar
|
[4]
|
Bohlmann J, Keeling CI. 2008. Terpenoid biomaterials. The Plant Journal 54:656−69 doi: 10.1111/j.1365-313X.2008.03449.x
CrossRef Google Scholar
|
[5]
|
Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: an overview. Journal of Nutritional Science 5:e47 doi: 10.1017/jns.2016.41
CrossRef Google Scholar
|
[6]
|
Wong E. 1975. The isoflavonoids. In The Flavonoids, eds Harborne JB, Mabry TJ, Mabry H. Boston MA: Springer US. pp. 743–800. https://doi.org/10.1007/978-1-4899-2909-9_14
|
[7]
|
Iwashina T. 2000. The structure and distribution of the flavonoids in plants. Journal of Plant Research 113:287−99 doi: 10.1007/PL00013940
CrossRef Google Scholar
|
[8]
|
Jain N, Ramawat KG. 2013. Nutraceuticals and antioxidants in prevention of diseases. In Natural Products, eds Ramawat K, Mérillon JM. Berlin, Heidelberg: Springer. pp. 2559–80. https://doi.org/10.1007/978-3-642-22144-6_70
|
[9]
|
Heber D. 2004. Vegetables, fruits and phytoestrogens in the prevention of diseases. Journal of Postgraduate Medicine 50:145−49
Google Scholar
|
[10]
|
Harborne FRS JB, Baxter H. 1999. The handbook of natural flavonoids, 2 Volume Set. Chichester: Wiley. 1838 pp.
|
[11]
|
Terahara N. 2015. Flavonoids in foods: a review. Natural Product Communications 10:521−28 doi: 10.1177/1934578X1501000334
CrossRef Google Scholar
|
[12]
|
Agrawal AD. 2011. Pharmacological activities of flavonoids: a review. International Journal of Pharmaceutical Sciences and Nanotechnology 4:1394−98 doi: 10.37285/ijpsn.2011.4.2.3
CrossRef Google Scholar
|
[13]
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, et al. 2021. Chalcone derivatives: role in anticancer therapy. Biomolecules 11:894 doi: 10.3390/biom11060894
CrossRef Google Scholar
|
[14]
|
Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO. 2020. Environmentally friendly methods for flavonoid extraction from plant material: impact of their operating conditions on yield and antioxidant properties. The Scientific World Journal 2020:6792069 doi: 10.1155/2020/6792069
CrossRef Google Scholar
|
[15]
|
Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157 doi: 10.3389/fpls.2022.860157
CrossRef Google Scholar
|
[16]
|
Huang H, Xing S, Tang K, Jiang W. 2021. AaWRKY4 upregulates artemisinin content through boosting the expressions of key enzymes in artemisinin biosynthetic pathway. Plant Cell, Tissue and Organ Culture (PCTOC) 146:97−105 doi: 10.1007/s11240-021-02049-8
CrossRef Google Scholar
|
[17]
|
Chen H, Lei J, Li S, Guo L, Lin J, et al. 2023. Progress in biological activities and biosynthesis of edible fungi terpenoids. Critical Reviews in Food Science and Nutrition 63:7288−310 doi: 10.1080/10408398.2022.2045559
CrossRef Google Scholar
|
[18]
|
Agostini-Costa TDS, Vieira RF, Bizzo HR, Silveira D, Gimenes MA. 2012. Secondary metabolites. In Chromatography and Its Applications, ed. Dhanarasu S. London: InTech. pp. 131−64. http://dx.doi.org/10.5772/35705
|
[19]
|
Turlings TC, Loughrin JH, Mccall PJ, Röse US, Lewis WJ, et al. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America 92:4169−74 doi: 10.1073/pnas.92.10.4169
CrossRef Google Scholar
|
[20]
|
Magnard JL, Roccia A, Caissard JC, Vergne P, Sun P, et al. 2015. Biosynthesis of monoterpene scent compounds in roses. Science 349:81−83 doi: 10.1126/science.aab0696
CrossRef Google Scholar
|
[21]
|
Kabera JN, Semana E, Mussa AR, He X. 2014. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology 2:377−92
Google Scholar
|
[22]
|
Abdallah II, Quax WJ. 2017. A glimpse into the biosynthesis of terpenoids. KnE Life Sciences 3:81−98 doi: 10.18502/kls.v3i5.981
CrossRef Google Scholar
|
[23]
|
Yadav N, Yadav R, Goyal A. 2014. Chemistry of terpenoids. International Journal of Pharmaceutical Sciences Review and Research 27:272−78
Google Scholar
|
[24]
|
Ashour M, Wink M, Gershenzon J. 2010. Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, Second Edition, ed. Wink M. Oxford, England: Blackwell Publishing Ltd. pp. 258−303. https://doi.org/10.1002/9781444320503.ch5
|
[25]
|
Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. 2014. Triterpene biosynthesis in plants. Annual Review of Plant Biology 65:225−57 doi: 10.1146/annurev-arplant-050312-120229
CrossRef Google Scholar
|
[26]
|
Sozer O, Komenda J, Ughy B, Domonkos I, Laczkó-Dobos H, et al. 2010. Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803. Plant and Cell Physiology 51:823−35 doi: 10.1093/pcp/pcq031
CrossRef Google Scholar
|
[27]
|
Domonkos I, Kis M, Gombos Z, Ughy B. 2013. Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research 52:539−61 doi: 10.1016/j.plipres.2013.07.001
CrossRef Google Scholar
|
[28]
|
Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295:517−24 doi: 10.1042/bj2950517
CrossRef Google Scholar
|
[29]
|
Gutiérrez-Grijalva EP, López-Martínez LX, Contreras-Angulo LA, Elizalde-Romero CA, Heredia JB. 2020. Plant alkaloids: structures and bioactive properties. In Plant-Derived Bioactives, ed. Swamy M. Singapore: Springer. pp. 85–117. https://doi.org/10.1007/978-981-15-2361-8_5
|
[30]
|
Singh AK, Chawla R, Rai A, Yadav LDS. 2012. NHC-catalysed diastereoselective synthesis of multifunctionalised piperidines via cascade reaction of enals with azalactones. Chemical Communications 48:3766−68 doi: 10.1039/c2cc00069e
CrossRef Google Scholar
|
[31]
|
Kainsa S, Kumar P, Rani P. 2012. Medicinal plants of Asian origin having anticancer potential: short review. Asian Journal of Biomedical and Pharmaceutical Sciences 2:1−11
Google Scholar
|
[32]
|
Scholl Y, Höke D, Dräger B. 2001. Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry 58:883−89 doi: 10.1016/S0031-9422(01)00362-4
CrossRef Google Scholar
|
[33]
|
Musk AW, De Klerk NH. 2003. History of tobacco and health. Respirology 8:286−90 doi: 10.1046/j.1440-1843.2003.00483.x
CrossRef Google Scholar
|
[34]
|
Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, et al. 2013. Quinoline: a versatile heterocyclic. Saudi Pharmaceutical Journal 21:1−12 doi: 10.1016/j.jsps.2012.03.002
CrossRef Google Scholar
|
[35]
|
Ashihara H, Crozier A. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science 6:407−13 doi: 10.1016/S1360-1385(01)02055-6
CrossRef Google Scholar
|
[36]
|
Ober D, Harms R, Witte L, Hartmann T. 2003. Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. Journal of Biological Chemistry 278:12805−812 doi: 10.1074/jbc.M207112200
CrossRef Google Scholar
|
[37]
|
Greger H. 2019. Structural classification and biological activities of Stemona alkaloids. Phytochemistry Reviews 18:463−93 doi: 10.1007/s11101-019-09602-6
CrossRef Google Scholar
|
[38]
|
Majik MS, Tilve SG. 2012. Pyrrolizidine alkaloids pyrrolams A–D: a survey of synthetic efforts, biological activity, and studies on their stability. Synthesis 44:2673−81 doi: 10.1055/s-0032-1316744
CrossRef Google Scholar
|
[39]
|
Kaur R, Arora S. 2015. Alkaloids-important therapeutic secondary metabolites of plant origin. Journal of Critical Reviews 2:1−8
Google Scholar
|
[40]
|
Suzuki H, Koike Y, Murakoshi I, Saito K. 1996. Subcellular localization of acyltransferases for quinolizidine alkaloid biosynthesis in Lupinus. Phytochemistry 42:1557−62 doi: 10.1016/0031-9422(96)00195-1
CrossRef Google Scholar
|
[41]
|
Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA. 2002. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279−95 doi: 10.1007/s007260200014
CrossRef Google Scholar
|
[42]
|
Zhu J, Jiang J. 2018. Pharmacological and nutritional effects of natural coumarins and their structure–activity relationships. Molecular Nutrition & Food Research 62:1701073 doi: 10.1002/mnfr.201701073
CrossRef Google Scholar
|
[43]
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. 2022. Plants response to light stress. Journal of Genetics and Genomics 49:735−47 doi: 10.1016/j.jgg.2022.04.017
CrossRef Google Scholar
|
[44]
|
Li T, Yamane H, Tao R. 2021. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research 8:67 doi: 10.1038/s41438-021-00503-4
CrossRef Google Scholar
|
[45]
|
Solovchenko A, Schmitz-Eiberger M. 2003. Significance of skin flavonoids for UV-B-protection in apple fruits. Journal of Experimental Botany 54:1977−84 doi: 10.1093/jxb/erg199
CrossRef Google Scholar
|
[46]
|
Giuntini D, Graziani G, Lercari B, Fogliano V, Soldatini GF, et al. 2005. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. Journal of Agricultural and Food Chemistry 53:3174−81
Google Scholar
|
[47]
|
Bayat L, Arab M, Aliniaeifard S. 2020. Effects of different light spectra on high light stress tolerance in rose plants (Rosa hybrida cv. 'Samurai'). Journal of Plant Process and Function 9:93−103
Google Scholar
|
[48]
|
Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, et al. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191−202 doi: 10.1093/jxb/erp097
CrossRef Google Scholar
|
[49]
|
Lafuente MT, Romero P, Ballester AR. 2021. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chemistry 341:128050 doi: 10.1016/j.foodchem.2020.128050
CrossRef Google Scholar
|
[50]
|
Krzemińska M, Hnatuszko-Konka K, Weremczuk-Jeżyna I, Owczarek-Januszkiewicz A, Ejsmont W, et al. 2023. Effect of light conditions on polyphenol production in transformed shoot culture of Salvia bulleyana diels. Molecules 28:4603 doi: 10.3390/molecules28124603
CrossRef Google Scholar
|
[51]
|
Singh O, Khanam Z, Misra N, Srivastava MK. 2011. Chamomile (Matricaria chamomilla L.):an overview. Pharmacognosy Reviews 5:82−95 doi: 10.4103/0973-7847.79103
CrossRef Google Scholar
|
[52]
|
Okamoto H, Ducreux LJM, Allwood JW, Hedley PE, Wright A, et al. 2020. Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. Frontiers in Plant Science 11:753 doi: 10.3389/fpls.2020.00753
CrossRef Google Scholar
|
[53]
|
Ohashi KK, Fukuyama T, Nakai A, Usami H, Ono E, et al. 2013. Growth and alkaloids production in Madagascar periwinkle plants grown under red LED. IFAC Proceedings Volumes 46:274−77 doi: 10.3182/20130327-3-JP-3017.00063
CrossRef Google Scholar
|
[54]
|
Park JC, Yoo Y, Lim H, Yun S, Win KTYS, et al. 2022. Intracellular Ca2+ accumulation triggered by caffeine provokes resistance against a broad range of biotic stress in rice. Plant, Cell & Environment 45:1049−64 doi: 10.1111/pce.14273
CrossRef Google Scholar
|
[55]
|
Pandey A, Jena SN, Shukla S. 2018. Impact of abiotic stresses on metabolic adaptation in opium poppy (Papaver somniferum L.). In Metabolic Adaptations in Plants During Abiotic Stress, eds Ramakrishna A, Gill SS. Boca Raton: CRC Press. pp. 369−80. https://doi.org/10.1201/b22206-31
|
[56]
|
Rodrigues AS, Pérez-Gregorio MR, García-Falcón MS, Simal-Gándara J, Almeida DPF. 2011. Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chemistry 124:303−08 doi: 10.1016/j.foodchem.2010.06.037
CrossRef Google Scholar
|
[57]
|
Wang S, Zheng W. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry 49:4977−82
Google Scholar
|
[58]
|
Coberly LC, Rausher MD. 2003. Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Molecular Ecology 12:1113−24 doi: 10.1046/j.1365-294X.2003.01786.x
CrossRef Google Scholar
|
[59]
|
Korn M, Peterek S, Mock HP, Heyer AG, Hincha DK. 2008. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant, Cell & Environment 31:813−27 doi: 10.1111/j.1365-3040.2008.01800.x
CrossRef Google Scholar
|
[60]
|
Khan AL, Kang SM, Dhakal KH, Hussain J, Adnan M, et al. 2013. Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Scientia Horticulturae 155:1−7 doi: 10.1016/j.scienta.2013.02.028
CrossRef Google Scholar
|
[61]
|
Rahmat BPN, Octavianis G, Budiarto R, Jadid N, Widiastuti A, et al. 2023. SlIAA9 mutation maintains photosynthetic capabilities under heat-stress conditions. Plants 12:378 doi: 10.3390/plants12020378
CrossRef Google Scholar
|
[62]
|
Rezaie R, Abdollahi Mandoulakani B, Fattahi M. 2020. Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports 10:5290 doi: 10.1038/s41598-020-62090-z
CrossRef Google Scholar
|
[63]
|
Alhaithloul HA, Soliman MH, Ameta KL, El-Esawi MA, Elkelish A. 2019. Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules 10:43 doi: 10.3390/biom10010043
CrossRef Google Scholar
|
[64]
|
Muñoa L, Chacaltana C, Sosa P, Gastelo M, zum Felde T, et al. 2022. Effect of environment and peeling in the glycoalkaloid concentration of disease-resistant and heat-tolerant potato clones. Journal of Agriculture and Food Research 7:100269 doi: 10.1016/j.jafr.2022.100269
CrossRef Google Scholar
|
[65]
|
González-Zamora A, Sierra-Campos E, Luna-Ortega JG, Pérez-Morales R, Ortiz JCR, et al. 2013. Characterization of different Capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules 18:13471−86 doi: 10.3390/molecules181113471
CrossRef Google Scholar
|
[66]
|
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research 22:4056−75 doi: 10.1007/s11356-014-3739-1
CrossRef Google Scholar
|
[67]
|
Li B, Fan R, Fan Y, Liu R, Zhang H, et al. 2022. The flavonoid biosynthesis regulator PFG3 confers drought stress tolerance in plants by promoting flavonoid accumulation. Environmental and Experimental Botany 196:104792 doi: 10.1016/j.envexpbot.2022.104792
CrossRef Google Scholar
|
[68]
|
Sudiro C, Guglielmi F, Hochart M, Senizza B, Zhang L, et al. 2022. A phenomics and metabolomics investigation on the modulation of drought stress by a biostimulant plant extract in tomato (Solanum lycopersicum). Agronomy 12:764 doi: 10.3390/agronomy12040764
CrossRef Google Scholar
|
[69]
|
Harrison Day BL, Carins-Murphy MR, Brodribb TJ. 2022. Reproductive water supply is prioritized during drought in tomato. Plant, Cell & Environment 45:69−79 doi: 10.1111/pce.14206
CrossRef Google Scholar
|
[70]
|
Hassani Moghaddam E, Esna-Ashari M, Shaaban M. 2018. An investigation of the secondary metabolites and antioxidant capacity of some commercial iranian pomegranate (Punica granatum L.) cultivars under drought stress. Herbal Medicines Journal 3:14−25 doi: 10.22087/hmj.v3i1.704
CrossRef Google Scholar
|
[71]
|
Li Z, Ahammed GJ. 2023. Plant stress response and adaptation via anthocyanins: a review. Plant Stress 10:100230 doi: 10.1016/j.stress.2023.100230
CrossRef Google Scholar
|
[72]
|
Munné-Bosch S, Schwarz K, Alegre L. 1999. Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiology 121:1047−52 doi: 10.1104/pp.121.3.1047
CrossRef Google Scholar
|
[73]
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, et al. 2022. H2S improves salt-stress recovery via organic acid turn-over in apple seedlings. Plant, Cell & Environment 45:2923−42 doi: 10.1111/pce.14410
CrossRef Google Scholar
|
[74]
|
Munné-Bosch S, Mueller M, Schwarz K, Alegre L. 2001. Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. Journal of Plant Physiology 158:1431−37 doi: 10.1078/0176-1617-00578
CrossRef Google Scholar
|
[75]
|
Yu W, Yu Y, Wang C, Zhang Z, Xue Z. 2021. Mechanism by which salt stress induces physiological responses and regulates tanshinone synthesis. Plant Physiology and Biochemistry 164:10−20 doi: 10.1016/j.plaphy.2021.04.011
CrossRef Google Scholar
|
[76]
|
Zhang J, Zeng L, Chen S, Sun H, Ma S. 2018. Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiology and Biochemistry 126:11−21 doi: 10.1016/j.plaphy.2018.02.016
CrossRef Google Scholar
|
[77]
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. 2021. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 10:1843 doi: 10.3390/plants10091843
CrossRef Google Scholar
|
[78]
|
Niu Y, Ye L, Wang Y, Shi Y, Liu Y, et al. 2023. Transcriptome analysis reveals salicylic acid treatment mitigates chilling injury in kiwifruit by enhancing phenolic synthesis and regulating phytohormone signaling pathways. Postharvest Biology and Technology 205:112483 doi: 10.1016/j.postharvbio.2023.112483
CrossRef Google Scholar
|
[79]
|
Campobenedetto C, Mannino G, Beekwilder J, Contartese V, Karlova R, et al. 2021. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Scientific Reports 11:354 doi: 10.1038/s41598-020-79770-5
CrossRef Google Scholar
|
[80]
|
Anu A, Sahni S, Kumar P, Prasad BD. 2016. Secondary Metabolites in Horticultural Crops. In Plant Secondary Metabolites, Volume One, eds Siddiqui MW, Prasad K. New York: Apple Academic Press. pp. 221−34. https://doi.org/10.1201/9781315366326-15
|
[81]
|
Anjali, Kumar S, Korra T, Thakur R, Arutselvan R, et al. 2023. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8:100154 doi: 10.1016/j.stress.2023.100154
CrossRef Google Scholar
|
[82]
|
Górniak I, Bartoszewski R, Króliczewski J. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18:241−72 doi: 10.1007/s11101-018-9591-z
CrossRef Google Scholar
|
[83]
|
Zahr S, Zahr R, El Hajj R, Khalil M. 2023. Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update. Journal of Herbal Medicine 41:100737 doi: 10.1016/j.hermed.2023.100737
CrossRef Google Scholar
|
[84]
|
Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, et al. 2016. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 8:60 doi: 10.3390/toxins8030060
CrossRef Google Scholar
|
[85]
|
Singh S, Kaur I, Kariyat R. 2021. The multifunctional roles of polyphenols in plant-herbivore interactions. International Journal of Molecular Sciences 22:1442 doi: 10.3390/ijms22031442
CrossRef Google Scholar
|
[86]
|
Hooks CRR, Wang KH, Ploeg A, McSorley R. 2010. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology 46:307−20 doi: 10.1016/j.apsoil.2010.09.005
CrossRef Google Scholar
|
[87]
|
Bouwmeester HJ, Verstappen FWA, Posthumus MA, Dicke M. 1999. Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiology 121:173−80 doi: 10.1104/pp.121.1.173
CrossRef Google Scholar
|
[88]
|
Saunders JA, O'neill NR, Romeo JT. 1992. Alkaloid chemistry and feeding specificity of insect herbivores. In Alkaloids: Chemical and Biological Perspectives, ed. Pelletier SW. Vol 8. New York, NY: Springer New York. pp. 151–96. https://doi.org/10.1007/978-1-4612-2908-7_2
|
[89]
|
Wink M. 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics 75:225−33 doi: 10.1007/BF00303957
CrossRef Google Scholar
|
[90]
|
Lalani S, Poh CL. 2020. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 12:184 doi: 10.3390/v12020184
CrossRef Google Scholar
|
[91]
|
Al Aboody MS, Mickymaray S. 2020. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 9:45 doi: 10.3390/antibiotics9020045
CrossRef Google Scholar
|
[92]
|
Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y. 2022. Cranberry: chemical composition, antioxidant activity and impact on human health: overview. Molecules 27:1503 doi: 10.3390/molecules27051503
CrossRef Google Scholar
|
[93]
|
Steinmann J, Buer J, Pietschmann T, Steinmann E. 2013. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology 168:1059−73 doi: 10.1111/bph.12009
CrossRef Google Scholar
|
[94]
|
Sabra A, Netticadan T, Wijekoon C. 2021. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry: X 12:100149 doi: 10.1016/j.fochx.2021.100149
CrossRef Google Scholar
|
[95]
|
Majewska-Wierzbicka M, Czeczot H. 2012. Flavonoids in the prevention and treatment of cardiovascular diseases. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego 32:50−54
Google Scholar
|
[96]
|
Chahar MK, Sharma N, Dobhal MP, Joshi YC. 2011. Flavonoids: a versatile source of anticancer drugs. Pharmacognosy Reviews 5:1−12 doi: 10.4103/0973-7847.79093
CrossRef Google Scholar
|
[97]
|
Zwenger S, Basu C. 2008. Plant terpenoids: applications and future potentials. Biotechnology and Molecular Biology Reviews 3:1−7 doi: 10.5897/BMBR
CrossRef Google Scholar
|
[98]
|
Kang A, Lee TS. 2016. Secondary metabolism for isoprenoid-based biofuels. In Biotechnology for Biofuel Production and Optimization, eds Carrie A. Eckert CA, Trinh CT. Amsterdam: Elsevier. pp. 35−71. https://doi.org/10.1016/b978-0-444-63475-7.00002-9
|
[99]
|
Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, et al. 2015. Essential oils used in aromatherapy: a systemic review. Asian Pacific Journal of Tropical Biomedicine 5:601−11 doi: 10.1016/j.apjtb.2015.05.007
CrossRef Google Scholar
|
[100]
|
Elshafie HS, Camele I, Mohamed AA. 2023. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences 24:3266 doi: 10.3390/ijms24043266
CrossRef Google Scholar
|
[101]
|
Yang W, Chen X, Li Y, Guo S, Wang Z, et al. 2020. Advances in pharmacological activities of terpenoids. Natural Product Communications 15:1934578X2090355 doi: 10.1177/1934578X20903555
CrossRef Google Scholar
|
[102]
|
Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531 doi: 10.1016/j.foodchem.2022.132531
CrossRef Google Scholar
|
[103]
|
Debnath B, Singh WS, Das M, Goswami S, Singh MK, et al. 2018. Role of plant alkaloids on human health: a review of biological activities. Materials Today Chemistry 9:56−72 doi: 10.1016/j.mtchem.2018.05.001
CrossRef Google Scholar
|
[104]
|
Cowan MM. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12:564−82 doi: 10.1128/CMR.12.4.564
CrossRef Google Scholar
|
[105]
|
Schramm S, Köhler N, Rozhon W. 2019. Pyrrolizidine alkaloids: biosynthesis, biological activities and occurrence in crop plants. Molecules 24:498 doi: 10.3390/molecules24030498
CrossRef Google Scholar
|
[106]
|
Senchina DS, Hallam JE, Kohut ML, Nguyen NA, Perera MADN. 2014. Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners. Exercise Immunology Review 20:68−93
Google Scholar
|
[107]
|
Han MA, Woo SM, Min KJ, Kim S, Park JW, et al. 2015. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chemico-Biological Interactions 228:69−78 doi: 10.1016/j.cbi.2015.01.020
CrossRef Google Scholar
|
[108]
|
Santos AP, Moreno PRH. 2004. Pilocarpus spp.: a survey of its chemical constituents and biological activities. Revista Brasileira De Ciências Farmacêuticas 40:116−37 doi: 10.1590/s1516-93322004000200002
CrossRef Google Scholar
|
[109]
|
Xu M, Jiang Y, Chen S, Chen F, Chen F. 2021. Herbivory-induced emission of volatile terpenes in Chrysanthemum morifolium functions as an indirect defense against Spodoptera litura larvae by attracting natural enemies. Journal of Agricultural and Food Chemistry 69:9743−53 doi: 10.1021/acs.jafc.1c02637
CrossRef Google Scholar
|
[110]
|
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, et al. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7:1306−20 doi: 10.4161/psb.21663
CrossRef Google Scholar
|
[111]
|
Verdeguer M, Sánchez-Moreiras AM, Araniti F. 2020. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 9:1571 doi: 10.3390/plants9111571
CrossRef Google Scholar
|