[1]
|
Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, et al. 2021. AP2/ERF, an important cold stress-related transcription factor family in plants: a review. Physiology and Molecular Biology of Plants 27:1953−68 doi: 10.1007/s12298-021-01061-8
CrossRef Google Scholar
|
[2]
|
Roy S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723 doi: 10.1080/15592324.2015.1117723
CrossRef Google Scholar
|
[3]
|
Hugouvieux V, Zubieta C. 2018. MADS transcription factors cooperate: complexities of complex formation. Journal of Experimental Botany 69:1821−23 doi: 10.1093/jxb/ery099
CrossRef Google Scholar
|
[4]
|
Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9:e27700 doi: 10.4161/psb.27700
CrossRef Google Scholar
|
[5]
|
Pireyre M, Burow M. 2015. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Molecular Plant 8:378−88 doi: 10.1016/j.molp.2014.11.022
CrossRef Google Scholar
|
[6]
|
Xie Z, Nolan TM, Jiang H, Yin Y. 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in Plant Science 10:228 doi: 10.3389/fpls.2019.00228
CrossRef Google Scholar
|
[7]
|
Zhang J, Shi SZ, Jiang Y, Zhong F, Liu G, et al. 2021. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (Salix matsudana). PeerJ 9:e11076 doi: 10.7717/peerj.11076
CrossRef Google Scholar
|
[8]
|
Li X, Tao S, Wei S, Ming M, Huang X, et al. 2018. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology 18:46 doi: 10.1186/s12870-018-1265-x
CrossRef Google Scholar
|
[9]
|
Cao S, Wang Y, Li X, Gao F, Feng J, et al. 2020. Characterization of the AP2/ERF transcription factor family and expression profiling of DREB subfamily under cold and osmotic stresses in Ammopiptanthus nanus. Plants 9:455 doi: 10.3390/plants9040455
CrossRef Google Scholar
|
[10]
|
Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, et al. 2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies 58:6 doi: 10.1186/s40529-016-0159-1
CrossRef Google Scholar
|
[11]
|
Wan R, Song J, Lv Z, Qi X, Han X, et al. 2022. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation. Genes 13:895 doi: 10.3390/genes13050895
CrossRef Google Scholar
|
[12]
|
Jiang Q, Wang Z, Hu G, Yao X. 2022. Genome-wide identification and characterization of AP2/ERF gene superfamily during flower development in Actinidia eriantha. BMC Genomics 23:650 doi: 10.1186/s12864-022-08871-4
CrossRef Google Scholar
|
[13]
|
Sheng L, Ma C, Chen Y, Gao H, Wang J. 2021. Genome-wide screening of AP2 transcription factors involving in fruit color and aroma regulation of cultivated strawberry. Genes 12:530 doi: 10.3390/genes12040530
CrossRef Google Scholar
|
[14]
|
Zhang H, Pan X, Liu S, Lin W, Li Y, et al. 2021. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 113:474−89 doi: 10.1016/j.ygeno.2020.10.040
CrossRef Google Scholar
|
[15]
|
Cao D, Lin Z, Huang L, Damaris RN, Yang P. 2021. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics 22:171 doi: 10.1186/s12864-021-07473-w
CrossRef Google Scholar
|
[16]
|
Zhang CH, Shangguan LF, Ma RJ, Sun X, Tao R, et al. 2012. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Genetics and Molecular Research 11:4789−809 doi: 10.4238/2012.October.17.6
CrossRef Google Scholar
|
[17]
|
Ma Y, Zhang F, Bade R, Daxibater A, Men Z, et al. 2015. Genome-wide identification and phylogenetic analysis of the ERF gene family in melon. Journal of Plant Growth Regulation 34:66−77 doi: 10.1007/s00344-014-9443-z
CrossRef Google Scholar
|
[18]
|
Tiwari SB, Belachew A, Ma SF, Young M, Ade J, et al. 2012. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. The Plant Journal 70:855−65 doi: 10.1111/j.1365-313X.2012.04935.x
CrossRef Google Scholar
|
[19]
|
Li T, Jiang Z, Zhang L, Tan D, Wei Y, et al. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal 88:735−48 doi: 10.1111/tpj.13289
CrossRef Google Scholar
|
[20]
|
Li X, Xu Y, Shen S, Yin X, Klee H, et al. 2017. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany 68:4929−38 doi: 10.1093/jxb/erx316
CrossRef Google Scholar
|
[21]
|
Wang X, Zeng W, Ding Y, Wang Y, Niu L, et al. 2019. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science 283:116−26 doi: 10.1016/j.plantsci.2019.02.009
CrossRef Google Scholar
|
[22]
|
Zhang S, Wu Y, Huang X, Wu W, Lyu L, Li W. 2024. AP2 family identification in blackberry reveals the fruit ripening/color-change-related expression of RuAP2-1 and RuAP2-6 targeted by miR172. Trees 38:393−407 doi: 10.1007/s00468-024-02489-7
CrossRef Google Scholar
|
[23]
|
Han D, Huang B, Li Y, Dang Q, Fan L, et al. 2022. The MdAP2-34 modulates flavonoid accumulation in apple (Malus domestica Borkh.) by regulating MdF3'H. Postharvest Biology and Technology 192:111994 doi: 10.1016/j.postharvbio.2022.111994
CrossRef Google Scholar
|
[24]
|
Jiang Y, Peng J, Wang M, Su W, Gan X, et al. 2020. The role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica Lindl.). International Journal of Molecular Sciences 21:248 doi: 10.3390/ijms21010248
CrossRef Google Scholar
|
[25]
|
Cai J, Chen T, Zhang Z, Li B, Qin G, et al. 2019. Metabolic dynamics during loquat fruit ripening and postharvest technologies. Frontiers in Plant Science 10:619 doi: 10.3389/fpls.2019.00619
CrossRef Google Scholar
|
[26]
|
Su W, Shao Z, Wang M, Gan X, Yang X, et al. 2021. EjBZR1 represses fruit enlargement by binding to the EjCYP90 promoter in loquat. Horticulture Research 8:152 doi: 10.1038/s41438-021-00586-z
CrossRef Google Scholar
|
[27]
|
Song H, Zhao K, Jiang G, Sun S, Li J, et al. 2023. Genome-wide identification and expression analysis of the SBP-box gene family in loquat fruit development. Genes 15:23 doi: 10.3390/genes15010023
CrossRef Google Scholar
|
[28]
|
Yu Y, Yang M, Liu X, Xia Y, Hu R, et al. 2022. Genome-wide analysis of the WOX gene family and the role of EjWUSa in regulating flowering in loquat (Eriobotrya japonica). Frontiers in Plant Science 13:1024515 doi: 10.3389/fpls.2022.1024515
CrossRef Google Scholar
|
[29]
|
Chen J, Zhou Y, Zhang Q, Liu Q, Li L, et al. 2020. Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS One 15:e0226055 doi: 10.1371/journal.pone.0226055
CrossRef Google Scholar
|
[30]
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76 doi: 10.1080/07388551.2020.1768509
CrossRef Google Scholar
|
[31]
|
Wang Y, Du X, Liu M, Liu X, Zhao L, et al. 2023. Genome-wide analysis of the AP2/ERF family in oily persimmon (Diospyros oleifera) and their preliminary roles exploration in response to polyamines for adventitious root formation in cultivated persimmon (D. kaki). Horticulturae 9:191 doi: 10.3390/horticulturae9020191
CrossRef Google Scholar
|
[32]
|
Xu L, Lan Y, Lin M, Zhou H, Ying S, et al. 2024. Genome-wide identification and transcriptional analysis of AP2/ERF gene family in pearl millet (Pennisetum glaucum). International Journal of Molecular Sciences 25:2470 doi: 10.3390/ijms25052470
CrossRef Google Scholar
|
[33]
|
Dou H, Wang T, Zhou X, Feng X, Tang W, et al. 2024. Genome-wide identification and expression of the AP2/ERF gene family in Morus notabilis. Forests 15:697 doi: 10.3390/f15040697
CrossRef Google Scholar
|
[34]
|
Xu Y, Li X, Yang X, Wassie M, Shi H. 2023. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). BMC Genomics 24:32 doi: 10.1186/s12864-022-09104-4
CrossRef Google Scholar
|
[35]
|
Chen H, Hu L, Wang L, Wang S, Cheng X. 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L.). Journal of Applied Genetics 63:223−36 doi: 10.1007/s13353-021-00675-8
CrossRef Google Scholar
|
[36]
|
Xie XL, Shen SL, Yin XR, Xu Q, Sun CD, et al. 2014. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Molecular Biology Reports 41:4261−71 doi: 10.1007/s11033-014-3297-0
CrossRef Google Scholar
|
[37]
|
Tao J, Jia H, Wu M, Zhong W, Jia D, et al. 2022. Genome-wide identification and characterization of the TIFY gene family in kiwifruit. BMC Genomics 23:179 doi: 10.1186/s12864-022-08398-8
CrossRef Google Scholar
|
[38]
|
Zafar MM, Rehman A, Razzaq A, Parvaiz A, Mustafa G, et al. 2022. Genome-wide characterization and expression analysis of ERF gene family in cotton. BMC Plant Biology 22:134 doi: 10.1186/s12870-022-03521-z
CrossRef Google Scholar
|
[39]
|
He S, Hao X, He S, Hao X, Zhang P, et al. 2021. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 22:748 doi: 10.1186/s12864-021-08043-w
CrossRef Google Scholar
|
[40]
|
Yu Z, Zhang D, Hu S, Liu X, Zeng B, et al. 2022. Genome-wide analysis of the almond AP2/ERF superfamily and its functional prediction during dormancy in response to freezing stress. Biology 11:1520 doi: 10.3390/biology11101520
CrossRef Google Scholar
|
[41]
|
Liu M, Sun W, Ma Z, Zheng T, Huang L, et al. 2019. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum Tataricum). BMC Plant Biology 19:84 doi: 10.1186/s12870-019-1681-6
CrossRef Google Scholar
|
[42]
|
Hu L, Liu S. 2011. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetics and Molecular Biology 34:625−33 doi: 10.1590/S1415-47572011005000054
CrossRef Google Scholar
|
[43]
|
Ren R, Wang H, Guo C, Zhang N, Zeng L, et al. 2018. Widespread whole genome duplications contribute to genome complexity and species diversity in Angiosperms. Molecular Plant 11:414−28 doi: 10.1016/j.molp.2018.01.002
CrossRef Google Scholar
|
[44]
|
Yang Z, Jin H, Chen J, Li C, Wang J, et al. 2021. Identification and analysis of the AP2 subfamily transcription factors in the pecan (Carya illinoinensis). International Journal of Molecular Sciences 22:13568 doi: 10.3390/ijms222413568
CrossRef Google Scholar
|
[45]
|
Yue P, Wang Y, Bu H, Li X, Yuan H, et al. 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology 157:110955 doi: 10.1016/j.postharvbio.2019.110955
CrossRef Google Scholar
|
[46]
|
Cui Y, Zhai Y, He J, Song M, Flaishman MA, Ma H. 2022. AP2/ERF genes associated with superfast fig (Ficus carica L.) fruit ripening. Frontiers in Plant Science 13:1040796 doi: 10.3389/fpls.2022.1040796
CrossRef Google Scholar
|
[47]
|
Guo Z, He L, Sun X, Li C, Su J, et al. 2023. Genome-wide analysis of the Rhododendron AP2/ERF gene family: identification and expression profiles in response to cold, salt and drought stress. Plants 12:994 doi: 10.3390/plants12050994
CrossRef Google Scholar
|