[1]
|
Schardl CL, Leuchtmann A, Spiering MJ. 2004. Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology 55:315−40 doi: 10.1146/annurev.arplant.55.031903.141735
CrossRef Google Scholar
|
[2]
|
Bush LP, Wilkinson HH, Schardl CL. 1997. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology 114:1−7 doi: 10.1104/pp.114.1.1
CrossRef Google Scholar
|
[3]
|
Card SD, Bastías DA, Caradus JR. 2021. Antagonism to plant pathogens by Epichloë fungal endophytes—a review. Plants 10:1997 doi: 10.3390/plants10101997
CrossRef Google Scholar
|
[4]
|
Clarke BB, White JF, Hurley RH, Torres MS, Sun S, et al. 2006. Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease 90:994−98 doi: 10.1094/PD-90-0994
CrossRef Google Scholar
|
[5]
|
Bonos SA, Wilson MM, Meyer WA, Funk RC. 2005. Suppression of red thread in fine fescues through endophyte-mediated resistance. Applied Turfgrass Science 2:1−7 doi: 10.1094/ATS-2005-0725-01-RS
CrossRef Google Scholar
|
[6]
|
Tredway LP, Tomaso-Peterson M, Kerns JP, Clarke BB. 2023. Compendium of turfgrass diseases, Fourth Edition. St. Paul, Minnesota: The American Phytopathological Society. pp. 28−32. https://doi.org/10.1094/9780890546888
|
[7]
|
Ambrose KV, Belanger FC. 2012. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS ONE 7:e53214 doi: 10.1371/journal.pone.0053214
CrossRef Google Scholar
|
[8]
|
Tian Z, Wang R, Ambrose KV, Clarke BB, Belanger FC. 2017. The Epichloë festucae antifungal protein has activity against the plant pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. Scientific Reports 7:5643 doi: 10.1038/s41598-017-06068-4
CrossRef Google Scholar
|
[9]
|
Fardella PA, Tian Z, Clarke BB, Belanger FC. 2022. The Epichloë festucae antifungal protein Efe-AfpA protects creeping bentgrass (Agrostis stolonifera) from the plant pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Journal of Fungi 8:1097 doi: 10.3390/jof8101097
CrossRef Google Scholar
|
[10]
|
Rodriguez RJ, White JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytologist 182:314−30 doi: 10.1111/j.1469-8137.2009.02773.x
CrossRef Google Scholar
|
[11]
|
Kuldau G, Bacon C. 2008. Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biological Control 46:57−71 doi: 10.1016/j.biocontrol.2008.01.023
CrossRef Google Scholar
|
[12]
|
Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M. 2014. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202−15 doi: 10.3852/13-251
CrossRef Google Scholar
|
[13]
|
Tanaka A, Takemoto D, Chujo T, Scott B. 2012. Fungal endophytes of grasses. Current Opinion in Plant Biology 15:462−68 doi: 10.1016/j.pbi.2012.03.007
CrossRef Google Scholar
|
[14]
|
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, et al. 2013. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics 9:e1003323 doi: 10.1371/journal.pgen.1003323
CrossRef Google Scholar
|
[15]
|
Koshino H, Yoshihara T, Sakamura S, Shimanuki T, Sato T, et al. 1989. A ring B aromatic sterol from stromata of Epichloe typhina. Phytochemistry 28:771−72 doi: 10.1016/0031-9422(89)80112-8
CrossRef Google Scholar
|
[16]
|
Koshino H, Terada SI, Yoshihara T, Sakamura S, Shimanuki T, et al. 1988. Three phenolic acid derivatives from stromata of Epichloe typhina on Phleum pratense. Phytochemistry 27:1333−38 doi: 10.1016/0031-9422(88)80188-2
CrossRef Google Scholar
|
[17]
|
Lehtonen PT, Helander M, Siddiqui SA, Lehto K, Saikkonen K. 2006. Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biology Letters 2:620−23 doi: 10.1098/rsbl.2006.0499
CrossRef Google Scholar
|
[18]
|
Salgado-Salazar C, Beirn LA, Ismaiel A, Boehm MJ, Carbone I, et al. 2018. Clarireedia: a new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass. Fungal Biology 122:761−73 doi: 10.1016/j.funbio.2018.04.004
CrossRef Google Scholar
|
[19]
|
Goodman DM, Burpee LL. 1991. Biological control of dollar spot disease of creeping bentgrass. Phytopathology 81:1438−46 doi: 10.1094/Phyto-81-1438
CrossRef Google Scholar
|
[20]
|
Sapkota S, Catching KE, Raymer PL, Martinez-Espinoza AD, Bahri BA. 2022. New approaches to an old problem: dollar spot of turfgrass. Phytopathology 112:469−80 doi: 10.1094/PHYTO-11-20-0505-RVW
CrossRef Google Scholar
|
[21]
|
Bonos SA. 2006. Heritability of dollar spot resistance in creeping bentgrass. Phytopathology 96:808−12 doi: 10.1094/PHYTO-96-0808
CrossRef Google Scholar
|
[22]
|
Walsh B, Ikeda SS, Boland GJ. 1999. Biology and management of dollar spot (Sclerotinia homoeocarpa); an important disease of turfgrass. HortScience 34:13−21 doi: 10.21273/HORTSCI.34.1.13
CrossRef Google Scholar
|
[23]
|
Fidanza MA, Wetzel HC, Agnew ML, Kaminski JE. 2006. Evaluation of fungicide and plant growth regulator tank-mix programmes on dollar spot severity of creeping bentgrass. Crop Protection 25:1032−38 doi: 10.1016/j.cropro.2006.02.005
CrossRef Google Scholar
|
[24]
|
Schardl CL, Scott B. 2012. Recommendations for gene nomenclature for Epichloë species and related Clavicipitaceae. In International Symposium on Fungal Endophytes of Grasses, eds Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL. Ardmore: Samuel Roberts Noble Foundation. pp. 84−87.
|
[25]
|
Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, et al. 1994. Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proceedings of the National Academy of Sciences of the United States of America 91:2542−46 doi: 10.1073/pnas.91.7.2542
CrossRef Google Scholar
|
[26]
|
Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL. 2004. Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Molecular Ecology 13:1455−67 doi: 10.1111/j.1365-294X.2004.02138.x
CrossRef Google Scholar
|
[27]
|
Dinkins RD, Nagabhyrn P, Graham MA, Boykin D, Schardl CL. 2017. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytologist 213:324−37 doi: 10.1111/nph.14103
CrossRef Google Scholar
|
[28]
|
Jenssen H, Hamill P, Hancock REW. 2006. Peptide antimicrobial agents. Clinical Microbiology Reviews 19:491−511 doi: 10.1128/CMR.00056-05
CrossRef Google Scholar
|
[29]
|
Lacadena J, del Pozo AM, Gasset M, Patiño B, Campos-Olivas R, et al. 1995. Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Archives of Biochemistry and Biophysics 324:273−81 doi: 10.1006/abbi.1995.0040
CrossRef Google Scholar
|
[30]
|
Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, et al. 1995. Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167−71 doi: 10.1016/0378-1119(95)00701-6
CrossRef Google Scholar
|
[31]
|
Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter E, et al. 2003. Characterization of the Penicillium chrysogenum antifungal protein PAF. Archives of Microbiology 180:204−10 doi: 10.1007/s00203-003-0578-8
CrossRef Google Scholar
|
[32]
|
Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, et al. 2009. Functional aspects of the solution structure and dynamics of PAF – a highly-stable antifungal protein from Penicillium chrysogenum. The FEBS Journal 276:2875−90 doi: 10.1111/j.1742-4658.2009.07011.x
CrossRef Google Scholar
|
[33]
|
Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B. 2001. A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Molecular Plant-Microbe Interactions 14:1327−31 doi: 10.1094/MPMI.2001.14.11.1327
CrossRef Google Scholar
|
[34]
|
Wnendt S, Ulbrich N, Stahl U. 1994. Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Current Genetics 25:519−23 doi: 10.1007/BF00351672
CrossRef Google Scholar
|
[35]
|
Gun Lee D, Shin SY, Maeng CY, Jin Z, Kim KL, et al. 1999. Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochemical and Biophysics Research Communications 263:646−51 doi: 10.1006/bbrc.1999.1428
CrossRef Google Scholar
|
[36]
|
Skouri-Gargouri H, Gargouri A. 2008. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus. Peptides 29:1871−77 doi: 10.1016/j.peptides.2008.07.005
CrossRef Google Scholar
|
[37]
|
Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, et al. 2010. Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541−47 doi: 10.1016/j.peptides.2009.11.002
CrossRef Google Scholar
|
[38]
|
Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, et al. 2010. A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. Journal of Industrial Microbiology and Biotechnology 37:805−13 doi: 10.1007/s10295-010-0725-6
CrossRef Google Scholar
|
[39]
|
Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, et al. 2011. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32:1724−31 doi: 10.1016/j.peptides.2011.06.022
CrossRef Google Scholar
|
[40]
|
Tóth L, Kele Z, Borics A, Nagy LG, Váradi G, et al. 2016. NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express 6:75 doi: 10.1186/s13568-016-0250-8
CrossRef Google Scholar
|
[41]
|
Garrigues S, Gandía M, Popa C, Borics A, Marx F, et al. 2017. Efficient production and characterization of the novel and highly active antifungal protein AfpB from Penicillium digitatum. Scientific Reports 7:14663 doi: 10.1038/s41598-017-15277-w
CrossRef Google Scholar
|
[42]
|
Garrigues S, Gandía M, Castillo L, Coca M, Marx F, et al. 2018. Three antifungal proteins from Penicillium expansum: different patterns of production and antifungal activity. Frontiers in Microbiology 9:2370 doi: 10.3389/fmicb.2018.02370
CrossRef Google Scholar
|
[43]
|
Huber A, Hajdu D, Bratschun-Khan D, Gáspári Z, Varbanov M, et al. 2018. New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176. Scientific Reports 8:1751 doi: 10.1038/s41598-018-20002-2
CrossRef Google Scholar
|
[44]
|
Marx F. 2004. Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding, expression, structure, function and potential application. Applied Microbiology and Biotechnology 65:133−42 doi: 10.1007/s00253-004-1600-z
CrossRef Google Scholar
|
[45]
|
Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, et al. 2003. Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive Aspergilli. Antimicrobial Agents and Chemotherapy 47:3598−601 doi: 10.1128/AAC.47.11.3598-3601.2003
CrossRef Google Scholar
|
[46]
|
Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, et al. 2019. Membrane sphingolipids regulate the fitness and antifungal protein susceptibility of Neurospora crassa. Frontiers in Microbiology 10:605 doi: 10.3389/fmicb.2019.00605
CrossRef Google Scholar
|
[47]
|
Moreno AB, Del Pozo AM, Borja M, Segundo BS. 2003. Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344−53 doi: 10.1094/PHYTO.2003.93.11.1344
CrossRef Google Scholar
|
[48]
|
Theis T, Wedde M, Meyer V, Stahl U. 2003. The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrobial Agents and Chemotherapy 47:588−93 doi: 10.1128/AAC.47.2.588-593.2003
CrossRef Google Scholar
|
[49]
|
Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V. 2005. New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Research in Microbiology 156:47−56 doi: 10.1016/j.resmic.2004.08.006
CrossRef Google Scholar
|
[50]
|
Yount NY, Yeaman MR. 2006. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochimica et Biophysica Acta (BBA) - Biomembranes 1758:1373−86 doi: 10.1016/j.bbamem.2006.03.027
CrossRef Google Scholar
|
[51]
|
Yount NY, Yeaman MR. 2004. Multidimensional signatures in antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America 101:7363−68 doi: 10.1073/pnas.0401567101
CrossRef Google Scholar
|
[52]
|
Utesch T, de Miguel Catalina A, Schattenberg C, Paege N, Schmieder P, et al. 2018. A computational modeling approach predicts interaction of the antifungal protein AFP from Aspergillus giganteus with fungal membranes via its γ-core motif. mSphere 3:e00377-18 doi: 10.1128/msphere.00377-18
CrossRef Google Scholar
|
[53]
|
Paege N, Warnecke D, Zäuner S, Hagen S, Rodrigues A, et al. 2019. Species-specific differences in the susceptibility of fungi to the antifungal protein AFP depend on C-3 saturation of glycosylceramides. mSphere 4:e00741-19 doi: 10.1128/msphere.00741-19
CrossRef Google Scholar
|
[54]
|
Wang R, Luo S, Clarke BB, Belanger FC. 2021. The Epichloë festucae antifungal protein Efe-AfpA is also a possible effector protein required for the interaction of the fungus with its host grass Festuca rubra subsp. rubra. Microorganisms 9:140 doi: 10.3390/microorganisms9010140
CrossRef Google Scholar
|
[55]
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. 2020. Komagataella phaffii as emerging model organism in fundamental research. Frontiers in Microbiology 11:607028 doi: 10.3389/fmicb.2020.607028
CrossRef Google Scholar
|
[56]
|
López-García B, Moreno AB, San Segundo B, De los Ríos V, Manning JM, et al. 2010. Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expression and Purification 70:206−10 doi: 10.1016/j.pep.2009.11.002
CrossRef Google Scholar
|
[57]
|
Cereghino JL, Cregg JM. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24:45−66 doi: 10.1111/j.1574-6976.2000.tb00532.x
CrossRef Google Scholar
|
[58]
|
Sonderegger C, Galgóczy L, Garrigues S, Fizil Á, Borics A, et al. 2016. A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses. Microbial Cell Factories 15:192 doi: 10.1186/s12934-015-0402-6
CrossRef Google Scholar
|
[59]
|
Hegedüs N, Sigl C, Zadra I, Pócsi I, Marx F. 2011. The paf gene product modulates asexual development in Penicillium chrysogenum. Journal of Basic Microbiology 51:253−62 doi: 10.1002/jobm.201000321
CrossRef Google Scholar
|
[60]
|
Bugeda A, Garrigues S, Gandía M, Manzanares P, Marcos JF, et al. 2020. The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum. mSphere 5:e00595−20 doi: 10.1128/mSphere.00595-20
CrossRef Google Scholar
|
[61]
|
Altpeter F, Xu J. 2000. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. Journal of Plant Physiology 157:441−48 doi: 10.1016/S0176-1617(00)80029-2
CrossRef Google Scholar
|
[62]
|
Guo Z, Bonos S, Meyer WA, Day PR, Belanger FC. 2003. Transgenic creeping bentgrass with delayed dollar spot symptoms. Molecular Breeding 11:95−101 doi: 10.1023/A:1022458101221
CrossRef Google Scholar
|
[63]
|
Nissinen R, Helander M, Kumar M, Saikkonen K. 2019. Heritable Epichloë symbioses shapes fungal but not bacterial communities of plant leaves. Scientific Reports 9:5253 doi: 10.1038/s41598-019-41603-5
CrossRef Google Scholar
|
[64]
|
White JF Jr, Cole GT. 1985. Endophyte-host associations in forage grasses. III. in vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487−89 doi: 10.1080/00275514.1985.12025127
CrossRef Google Scholar
|
[65]
|
White JF Jr, Cole GT. 1986. Endophyte-host associations in forage grasses. IV. the endophyte of Festuca versuta. Mycologia 78:102−7 doi: 10.1080/00275514.1986.12025211
CrossRef Google Scholar
|
[66]
|
Christensen MJ, Latch GCM, Tapper BA. 1991. Variation within isolates of Acremonium endophytes from perennial rye-grasses. Mycological Research 95:918−23 doi: 10.1016/S0953-7562(09)80087-7
CrossRef Google Scholar
|
[67]
|
Siegel MR, Latch GCM. 1991. Expression of antifungal activity in agar culture by isolates of grass endophytes. Mycologia 83:529−37 doi: 10.1080/00275514.1991.12026047
CrossRef Google Scholar
|
[68]
|
Christensen MJ. 1996. Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australasian Plant Pathology 25:186−91 doi: 10.1071/AP96032
CrossRef Google Scholar
|
[69]
|
Wäli PR, Helander M, Nissinen O, Saikkonen K. 2006. Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Canadian Journal of Botany 84:1043−51 doi: 10.1139/b06-075
CrossRef Google Scholar
|
[70]
|
Li C, Gao J, Nan Z. 2007. Interactions of Neotyphodium gansuense, Achnatherum inebrians and plant-pathogenic fungi. Mycological Research 111:1220−27 doi: 10.1016/j.mycres.2007.08.012
CrossRef Google Scholar
|
[71]
|
Ren A, Wang Y, Gao T. 2009. Difference in antifungal activity of morphotypes of clavicipitaceous endophytes within and between species. Acta Ecologica Sinica 29:227−31 doi: 10.1016/j.chnaes.2009.08.005
CrossRef Google Scholar
|
[72]
|
Pańka D, West CP, Guerber CA, Richardson MD. 2013. Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Annals of Applied Biology 163:257−68 doi: 10.1111/aab.12051
CrossRef Google Scholar
|
[73]
|
Pańka D, Jeske M, Tropczynski M. 2013. Occurrence of Neotyphodium and Epichloë fungi in meadow fescue and red fescue in Poland and screening of endophyte isolates as potential biological control agents. Acta Scientiarum Polonorum Hortorum Cultus 12:67−83
Google Scholar
|
[74]
|
Niones JT, Takemoto D. 2014. An isolate of Epichloë festucae, an endophytic fungus of temperate grasses, has growth inhibitory activity against selected grass pathogens. Journal of General Plant Pathology 80:337−47 doi: 10.1007/s10327-014-0521-7
CrossRef Google Scholar
|
[75]
|
Zhou L, Zhang X, Li C, Christensen MJ, Nan Z. 2015. Antifungal activity and phytochemical investigation of the asexual endophyte of Epichloë sp. from Festuca sinensis. Science China Life Sciences 58:821−26 doi: 10.1007/s11427-015-4845-0
CrossRef Google Scholar
|
[76]
|
Fernando K, Reddy P, Hettiarachchige IK, Spangenberg GC, Rochfort SJ, et al. 2020. Novel antifungal activity of Lolium-associated Epichloë endophytes. Microorganisms 8:955 doi: 10.3390/microorganisms8060955
CrossRef Google Scholar
|
[77]
|
Wheatley WM, Nicol HI, Hunt ER, Nikandrow A, Cother N. 2000. An association between perennial ryegrass endophyte, a leafspot caused by Pyrenophora seminiperda and preferential grazing by sheep. Proceedings of the 3rd International Conference on Harmful and Beneficial Microorganisms in Grassland, Pastures and Turf, Soest, Germany, 2000. pp. 71−75.
|
[78]
|
Tian P, Nan Z, Li C, Spangenberg G. 2008. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology 122:593−602 doi: 10.1007/s10658-008-9329-7
CrossRef Google Scholar
|
[79]
|
Kauppinen M, Helander M, Anttila N, Saloniemi I, Saikkonen K. 2018. Epichloë endophyte effects on leaf blotch pathogen (Rhynchosporium sp. ) of tall fescue (Schedonorus phoenix) vary among grass origin and environmental conditions. Plant Ecology & Diversity 11:625−35 doi: 10.1080/17550874.2019.1613451
CrossRef Google Scholar
|
[80]
|
Guo Y, Gao P, Li F, Duan T. 2019. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. European Journal of Plant Pathology 154:659−71 doi: 10.1007/s10658-019-01689-z
CrossRef Google Scholar
|
[81]
|
Li F, Duan T, Li Y. 2020. Effects of the fungal endophyte Epichloë festucae var. lolii on growth and physiological responses of perennial ryegrass cv. Fairway to combined drought and pathogen stresses. Microorganisms 8:1917 doi: 10.3390/microorganisms8121917
CrossRef Google Scholar
|
[82]
|
Shi X, Qin T, Liu H, Wu M, Li J, et al. 2020. Endophytic fungi activated similar defense strategies of Achnatherum sibiricum host to different trophic types of pathogens. Frontiers in Microbiology 11:1607 doi: 10.3389/fmicb.2020.01607
CrossRef Google Scholar
|
[83]
|
Yue Q, Miller CJ, White JF, Richardson MD. 2000. Isolation and characterization of fungal inhibitors from Epichloë festucae. Journal of Agricultural and Food Chemistry 48:4687−92 doi: 10.1021/jf990685q
CrossRef Google Scholar
|
[84]
|
Zhou L, Zhong S, Duo H, Qiao F. 2019. Antimicrobial activity and composition of volatile substance of Epichloë sp. endophyte isolated from Festuca sinensis. Natural Product Research and Development 31:1543−51 doi: 10.16333/j.1001-6880.2019.9.009
CrossRef Google Scholar
|
[85]
|
Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. 2020. Identification of ε-Poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules 25:1032 doi: 10.3390/molecules25051032
CrossRef Google Scholar
|
[86]
|
Fernando K, Reddy P, Guthridge KM, Spangenberg GC, Rochfort SJ. 2022. A metabolomic study of Epichloë endophytes for screening antifungal metabolites. Metabolites 12:37 doi: 10.3390/metabo12010037
CrossRef Google Scholar
|
[87]
|
Li F, Mei D, Ren T, Song Q. 2023. Crude extracts and secondary metabolites of Epichloë bromicola against Phytophthroa infestans. Chemistry & Biodiversity 20:e202200841 doi: 10.1002/cbdv.202200841
CrossRef Google Scholar
|
[88]
|
Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, et al. 2019. Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 14:e0209463 doi: 10.1371/journal.pone.0209463
CrossRef Google Scholar
|
[89]
|
Fernando K, Reddy P, Spangenberg GC, Rochfort SJ, Guthridge KM. 2022. Metabolic potential of Epichloë endophytes for host grass fungal disease resistance. Microorganisms 10:64 doi: 10.3390/microorganisms10010064
CrossRef Google Scholar
|
[90]
|
Paege N, Warnecke D, Zäuner S, Hagen S, Rodrigues A, et al. 2019. Species-specific differences in the susceptibility of fungi to the antifungal protein AFP depend on C-3 saturation of glycosylceramides. mSphere 4:e00741−19 doi: 10.1128/mSphere.00741-19
CrossRef Google Scholar
|
[91]
|
Fardella PA, Clarke BB, Belanger FC. 2023. The Epichloë festucae antifungal protein Efe-AfpA has activity against numerous plant pathogens. Microorganisms 11:828 doi: 10.3390/microorganisms11040828
CrossRef Google Scholar
|
[92]
|
Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, et al. 2019. Fungicides: an overlooked pesticide class? Environmental Science & Technology 53:3347−65 doi: 10.1021/acs.est.8b04392
CrossRef Google Scholar
|
[93]
|
Steinberg G, Gurr SJ. 2020. Fungi, fungicide discovery and global food security. Fungal Genetics and Biology 144:103476 doi: 10.1016/j.fgb.2020.103476
CrossRef Google Scholar
|
[94]
|
Morton V, Staub T. 2008. A short history of fungicides. APSnet Feature Articles 308:1−12
Google Scholar
|
[95]
|
Ons L, Bylemans D, Thevissen K, Cammue BPA. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8:1930 doi: 10.3390/microorganisms8121930
CrossRef Google Scholar
|
[96]
|
Leiter É, Gáll T, Csernoch L, Pócsi I. 2017. Biofungicide Utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments. BioControl 62:125−38 doi: 10.1007/s10526-016-9781-9
CrossRef Google Scholar
|
[97]
|
Barna B, Leiter É, Hegedűs N, Bíró T, Pócsi I. 2008. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. Journal of Basic Microbiology 48:516−20 doi: 10.1002/jobm.200800197
CrossRef Google Scholar
|
[98]
|
Gandía M, Kakar A, Giner-Llorca M, Holzknecht J, Martínez-Culebras P, et al. 2021. Potential of antifungal proteins (AFPs) to control Penicillium postharvest fruit decay. Journal of Fungi 7:449 doi: 10.3390/jof7060449
CrossRef Google Scholar
|
[99]
|
Morris K. 2003. The national turfgrass research initiative. Green Section Record. pp. 26–30.
|
[100]
|
Váradi G, Tóth GK, Kele Z, Galgóczy L, Fizil Á, et al. 2013. Synthesis of PAF, an antifungal protein from P. chrysogenum, by native chemical ligation: native disulfide pattern and fold obtained upon oxidative refolding. Chemistry – A European Journal 19:12684−92 doi: 10.1002/chem.201301098
CrossRef Google Scholar
|
[101]
|
Berkmen M. 2012. Production of disulfide-bonded proteins in Escherichia coli. Protein Expression and Purification 82:240−51 doi: 10.1016/j.pep.2011.10.009
CrossRef Google Scholar
|
[102]
|
Lucigen Corporation. 2016. Expresso TMT7 SUMO Cloning and Expression System. Lucigen. pp. 1–25.
|
[103]
|
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, et al. 2012. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial Cell Factories 11:753 doi: 10.1186/1475-2859-11-56
CrossRef Google Scholar
|
[104]
|
Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, et al. 2013. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microbial Cell Factories 12:37 doi: 10.1186/1475-2859-12-1
CrossRef Google Scholar
|