[1]
|
DaCosta M, Huang B. 2013. Heat-stress physiology and management. In Turfgrass: Biology, Use, and Management, ed. Stier JC, Horgan BP, Bonos SA, Volume 56, Madison, WI: Crop Science Society of America. pp. 249−78. https://doi.org/10.2134/agronmonogr56.c7
|
[2]
|
Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, et al. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522 doi: 10.3390/agronomy10040522
CrossRef Google Scholar
|
[3]
|
Tan Z, Zhang X, Yang Z. 2021. Research advances in heat resistance of cool-season turfgrasses. Acta Prataculturae Sinica 30:193−202 doi: 10.11686/cyxb2020331
CrossRef Google Scholar
|
[4]
|
Li L, Zhao L, Zhong H, He S, Yang X, et al. 2018. Effects of high temperature stress on the seedling characteristics of perennial ryegrass. Journal of Anhui Agricultural Sciences 46:85−86 doi: 10.3969/j.issn.0517-6611.2018.26.026
CrossRef Google Scholar
|
[5]
|
Beard JB, Daniel WH. 1965. Effect of temperature and cutting on the growth of creeping bentgrass (Agrostis palustris Huds.) roots. Agronomy Journal 57:249−50 doi: 10.2134/agronj1965.00021962005700030006x
CrossRef Google Scholar
|
[6]
|
Huang B, Liu X, Fry JD. 1998. Effects of high temperature and poor soil aeration on root growth and viability of creeping bentgrass. Crop Science 38:1618−22 doi: 10.2135/cropsci1998.0011183X003800060034x
CrossRef Google Scholar
|
[7]
|
Zhao Z, Hu L, Hu T, Fu J. 2015. Differential metabolic responses of two tall fescue genotypes to heat stress. Acta Prataculturae Sinica 24:58−69 doi: 10.11686/cyxb20150306
CrossRef Google Scholar
|
[8]
|
Xu Q, Huang B. 2001. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science 41:127−33 doi: 10.2135/cropsci2001.411127x
CrossRef Google Scholar
|
[9]
|
Zhang J, Xie X, Dong Z. 2007. An evaluation on the heat tolerance of coolseason turf grasses under field heat stress. Pratacultural Science 24:105−09 doi: 10.3969/j.issn.1001-0629.2007.02.025
CrossRef Google Scholar
|
[10]
|
He Y, Huang B. 2007. Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Science 47:2513−20 doi: 10.2135/cropsci2006.12.0821
CrossRef Google Scholar
|
[11]
|
Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4 doi: 10.48130/GR-2021-0004
CrossRef Google Scholar
|
[12]
|
Yu G, Xie Z, Chen W, Xu B, Huang B. 2022. Knock down of NON-YELLOW COLOURING 1-like gene or chlorophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany 73:429−44 doi: 10.1093/jxb/erab426
CrossRef Google Scholar
|
[13]
|
Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21:363−83 doi: 10.1038/s41580-020-0230-3
CrossRef Google Scholar
|
[14]
|
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79 doi: 10.1038/s41580-022-00499-2
CrossRef Google Scholar
|
[15]
|
Huang B, Liu X, Xu Q. 2001. Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Science 41:430−35 doi: 10.2135/cropsci2001.412430x
CrossRef Google Scholar
|
[16]
|
Bi A, Fan J, Hu Z, Wang G, Amombo E, et al. 2016. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses. Frontiers in Plant Science 7:453 doi: 10.3389/fpls.2016.00453
CrossRef Google Scholar
|
[17]
|
Sun T, Shao K, Huang Y, Lei Y, Tan L, et al. 2020. Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany 179:104192 doi: 10.1016/j.envexpbot.2020.104192
CrossRef Google Scholar
|
[18]
|
Du H, Wang Z, Huang B. 2009. Differential responses of warm-season and cool-season turfgrass species to heat stress associated with antioxidant enzyme activity. Journal of the American Society for Horticultural Science 134:417−22 doi: 10.21273/JASHS.134.4.417
CrossRef Google Scholar
|
[19]
|
Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86 doi: 10.1016/j.plaphy.2021.12.013
CrossRef Google Scholar
|
[20]
|
Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89 doi: 10.1080/07352689.2014.870411
CrossRef Google Scholar
|
[21]
|
Xu Y, Chu C, Yao S. 2021. The impact of high-temperature stress on rice: challenges and solutions. The Crop Journal 9:963−76 doi: 10.1016/j.cj.2021.02.011
CrossRef Google Scholar
|
[22]
|
Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science 9:915 doi: 10.3389/fpls.2018.00915
CrossRef Google Scholar
|
[23]
|
Yang Y, Liu D, Wang L. 2022. Research progress on the effects of high temperature stress on Festuca arundinacea. Journal of Grassland and Forage Science 264:15−22 doi: 10.3969/j.issn.2096-3971.2022.01.002
CrossRef Google Scholar
|
[24]
|
Zhao J, Lu Z, Wang L, Jin B. 2021. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22:117 doi: 10.3390/ijms22010117
CrossRef Google Scholar
|
[25]
|
Hu T, Sun X, Zhao Z, Amombo E, Fu J. 2020. High temperature damage to fatty acids and carbohydrate metabolism in tall fescue by coupling deep transcriptome and metabolome analysis. Ecotoxicology and Environmental Safety 203:110943 doi: 10.1016/j.ecoenv.2020.110943
CrossRef Google Scholar
|
[26]
|
Zhao N, Xu Q, Su P, Liang D, Tang Y. 2019. Differences in resistance to high temperature stres of 10 cool-season turfgrass varieties. Pratacultural Science 36:1743−53
Google Scholar
|
[27]
|
Larkindale J, Huang B. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 51:57−67 doi: 10.1016/S0098-8472(03)00060-1
CrossRef Google Scholar
|
[28]
|
Dhanda SS, Munjal R. 2012. Heat tolerance in relation to acquired thermotolerance for membrane lipids in bread wheat. Field Crops Research 135:30−37 doi: 10.1016/j.fcr.2012.06.009
CrossRef Google Scholar
|
[29]
|
Higashi Y, Saito K. 2019. Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Progress in Lipid Research 75:100990 doi: 10.1016/j.plipres.2019.100990
CrossRef Google Scholar
|
[30]
|
Hu L, Bi A, Hu Z, Amombo E, Li H, et al. 2018. Antioxidant metabolism, photosystem II, and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Frontiers in Plant Science 9:1242 doi: 10.3389/fpls.2018.01242
CrossRef Google Scholar
|
[31]
|
Peng Y, Huang B, Xu L, Li Z. 2013. Heat stress effects on osmotic potential, membrane fatty acid composition and lipid peroxidation content of two Kentucky bluegrass cultivars differing in drought tolerance. Acta Horticulturae Sinica 40:971−80
Google Scholar
|
[32]
|
Wang X, Xu C, Cai X, Wang Q, Dai S. 2017. Heat-responsive photosynthetic and signaling pathways in plants: insight from proteomics. International Journal of Molecular Sciences 18:2191 doi: 10.3390/ijms18102191
CrossRef Google Scholar
|
[33]
|
Hüve K, Bichele I, Rasulov B, Niinemets Ü. 2011. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell & Environment 34:113−26 doi: 10.1111/j.1365-3040.2010.02229.x
CrossRef Google Scholar
|
[34]
|
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643−84 doi: 10.3390/ijms14059643
CrossRef Google Scholar
|
[35]
|
Xu S, Li J, Zhang X, Wei H, Cui L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany 56:274−85 doi: 10.1016/j.envexpbot.2005.03.002
CrossRef Google Scholar
|
[36]
|
Cui L, Li J, Fan Y, Xu S, Zhang Z. 2006. High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies 47:61−69
Google Scholar
|
[37]
|
Zhang J, Li H, Huang X, Xing J, Yao J, et al. 2022. STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant, Cell & Environment 45:1412−27 doi: 10.1111/pce.14296
CrossRef Google Scholar
|
[38]
|
Sun X, Sun C, Li Z, Hu Q, Han L, et al. 2016. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant, Cell & Environment 39:1320−37 doi: 10.1111/pce.12683
CrossRef Google Scholar
|
[39]
|
Morvan-Bertrand A, Boucaud J, Le Saos J, Prud'homme MP. 2001. Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta 213:109−20 doi: 10.1007/s004250000478
CrossRef Google Scholar
|
[40]
|
Wang R, Wang Z, Xang Z. 2019. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass. Acta Prataculturae Sinica 28:168−78 doi: 10.11686/cyxb2018167
CrossRef Google Scholar
|
[41]
|
Xu Q, Huang B, Wang Z. 2004. Effects of extended daylength on shoot growth and carbohydrate metabolism for creeping bentgrass exposed to heat stress. Journal of the American Society for Horticultural Science 129:193−97 doi: 10.21273/JASHS.129.2.0193
CrossRef Google Scholar
|
[42]
|
Sadok W, Lopez JR, Smith KP. 2021. Transpiration increases under high-temperature stress: potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant, Cell & Environment 44:2102−16 doi: 10.1111/pce.13970
CrossRef Google Scholar
|
[43]
|
Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, et al. 2021. Responses of leaf respiration to heatwaves. Plant, Cell & Environment 44:2090−101 doi: 10.1111/pce.14018
CrossRef Google Scholar
|
[44]
|
Jiang Y, Huang B. 2001. Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass. HortScience 36:682−86 doi: 10.21273/HORTSCI.36.4.682
CrossRef Google Scholar
|
[45]
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, et al. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum 172:1321−35 doi: 10.1111/ppl.13297
CrossRef Google Scholar
|
[46]
|
Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2 doi: 10.48130/GR-2023-0002
CrossRef Google Scholar
|
[47]
|
Sheikh-Mohamadi MH, Etemadi N, Arab M. 2018. Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience 53:1062−68 doi: 10.21273/HORTSCI13088-18
CrossRef Google Scholar
|
[48]
|
Xia F, Han Z, Zhu H, Dong K, Du L. 2020. Comparison of osmoprotectants and antioxidant enzymes of different wild Kentucky bluegrass in Shanxi province under high-temperature stress. European Journal of Horticultural Sciences 85:284−92
Google Scholar
|
[49]
|
Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116 doi: 10.1016/j.envexpbot.2020.104116
CrossRef Google Scholar
|
[50]
|
Chan Z, Zhang H, Liu M. 2019. Roles of plant growth regulators during abiotic stress responses of turfgrass and forage. Pratacultural Science 36:3007−23 doi: 10.11829/j.issn.1001-0629.2019-0510
CrossRef Google Scholar
|
[51]
|
Wani SH, Kumar V, Shriram V, Sah SK. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162−76 doi: 10.1016/j.cj.2016.01.010
CrossRef Google Scholar
|
[52]
|
Li N, Euring D, Cha JY, Lin Z, Lu M, et al. 2021. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science 11:627969 doi: 10.3389/fpls.2020.627969
CrossRef Google Scholar
|
[53]
|
Li M, Jannasch AH, Jiang Y. 2020. Growth and hormone alterations in response to heat stress in perennial ryegrass accessions differing in heat tolerance. Journal of Plant Growth Regulation 39:1022−29 doi: 10.1007/s00344-019-10043-w
CrossRef Google Scholar
|
[54]
|
Xu Y, Huang B. 2007. Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science 132:185−92 doi: 10.21273/JASHS.132.2.185
CrossRef Google Scholar
|
[55]
|
Li F, Zhan D, Xu L, Han L, Zhang X. 2014. Antioxidant and hormone responses to heat stress in two Kentucky bluegrass cultivars contrasting in heat tolerance. Journal of the American Society for Horticultural Science 139:587−96 doi: 10.21273/JASHS.139.5.587
CrossRef Google Scholar
|
[56]
|
Li Q, He Y, Tu M, Yan J, Yu L, et al. 2019. Transcriptome sequencing of two Kentucky bluegrass (Poa pratensis L.) genotypes in response to heat Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:328−38 doi: 10.15835/nbha47111365
CrossRef Google Scholar
|
[57]
|
Wang Y, Dai Y, Tao X, Wang J, Cheng H, et al. 2015. Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis. Frontiers in Plant Science 6:1226 doi: 10.3389/fpls.2015.01226
CrossRef Google Scholar
|
[58]
|
Li Z, Cheng B, Zeng W, Liu Z, Peng Y. 2019. The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. Environmental and Experimental Botany 162:515−24 doi: 10.1016/j.envexpbot.2019.03.026
CrossRef Google Scholar
|
[59]
|
Wang K, Liu Y, Tian J, Huang K, Shi T, et al. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science 8:1032 doi: 10.3389/fpls.2017.01032
CrossRef Google Scholar
|
[60]
|
Andrási N, Pettkó-Szandtner A, Szabados L. 2021. Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany 72:1558−75 doi: 10.1093/jxb/eraa576
CrossRef Google Scholar
|
[61]
|
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65 doi: 10.1016/j.tplants.2016.08.015
CrossRef Google Scholar
|
[62]
|
Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19 doi: 10.1016/j.bbagrm.2011.10.002
CrossRef Google Scholar
|
[63]
|
Sun T, Wang W, Hu X, Fang Z, Wang Y, et al. 2022. Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response. Physiologia Plantarum 174:e13828 doi: 10.1111/ppl.13828
CrossRef Google Scholar
|
[64]
|
Wang X, Huang W, Liu J, Yang Z, Huang B. 2017. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnology Journal 15:237−48 doi: 10.1111/pbi.12609
CrossRef Google Scholar
|
[65]
|
Ma G, Shen J, Yu H, Huang X, Deng X, et al. 2022. Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environmental and Experimental Botany 201:104968 doi: 10.1016/j.envexpbot.2022.104968
CrossRef Google Scholar
|
[66]
|
Zhuang L, Cao W, Wang J, Yu J, Yang Z, et al. 2018. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. International Journal of Molecular Sciences 19:2702 doi: 10.3390/ijms19092702
CrossRef Google Scholar
|
[67]
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, et al. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences 20:5321 doi: 10.3390/ijms20215321
CrossRef Google Scholar
|
[68]
|
Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244−52 doi: 10.1016/j.tplants.2004.03.006
CrossRef Google Scholar
|
[69]
|
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, et al. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10:310−16 doi: 10.1016/j.pbi.2007.04.011
CrossRef Google Scholar
|
[70]
|
Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, et al. 2012. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters 34:371−77 doi: 10.1007/s10529-011-0769-3
CrossRef Google Scholar
|
[71]
|
Bi A, Wang T, Wang G, Zhang L, Wassie M, et al. 2021. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiology 187:1163−76 doi: 10.1093/plphys/kiab205
CrossRef Google Scholar
|
[72]
|
Sun X, Huang N, Li X, Zhu J, Bian X, et al. 2021. A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. Plant, Cell & Environment 44:1769−87 doi: 10.1111/pce.14031
CrossRef Google Scholar
|
[73]
|
Wang J, Zhuang L, Zhang J, Yu J, Yang Z, et al. 2019. Identification and characterization of novel homeodomain leucine zipper (HD-Zip) transcription factors associated with heat tolerance in perennial ryegrass. Environmental and Experimental Botany 160:1−11 doi: 10.1016/j.envexpbot.2018.12.023
CrossRef Google Scholar
|
[74]
|
Huang K, Liu Y, Shi Y, Tian J, Shi T, et al. 2022. Overexpression of TaMBF1c improves thermo-tolerance of perennial ryegrass. Scientia Horticulturae 295:110812 doi: 10.1016/j.scienta.2021.110812
CrossRef Google Scholar
|
[75]
|
Lei S, Yu G, Rossi S, Yu J, Huang B. 2021. LpNOL-knockdown suppression of heat-induced leaf senescence in perennial ryegrass involving regulation of amino acid and organic acid metabolism. Physiologia Plantarum 173:1979−91 doi: 10.1111/ppl.13541
CrossRef Google Scholar
|
[76]
|
Zhang J, Li H, Jiang Y, Li H, Zhang Z, et al. 2020. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology 20:520 doi: 10.1186/s12870-020-02695-8
CrossRef Google Scholar
|
[77]
|
Khraiwesh B, Zhu JK, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:137−48 doi: 10.1016/j.bbagrm.2011.05.001
CrossRef Google Scholar
|
[78]
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. 2023. miRNAs and their target genes play a critical role in response to heat stress in Cynodon dactylon (L.) Pers. Molecular Biotechnology 65:2004−17 doi: 10.1007/s12033-023-00713-2
CrossRef Google Scholar
|
[79]
|
Liao Z, Ghanizadeh H, Zhang X, Zhou Y, Huang L, et al. 2023. Exogenous methyl jasmonate mediated miRNA-mRNA network improves heat tolerance of perennial ryegrass. International Journal of Molecular Sciences 24:11085 doi: 10.3390/ijms241311085
CrossRef Google Scholar
|
[80]
|
Taier G, Hang N, Shi T, Liu Y, Ye W, et al. 2021. Ectopic expression of Os-miR408 improves thermo-tolerance of perennial ryegrass. Agronomy 11:1930 doi: 10.3390/agronomy11101930
CrossRef Google Scholar
|
[81]
|
Zhao J, Yuan S, Zhou M, Yuan N, Li Z, et al. 2019. Transgenic creeping bentgrass overexpressing Osa‐miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnology Journal 17:233−51 doi: 10.1111/pbi.12960
CrossRef Google Scholar
|
[82]
|
Li H, Hu T, Amombo E, Fu J. 2017. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. Journal of Plant Physiology 213:157−65 doi: 10.1016/j.jplph.2017.03.004
CrossRef Google Scholar
|
[83]
|
Balazadeh S. 2022. A 'hot' cocktail: the multiple layers of thermomemory in plants. Current Opinion in Plant Biology 65:102147 doi: 10.1016/j.pbi.2021.102147
CrossRef Google Scholar
|
[84]
|
Xu S, He X, Chen W, Li J, Zhang J. 2008. Effects of heat acclimation on high-temperature stress resistance and heattolerance mechanism of Festuca arundinacea and Lolium perenne. Acta Ecologica Sinica 28:162−71
Google Scholar
|
[85]
|
Chan Z, Hu T, Wang Z, Shao A, Han L, et al. 2023. Research progress, future challenge and development trend of turf science. Bulletin of National Natural Science Foundation of China 37:623−31 doi: 10.16262/j.cnki.1000-8217.2023.04.011
CrossRef Google Scholar
|
[86]
|
Driedonks N, Rieu I, Vriezen WH. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29:67−79 doi: 10.1007/s00497-016-0275-9
CrossRef Google Scholar
|
[87]
|
Meyer WA, Hoffman L, Bonos SA. 2017. Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal 13:3−10 doi: 10.2134/itsrj2016.09.0806
CrossRef Google Scholar
|
[88]
|
Zhang W, Dewey RE, Boss W, Phillippy BQ, Qu R. 2013. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology 81:273−86 doi: 10.1007/s11103-012-9997-8
CrossRef Google Scholar
|
[89]
|
Wang Z, Ge Y. 2005. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). Journal of Plant Physiology 162:103−13 doi: 10.1016/j.jplph.2004.07.009
CrossRef Google Scholar
|
[90]
|
Luo H, Hu Q, Nelson K, Longo C, Kausch AP, et al. 2004. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Reports 22:645−52 doi: 10.1007/s00299-003-0734-2
CrossRef Google Scholar
|
[91]
|
Zhang K, Wang J, Hu X, Yang A, Zhang J. 2010. Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell, Tissue and Organ Culture 102:135−43 doi: 10.1007/s11240-010-9713-9
CrossRef Google Scholar
|
[92]
|
Zhang Y, Ran Y, Nagy I, Lenk I, Qiu J, et al. 2020. Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system. Plant Biotechnology Journal 18:1854 doi: 10.1111/pbi.13359
CrossRef Google Scholar
|
[93]
|
Ha SB, Wu FS, Thorne TK. 1992. Transgenic turf-type tall fescue (Festuca amndinacea Schreb.) plants regenerated from protoplasts. Plant Cell Reports 11:601−04 doi: 10.1007/BF00236381
CrossRef Google Scholar
|
[94]
|
Xie Y, Haq SIU, Jiang X, Zheng D, Feng N, et al. 2022. Plant genome editing: CRISPR, base editing, prime editing, and beyond. Grassland Research 1:234−43 doi: 10.1002/glr2.12034
CrossRef Google Scholar
|
[95]
|
Yao J, Hao H, Zhang J, Xu B. 2023. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass protoplasts. Acta Prataculturae Sinica 32:129−41 doi: 10.11686/cyxb2022180
CrossRef Google Scholar
|
[96]
|
Zhang L, Wang T, Wang G, Bi A, Wassie M, et al. 2021. Simultaneous gene editing of three homoeoalleles in self-incompatible allohexaploid grasses. Journal of Integrative Plant Biology 63:1410−15 doi: 10.1111/jipb.13101
CrossRef Google Scholar
|
[97]
|
Wu X, Feng H, Wu D, Yan S, Zhang P, et al. 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology 22:185 doi: 10.1186/s13059-021-02377-0
CrossRef Google Scholar
|
[98]
|
Kim SL, Kim N, Lee H, Lee E, Cheon KS, et al. 2020. High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252:38 doi: 10.1007/s00425-020-03436-9
CrossRef Google Scholar
|