[1]
|
Ge Y, Wang ZY. 2006. Bermudagrass (Cynodon spp. ). In Agrobacterium Protocols Volume 2, ed. Wang K. New Jersey: Humana Press. 344:47−54. https://doi.org/10.1385/1-59745-131-2:47
|
[2]
|
Pang W, Luc JE, Crow WT, Kenworthy KE, Mcsorley R, et al. 2011. Screening bermudagrass germplasm accessions for tolerance to sting nematodes. HortScience 46:1503−06 doi: 10.21273/HORTSCI.46.11.1503
CrossRef Google Scholar
|
[3]
|
Ji M, Wang G, Liu X, Li X, Xue Y, et al. 2022. The extended day length promotes earlier flowering of bermudagrass. PeerJ 10:e14326 doi: 10.7717/peerj.14326
CrossRef Google Scholar
|
[4]
|
Cui F, Taier G, Li M, Dai X, Hang N, et al. 2021. The genome of the warm-season turfgrass African bermudagrass (Cynodon transvaalensis). Horticulture Research 8:93 doi: 10.1038/s41438-021-00519-w
CrossRef Google Scholar
|
[5]
|
Scaglia G, Boland HT. 2014. The effect of bermudagrass hybrid on forage characteristics, animal performance, and grazing behavior of beef steers. Journal of Animal Science 92:1228−38 doi: 10.2527/jas.2013-6959
CrossRef Google Scholar
|
[6]
|
Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89 doi: 10.1080/07352689.2014.870411
CrossRef Google Scholar
|
[7]
|
Danziger N, Bernstein N. 2021. Light matters: effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Industrial Crops and Products 164:113351 doi: 10.1016/j.indcrop.2021.113351
CrossRef Google Scholar
|
[8]
|
Noor M, Kaleem M, Akhtar MT, Feng G, Zhang J, et al. 2024. Evaluation of different bermudagrass germplasm at physiological and molecular level under shade along longitudinal and latitudinal gradients. BMC Plant Biology 24:675 doi: 10.1186/s12870-024-05384-y
CrossRef Google Scholar
|
[9]
|
Cao Y, Yang K, Liu W, Feng G, Peng Y, et al. 2022. Adaptive responses of common and hybrid bermudagrasses to shade stress associated with changes in morphology, photosynthesis, and secondary metabolites. Frontiers in Plant Science 13:817105 doi: 10.3389/fpls.2022.817105
CrossRef Google Scholar
|
[10]
|
Fan J, Lou Y, Shi H, Chen L, Cao L. 2019. Transcriptomic analysis of dark-induced senescence in bermudagrass (Cynodon dactylon). Plants 8:614 doi: 10.3390/plants8120614
CrossRef Google Scholar
|
[11]
|
Li Z, Huang C, Han L. 2023. Differential regulations of antioxidant metabolism and cold-responsive genes in three bermudagrass genotypes under chilling and freezing stress. International Journal of Molecular Sciences 24:14070 doi: 10.3390/ijms241814070
CrossRef Google Scholar
|
[12]
|
Chen L, Fan J, Hu L, Hu Z, Xie Y, et al. 2015. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance. BMC Plant Biology 15:216 doi: 10.1186/s12870-015-0598-y
CrossRef Google Scholar
|
[13]
|
Fan J, Hu Z, Xie Y, Chan Z, Chen K, et al. 2015. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Frontiers in Plant Science 6:925 doi: 10.3389/fpls.2015.00925
CrossRef Google Scholar
|
[14]
|
Huang X, Shi H, Hu Z, Liu A, Amombo E, et al. 2017. ABA is involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science 8:1613 doi: 10.3389/fpls.2017.01613
CrossRef Google Scholar
|
[15]
|
Hu Z, Fan J, Chen K, Amombo E, Chen L, et al. 2016. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. Photosynthesis Research 128:59−72 doi: 10.1007/s11120-015-0199-5
CrossRef Google Scholar
|
[16]
|
Hu Z, Fan J, Xie Y, Amombo E, Liu A, et al. 2016. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiology and Biochemistry 100:94−104 doi: 10.1016/j.plaphy.2016.01.008
CrossRef Google Scholar
|
[17]
|
Shi H, Ye T, Zhong B, Liu X, Chan Z. 2014. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. Journal of Integrative Plant Biology 56:1064−79 doi: 10.1111/jipb.12167
CrossRef Google Scholar
|
[18]
|
Yu J, Li R, Fan N, Yang Z, Huang B. 2017. Metabolic pathways involved in carbon dioxide enhanced heat tolerance in bermudagrass. Frontiers in Plant Science 8:1506 doi: 10.3389/fpls.2017.01506
CrossRef Google Scholar
|
[19]
|
Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86 doi: 10.1016/j.plaphy.2021.12.013
CrossRef Google Scholar
|
[20]
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. 2023. miRNAs and their target genes play a critical role in response to heat stress in Cynodon dactylon (L.) Pers. Molecular Biotechnology 65:2004−17 doi: 10.1007/s12033-023-00713-2
CrossRef Google Scholar
|
[21]
|
Shi H, Ye T, Chan Z. 2014. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance. Plant Physiology and Biochemistry 82:218−28 doi: 10.1016/j.plaphy.2014.06.006
CrossRef Google Scholar
|
[22]
|
Noor M, Fan J, Kaleem M, Akhtar MT, Jin S, et al. 2024. Assessment of the changes in growth, photosynthetic traits and gene expression in Cynodon dactylon against drought stress. BMC Plant Biology 24:235 doi: 10.1186/s12870-024-04896-x
CrossRef Google Scholar
|
[23]
|
Yuan Z, Ni X, Chen C, Zhang S, Chen X, et al. 2022. Effects of different water conditions on the biomass, root morphology and aerenchyma formation in bermudagrass (Cynodon dactylon (L.) Pers). BMC Plant Biology 22:266 doi: 10.1186/s12870-022-03653-2
CrossRef Google Scholar
|
[24]
|
Yuan Z, Ni X, Arif M, Dong Z, Zhang L, et al. 2021. Transcriptomic analysis of the photosynthetic, respiration, and aerenchyma adaptation strategies in bermudagrass (Cynodon dactylon) under different submergence stress. International Journal of Molecular Sciences 22:7905 doi: 10.3390/ijms22157905
CrossRef Google Scholar
|
[25]
|
Li ZJ, Fan DY, Chen FQ, Yuan QY, Chow WS, et al. 2015. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding. Plant Biology 17:459−65 doi: 10.1111/plb.12254
CrossRef Google Scholar
|
[26]
|
Ye T, Shi H, Wang Y, Chan Z. 2015. Contrasting changes caused by drought and submergence stresses in bermudagrass (Cynodon dactylon). Frontiers in Plant Science 6:951 doi: 10.3389/fpls.2015.00951
CrossRef Google Scholar
|
[27]
|
Ismail A, Takeda S, Nick P. 2014. Life and death under salt stress: same players, different timing? Journal of Experimental Botany 65:2963−79 doi: 10.1093/jxb/eru159
CrossRef Google Scholar
|
[28]
|
Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217:523−39 doi: 10.1111/nph.14920
CrossRef Google Scholar
|
[29]
|
Yang C, Xu H, Wang L, Liu J, Shi D, et al. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47:79−86 doi: 10.1007/s11099-009-0013-8
CrossRef Google Scholar
|
[30]
|
Tufail A, Ahmad F, Hameed M, Ahsan M, Okla MK, et al. 2023. Structural modifications in Bermuda grass [Cynodon dactylon (L.) Pers.] ecotypes for adaptation to environmental heterogeneity. Frontiers in Plant Science 13:1084706 doi: 10.3389/fpls.2022.1084706
CrossRef Google Scholar
|
[31]
|
Hu L, Chen L, Liu L, Lou Y, Amombo E, et al. 2015. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon). Physiologia Plantarum 155:166−79 doi: 10.1111/ppl.12312
CrossRef Google Scholar
|
[32]
|
Yang Y, Wassie M, Liu N, Deng H, Zeng Y, et al. 2022. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass (Cynodon dactylon). Frontiers in Plant Science 13:956410 doi: 10.3389/fpls.2022.956410
CrossRef Google Scholar
|
[33]
|
Hu L, Li H, Chen L, Lou Y, Amombo E, et al. 2015. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics 16:575 doi: 10.1186/s12864-015-1799-3
CrossRef Google Scholar
|
[34]
|
Shao A, Wang W, Fan S, Xu X, Yin Y, et al. 2021. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biology 21:175 doi: 10.1186/s12870-021-02939-1
CrossRef Google Scholar
|
[35]
|
Ye T, Wang Y, Feng Y, Chan Z. 2021. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress. Physiologia Plantarum 171:22−33 doi: 10.1111/ppl.13209
CrossRef Google Scholar
|
[36]
|
Xie Y, Han S, Li X, Amombo E, Fu J. 2017. Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions 30:245−54 doi: 10.1094/MPMI-12-16-0263-R
CrossRef Google Scholar
|
[37]
|
Wei H, He W, Li Z, Ge L, Zhang J, et al. 2022. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Frontiers in Plant Science 13:959427 doi: 10.3389/fpls.2022.959427
CrossRef Google Scholar
|
[38]
|
Xie Y, Fan J, Zhu W, Amombo E, Lou Y, et al. 2016. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in Plant Science 7:755 doi: 10.3389/fpls.2016.00755
CrossRef Google Scholar
|
[39]
|
Xie Y, Luo H, Hu L, Sun X, Lou Y, et al. 2014. Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers. Ecotoxicology 23:1030−43 doi: 10.1007/s10646-014-1247-1
CrossRef Google Scholar
|
[40]
|
Xie Y, Hu L, Du Z, Sun X, Amombo E, et al. 2014. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers.]. PLoS One 9:e115279 doi: 10.1371/journal.pone.0115279
CrossRef Google Scholar
|
[41]
|
Chen B, Tan S, Zeng Q, Wang A, Zheng H. 2019. Soil nutrient heterogeneity affects the accumulation and transfer of cadmium in Bermuda grass (Cynodon dactylon (L.) pers.). Chemosphere 221:342−48 doi: 10.1016/j.chemosphere.2019.01.059
CrossRef Google Scholar
|
[42]
|
Butler AD, Wynter M, Medina VF, Bednar AJ. 2016. Depleted uranium toxicity, accumulation, and uptake in Cynodon dactylon (Bermuda) and Aristida purpurea (Purple Threeawn). Bulletin of Environmental Contamination and Toxicology 96:714−19 doi: 10.1007/s00128-016-1784-9
CrossRef Google Scholar
|
[43]
|
Zhang B, Sun Q, Chen Z, Shu F, Chen J. 2023. Evaluation of zinc tolerance and accumulation in eight cultivars of bermudagrass (Cynodon spp.): implications for zinc phytoremediation. BioMetals 36:1377−90 doi: 10.1007/s10534-023-00524-7
CrossRef Google Scholar
|
[44]
|
Xie C, Xiong X, Huang Z, Sun L, Ma J, et al. 2018. Exogenous melatonin improves lead tolerance of bermudagrass through modulation of the antioxidant defense system. International Journal of Phytoremediation 20:1408−17 doi: 10.1080/15226514.2018.1488813
CrossRef Google Scholar
|
[45]
|
Xie C, Pu S, Xiong X, Chen S, Peng L, et al. 2021. Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass. Environmental Science and Pollution Research 28:44374−88 doi: 10.1007/s11356-021-13790-0
CrossRef Google Scholar
|
[46]
|
Shi H, Ye T, Chan Z. 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry 74:99−107 doi: 10.1016/j.plaphy.2013.11.001
CrossRef Google Scholar
|
[47]
|
Zhan F, Li B, Jiang M, Li T, He Y, et al. 2019. Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass [Cynodon dactylon (L.) Pers.] grown in a lead–zinc mine wasteland. International Journal of Phytoremediation 21:849−56 doi: 10.1080/15226514.2019.1577353
CrossRef Google Scholar
|
[48]
|
Xie Y, Bu H, Feng Q, Wassie M, Amee M, et al. 2021. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research 200:111730 doi: 10.1016/j.envres.2021.111730
CrossRef Google Scholar
|
[49]
|
Xie Y, Luo H, Du Z, Hu L, Fu J. 2014. Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [Cynodon dactylon (L.) Pers.]. Chemosphere 117:786−92 doi: 10.1016/j.chemosphere.2014.10.037
CrossRef Google Scholar
|
[50]
|
Li X, Gitau MM, Han S, Fu J, Xie Y. 2017. Effects of cadmium-resistant fungi Aspergillus aculeatus on metabolic profiles of bermudagrass [Cynodon dactylon (L.) Pers.] under Cd stress. Plant Physiology and Biochemistry 114:38−50 doi: 10.1016/j.plaphy.2017.02.014
CrossRef Google Scholar
|
[51]
|
Wu S, Chen B, Sun Y, Ren B, Zhang X, et al. 2014. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. Environmental Toxicology and Chemistry 33:2105−13 doi: 10.1002/etc.2661
CrossRef Google Scholar
|
[52]
|
Tripathi S, Yadav S, Sharma P, Purchase D, Syed A, et al. 2022. Plant growth promoting strain Bacillus cereus (RCS-4 MZ520573.1) enhances phytoremediation potential of Cynodon dactylon L. in distillery sludge. Environmental Research 208:112709 doi: 10.1016/j.envres.2022.112709
CrossRef Google Scholar
|
[53]
|
Mahohi A, Raiesi F. 2021. The performance of mycorrhizae, rhizobacteria, and earthworms to improve Bermuda grass (Cynodon dactylon) growth and Pb uptake in a Pb-contaminated soil. Environmental Science and Pollution Research 28:3019−34 doi: 10.1007/s11356-020-10636-z
CrossRef Google Scholar
|
[54]
|
Li D, Liu J, Zong J, Guo H, Li J, et al. 2021. Integration of the metabolome and transcriptome reveals the mechanism of resistance to low nitrogen supply in wild bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biology 21:480 doi: 10.1186/s12870-021-03259-0
CrossRef Google Scholar
|
[55]
|
Li D, Liu J, Guo H, Zong J, Li J, et al. 2022. Effects of low nitrogen supply on nitrogen uptake, assimilation and remobilization in wild bermudagrass. Plant Physiology and Biochemistry 191:34−41 doi: 10.1016/j.plaphy.2022.09.019
CrossRef Google Scholar
|
[56]
|
Chen L, Fan J, Hu Z, Huang X, Amombo E, et al. 2017. Melatonin is involved in regulation of bermudagrass growth and development and response to low K+ stress. Frontiers in Plant Science 8:2038 doi: 10.3389/fpls.2017.02038
CrossRef Google Scholar
|
[57]
|
Li X, Zhang T, Xue Y, Xu X, Cui X, et al. 2023. Aspergillus aculeatus enhances nutrient uptake and forage quality in bermudagrass by increasing phosphorus and potassium availability. Frontiers in Plant Science 14:1165567 doi: 10.3389/fpls.2023.1165567
CrossRef Google Scholar
|
[58]
|
Choi CJ, Valiente J, Schiavon M, Dhillon B, Crow WT, et al. 2022. Bermudagrass cultivars with different tolerance to nematode damage are characterized by distinct fungal but similar bacterial and archaeal microbiomes. Microorganisms 10:457 doi: 10.3390/microorganisms10020457
CrossRef Google Scholar
|
[59]
|
Coy RM, Held DW, Kloepper JW. 2019. Rhizobacterial treatments of tall fescue and bermudagrass increases tolerance to damage from white grubs. Pest Management Science 75:3210−17 doi: 10.1002/ps.5439
CrossRef Google Scholar
|
[60]
|
Coy RM, Held DW, Kloepper JW. 2020. Rhizobacterial treatment of bermudagrass increases tolerance to damage from tawny mole crickets (Neoscapteriscus vicinus Scudder). Pest Management Science 76:1078−84 doi: 10.1002/ps.5618
CrossRef Google Scholar
|
[61]
|
Shao A, Wang H, Xu X, Li X, Amombo E, et al. 2022. Moderately reducing nitrogen application ameliorates salt-induced growth and physiological damage on forage bermudagrass. Frontiers in Plant Science 13:896358 doi: 10.3389/fpls.2022.896358
CrossRef Google Scholar
|
[62]
|
Fan J, Xu J, Zhang W, Amee M, Liu D, et al. 2019. Salt-induced damage is alleviated by short-term pre-cold treatment in bermudagrass (Cynodon dactylon). Plants 8:347 doi: 10.3390/plants8090347
CrossRef Google Scholar
|
[63]
|
Liu A, Hu Z, Bi A, Fan J, Gitau MM, et al. 2016. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology 25:1445−57 doi: 10.1007/s10646-016-1696-9
CrossRef Google Scholar
|
[64]
|
Zhang J, Wang M, Guo Z, Guan Y, Guo Y, et al. 2018. Variations in morphological traits of bermudagrass and relationship with soil and climate along latitudinal gradients. Hereditas 155:31 doi: 10.1186/s41065-018-0068-2
CrossRef Google Scholar
|
[65]
|
Wang M, Zhang J, Guo Z, Guan Y, Qu G, et al. 2020. Morphological variation in Cynodon dactylon (L.) Pers., and its relationship with the environment along a longitudinal gradient. Hereditas 157:4 doi: 10.1186/s41065-020-00117-1
CrossRef Google Scholar
|
[66]
|
Cornelissen JHC, Song YB, Yu FH, Dong M. 2014. Plant traits and ecosystem effects of clonality: a new research agenda. Annals of Botany 114:369−76 doi: 10.1093/aob/mcu113
CrossRef Google Scholar
|
[67]
|
Yin Y, Xu Y, Li X, Fan S, Wang G, et al. 2022. Physiological integration between Bermudagrass ramets improves overall salt resistance under heterogeneous salt stress. Physiologia Plantarum 174:e13655 doi: 10.1111/ppl.13655
CrossRef Google Scholar
|
[68]
|
Caturegli L, Grossi N, Saltari M, Gaetani M, Magni S, et al. 2015. Spectral reflectance of tall fescue (Festuca arundinacea Schreb.) under different irrigation and nitrogen conditions. Agriculture and Agricultural Science Procedia 4:59−67 doi: 10.1016/j.aaspro.2015.03.008
CrossRef Google Scholar
|
[69]
|
Caturegli L, Matteoli S, Gaetani M, Grossi N, Magni S, et al. 2020. Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 10:15055 doi: 10.1038/s41598-020-72006-6
CrossRef Google Scholar
|
[70]
|
Chen C, Chen Z, Chen M, Zhang J, Wang L, et al. 2023. Leaf cuticular waxes of bermudagrass response to environment-driven adaptations of climate effect inferred from latitude and longitude gradient in China. Chemistry and Biodiversity 20:e202201104 doi: 10.1002/cbdv.202201104
CrossRef Google Scholar
|
[71]
|
Chen J, Fan S, Li S, Cui X, Amombo E, et al. 2023. Diversity analysis of agronomic and nutritional traits of hybrid offspring of forage bermudagrass. Frontiers in Plant Science 14:1165707 doi: 10.3389/fpls.2023.1165707
CrossRef Google Scholar
|
[72]
|
Khanal S, Dunne JC, Schwartz BM, Kim C, Milla-Lewis S, et al. 2019. Molecular dissection of quantitative variation in bermudagrass hybrids (Cynodon dactylon × transvaalensis): morphological traits. G3 Genes|Genomes|Genetics 9:2581−96 doi: 10.1534/g3.119.400061
CrossRef Google Scholar
|
[73]
|
Zheng Y, Xu S, Liu J, Zhao Y, Liu J. 2017. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS One 12:e0177508 doi: 10.1371/journal.pone.0177508
CrossRef Google Scholar
|
[74]
|
Huang C, Liu G, Bai C, Wang W. 2014. Genetic analysis of 430 Chinese Cynodon dactylon accessions using sequence-related amplified polymorphism markers. International Journal of Molecular Sciences 15:19134−46 doi: 10.3390/ijms151019134
CrossRef Google Scholar
|
[75]
|
Tan C, Wu Y, Taliaferro CM, Bell GE, Martin DL, et al. 2014. Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy. Molecular Genetics and Genomics 289:523−31 doi: 10.1007/s00438-014-0829-1
CrossRef Google Scholar
|
[76]
|
Guo Y, Wu Y, Anderson JA, Moss JQ, Zhu L, et al. 2017. SSR marker development, linkage mapping, and QTL analysis for establishment rate in common bermudagrass. The Plant Genome 10:plantgenome2016.07.0074 doi: 10.3835/plantgenome2016.07.0074
CrossRef Google Scholar
|
[77]
|
Guo Y, Wu Y, Anderson JA, Moss JQ, Zhu L. 2015. Disomic inheritance and segregation distortion of SSR markers in two populations of Cynodon dactylon (L.) Pers. var. dactylon. PLoS One 10:e0136332 doi: 10.1371/journal.pone.0136332
CrossRef Google Scholar
|
[78]
|
Akbari M, Salehi H, Niazi A. 2018. Evaluation of diversity based on morphological variabilities and ISSR molecular markers in Iranian Cynodon dactylon (L.) Pers. accessions to select and introduce cold-tolerant genotypes. Molecular Biotechnology 60:259−70 doi: 10.1007/s12033-018-0068-5
CrossRef Google Scholar
|
[79]
|
Yu S, Fang T, Dong H, Yan L, Martin DL, et al. 2021. Genetic and QTL mapping in African bermudagrass. The Plant Genome 14:e20073 doi: 10.1002/tpg2.20073
CrossRef Google Scholar
|
[80]
|
Yu S, Dong H, Fang T, Wu Y. 2022. Comparative analysis reveals chromosome number reductions in the evolution of African bermudagrass (Cynodon transvaalensis Burtt-Davy). Genome 65:341−48 doi: 10.1139/gen-2021-0122
CrossRef Google Scholar
|
[81]
|
Singh L, Wu Y, McCurdy JD, Stewart BR, Warburton ML, et al. 2023. Genetic diversity and population structure of bermudagrass (Cynodon spp.) revealed by genotyping-by-sequencing. Frontiers in Plant Science 14:1155721 doi: 10.3389/fpls.2023.1155721
CrossRef Google Scholar
|
[82]
|
Melmaiee K, Anderson M, Elavarthi S, Guenzi A, Canaan P. 2015. Transcriptional analysis of resistance to low temperatures in bermudagrass crown tissues. PLoS One 10:e0136433 doi: 10.1371/journal.pone.0136433
CrossRef Google Scholar
|
[83]
|
Zhang B, Xiao X, Zong J, Chen J, Li J, et al. 2017. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.). Plant Physiology and Biochemistry 121:31−37 doi: 10.1016/j.plaphy.2017.10.016
CrossRef Google Scholar
|
[84]
|
Chen S, Xu X, Ma Z, Liu J, Zhang B. 2021. Organ-specific transcriptome analysis identifies candidate genes involved in the stem specialization of bermudagrass (Cynodon dactylon L.). Frontiers in Genetics 12:678673 doi: 10.3389/fgene.2021.678673
CrossRef Google Scholar
|
[85]
|
Zhang B, Liu J, Wang X, Wei Z. 2018. Full-length RNA sequencing reveals unique transcriptome composition in bermudagrass. Plant Physiology and Biochemistry 132:95−103 doi: 10.1016/j.plaphy.2018.08.039
CrossRef Google Scholar
|
[86]
|
Fan S, Amombo E, Avoga S, Li Y, Yin Y. 2023. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. Frontiers in Plant Science 14:1141295 doi: 10.3389/fpls.2023.1141295
CrossRef Google Scholar
|
[87]
|
Ye T, Shi H, Wang Y, Yang F, Chan Z. 2016. Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses. Frontiers in Plant Science 7:1694 doi: 10.3389/fpls.2016.01694
CrossRef Google Scholar
|
[88]
|
Ma Z, Chen S, Wang Z, Liu J, Zhang B. 2021. Proteome analysis of bermudagrass stolons and rhizomes provides new insights into the adaptation of plant stems to aboveground and underground growth. Journal of Proteomics 241:104245 doi: 10.1016/j.jprot.2021.104245
CrossRef Google Scholar
|
[89]
|
Zhang B, Fan J, Liu J. 2019. Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics 20:708 doi: 10.1186/s12864-019-6077-3
CrossRef Google Scholar
|
[90]
|
Shi H, Wang X, Tan DX, Reiter RJ, Chan Z. 2015. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.). Journal of Pineal Research 59:120−31 doi: 10.1111/jpi.12246
CrossRef Google Scholar
|
[91]
|
Zhang B, Chen Z, Sun Q, Liu J. 2022. Proteome-wide analyses reveal diverse functions of protein acetylation and succinylation modifications in fast growing stolons of bermudagrass (Cynodon dactylon L.). BMC Plant Biology 22:503 doi: 10.1186/s12870-022-03885-2
CrossRef Google Scholar
|
[92]
|
Zhang B, Chen J, Zong J, Yan X, Liu J. 2019. Unbiased phosphoproteome profiling uncovers novel phosphoproteins and phosphorylation motifs in bermudagrass stolons. Plant Physiology and Biochemistry 144:92−99 doi: 10.1016/j.plaphy.2019.09.036
CrossRef Google Scholar
|
[93]
|
Zhang B, Chen S, Liu J, Yan YB, Chen J, et al. 2022. A high-quality haplotype-resolved genome of common bermudagrass (Cynodon dactylon L.) provides insights into polyploid genome stability and prostrate growth. Frontiers in Plant Science 13:890980 doi: 10.3389/fpls.2022.890980
CrossRef Google Scholar
|
[94]
|
Wang H, Fang T, Li X, Xie Y, Wang W, et al. 2024. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. The Plant Journal 118:2068−84 doi: 10.1111/tpj.16729
CrossRef Google Scholar
|
[95]
|
Huang YY, Cho ST, Haryono M, Kuo CH. 2017. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae. PLoS One 12:e0179055 doi: 10.1371/journal.pone.0179055
CrossRef Google Scholar
|
[96]
|
Gan L, Chen M, Zhang J, Fan J, Yan X. 2022. A novel beta-glucosidase gene for plant type was identified by genome-wide association study and gene co-expression analysis in widespread bermudagrass. International Journal of Molecular Sciences 23:11432 doi: 10.3390/ijms231911432
CrossRef Google Scholar
|
[97]
|
Chen M, Gan L, Zhang J, Shen Y, Qian J, et al. 2021. A regulatory network of heat shock modules-photosynthesis-redox systems in response to cold stress across a latitudinal gradient in bermudagrass. Frontiers in Plant Science 12:751901 doi: 10.3389/fpls.2021.751901
CrossRef Google Scholar
|
[98]
|
Xu X, Liu W, Liu X, Cao Y, Li X, et al. 2022. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. Physiologia Plantarum 174:e13710 doi: 10.1111/ppl.13710
CrossRef Google Scholar
|
[99]
|
Hu Z, Huang X, Amombo E, Liu A, Fan J, et al. 2020. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Science 294:110432 doi: 10.1016/j.plantsci.2020.110432
CrossRef Google Scholar
|
[100]
|
Huang X, Cao L, Fan J, Ma G, Chen L. 2022. CdWRKY2-mediated sucrose biosynthesis and CBF-signalling pathways coordinately contribute to cold tolerance in bermudagrass. Plant Biotechnology Journal 20:660−75 doi: 10.1111/pbi.13745
CrossRef Google Scholar
|
[101]
|
Shao A, Xu X, Amombo E, Wang W, Fan S, et al. 2023. CdWRKY2 transcription factor modulates salt oversensitivity in bermudagrass [Cynodon dactylon (L.) Pers.]. Frontiers in Plant Science 14:1164534 doi: 10.3389/fpls.2023.1164534
CrossRef Google Scholar
|
[102]
|
Zhang B, Liu J. 2018. Molecular cloning and sequence variance analysis of the TEOSINTE BRANCHED1 (TB1) gene in bermudagrass [Cynodon dactylon (L.) Pers]. Journal of Plant Physiology 229:142−50 doi: 10.1016/j.jplph.2018.07.008
CrossRef Google Scholar
|
[103]
|
Chen M, Zhao Y, Zhuo C, Lu S, Guo Z. 2015. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnology Journal 13:482−91 doi: 10.1111/pbi.12270
CrossRef Google Scholar
|
[104]
|
Wu X, Shi H, Guo Z. 2018. Overexpression of a NF-YC gene results in enhanced drought and salt tolerance in transgenic seashore paspalum. Frontiers in Plant Science 9:1355 doi: 10.3389/fpls.2018.01355
CrossRef Google Scholar
|
[105]
|
Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P. 2017. Expression of CdDHN4, a novel YSK2-type dehydrin gene from bermudagrass, responses to drought stress through the ABA-dependent signal pathway. Frontiers in Plant Science 8:748 doi: 10.3389/fpls.2017.00748
CrossRef Google Scholar
|
[106]
|
Zhang D, Lv A, Yang T, Cheng X, Zhao E, et al. 2020. Protective functions of alternative splicing transcripts (CdDHN4-L and CdDHN4-S) of CdDHN4 from bermudagrass under multiple abiotic stresses. Gene 763:100033 doi: 10.1016/j.gene.2020.100033
CrossRef Google Scholar
|
[107]
|
Lv A, Su L, Liu X, Xing Q, Huang B, et al. 2018. Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC Plant Biology 18:299 doi: 10.1186/s12870-018-1511-2
CrossRef Google Scholar
|
[108]
|
Cui F, Taier G, Wang X, Wang K. 2021. Genome-wide analysis of the HSP20 gene family and expression patterns of HSP20 genes in response to abiotic stresses in Cynodon transvaalensis. Frontiers in Genetics 12:732812 doi: 10.3389/fgene.2021.732812
CrossRef Google Scholar
|
[109]
|
Wang X, Huang W, Yang Z, Liu J, Huang B. 2016. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis. Scientific Reports 6:28021 doi: 10.1038/srep28021
CrossRef Google Scholar
|
[110]
|
Chen M, Chen J, Luo N, Qu R, Guo Z, et al. 2018. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants. Plant, Cell & Environment 41:1417−1426 doi: 10.1111/pce.13168
CrossRef Google Scholar
|
[111]
|
Luo J, Liu M, Zhang C, Zhang P, Chen J, et al. 2017. Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling. Frontiers in Plant Science 8:1655 doi: 10.3389/fpls.2017.01655
CrossRef Google Scholar
|
[112]
|
Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. 2020. Transcriptome-wide identification of MAPKKK genes in bermudagrass (Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ 8:e10159 doi: 10.7717/peerj.10159
CrossRef Google Scholar
|
[113]
|
Fang T, Dong H, Yu S, Moss JQ, Fontanier CH, et al. 2020. Sequence-based genetic mapping of Cynodon dactylon Pers. reveals new insights into genome evolution in Poaceae. Communications Biology 3:358 doi: 10.1038/s42003-020-1086-y
CrossRef Google Scholar
|
[114]
|
Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, et al. 2019. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics 51:857−64 doi: 10.1038/s41588-019-0401-3
CrossRef Google Scholar
|
[115]
|
Xanthopoulou A, Montero Pau J, Mellidou I, Kissoudis C, Blanca J, et al. 2019. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research 6:94 doi: 10.1038/s41438-019-0176-9
CrossRef Google Scholar
|
[116]
|
Zhao H, Sun S, Ding Y, Wang Y, Yue X, et al. 2021. Analysis of 427 genomes reveals Moso bamboo population structure and genetic basis of property traits. Nature Communication 12:5466 doi: 10.1038/s41467-021-25795-x
CrossRef Google Scholar
|
[117]
|
Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. 2019. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics 51:1044−51 doi: 10.1038/s41588-019-0410-2
CrossRef Google Scholar
|
[118]
|
Song JM, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45 doi: 10.1038/s41477-019-0577-7
CrossRef Google Scholar
|
[119]
|
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, et al. 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284−89 doi: 10.1038/s41586-020-2947-8
CrossRef Google Scholar
|
[120]
|
Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18 doi: 10.1038/s41588-023-01302-4
CrossRef Google Scholar
|
[121]
|
Huang S, Wang C, Liang J. 2018. Genetic resources and genetic transformation in bermudagrass – a review. Biotechnology & Biotechnological Equipment 32:1−9 doi: 10.1080/13102818.2017.1398051
CrossRef Google Scholar
|
[122]
|
Li L, Qu R. 2004. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Reports 22:403−07 doi: 10.1007/s00299-003-0706-6
CrossRef Google Scholar
|
[123]
|
Huang J, Sun Y, Orduna AR, Jetter R, Li X. 2019. The mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. The Plant Journal 98:842−52 doi: 10.1111/tpj.14278
CrossRef Google Scholar
|
[124]
|
Min HJ, Cui LH, Oh TR, Kim JH, Kim TW, et al. 2019. OsBZR1 turnover mediated by OsSK22-regulated U-box E3 ligase OsPUB24 in rice BR response. The Plant Journal 99:426−38 doi: 10.1111/tpj.14332
CrossRef Google Scholar
|
[125]
|
Liao D, Sun C, Liang H, Wang Y, Bian X, et al. 2022. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. The Plant Cell 34:4045−65 doi: 10.1093/plcell/koac212
CrossRef Google Scholar
|