-
Seeds of two sorghum genotypes (CSV33MF and SSG 59-3) were collected from the Forage Section, Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar (Haryana) and were sown in pots under screen house conditions in screen house of the Department of Botany and Plant Physiology on July 17, 2021. The seeds were surface sterilized in 1% sodium hypochlorite (NaOCl) solution for 5 min and were sown in plastic pots containing 10 kg of dune sand. Before sowing pots were saturated with desired salt levels i.e., control (0), 4, 6, and 8 dS·m−1. The nutrient solution was given at regular intervals according to the method of Arnon[25]. Ortho-silicic acid (1.5 and 2.5 mg·L−1) was applied exogenously with the help of a manual sprayer 30 d after sowing (DAS). Three plants per pot were maintained to study several parameters.
Growth/morphological attributes
-
Fresh weight (FW) of leaf, root and stem, fresh weight (FW) of leaf, root and stem height (HT), dry weight (DW) and leaf area (cm2·plant−1) at 40 Days After Sowing (30 DAS and 10 Days after OSA application).
Physiological attributes
-
Photosynthesis rate, transpiration rate, and stomatal conductance were calculated using a third leaf from the top by using a plant Infrared Gas Analyzer (IRGA, LCi-SD, ADC Bioscience, USA)[26].
Relative water content (RWC) was calculated according to Barrs & Weatherley[27] using the formula:
$ \mathrm{R}\mathrm{W}\mathrm{C}\;\left({\text{%}}\right)=\dfrac{\mathrm{F}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{h}\;\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}-\mathrm{D}\mathrm{r}\mathrm{y}\;\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}}{\mathrm{T}\mathrm{u}\mathrm{r}\mathrm{g}\mathrm{i}\mathrm{d}\;\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}-\mathrm{D}\mathrm{r}\mathrm{y}\;\mathrm{w}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}}\times 100 $ To assess the water potential of leaves, a pressure chamber (Model 3005, Soil Moisture Corporation, Santa Barbara, CA, USA) was used[28]. The third leaf from the top was separated from the plant with the help of a sharp edge knife and sealed in the pressure chamber one by one with the cut end protruding outside, and pressure was developed until the sap just appeared at the end.
$ 1,000\; \mathrm{ }\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{l} \cdot \mathrm{k}\mathrm{g^{-1^{ }}}=\mathrm{ }2.5\; \mathrm{ }\mathrm{M}\mathrm{P}\mathrm{a}\mathrm{ }=\mathrm{ }25\; \mathrm{ }\mathrm{b}\mathrm{a}\mathrm{r}\mathrm{s} $ Chlorophyll fluorescence in plants was measured on a sunny day using a chlorophyll fluorometer)[29]. For 2 min, a fully expanded leaf was acclimated to darkness using a clip, and the leaf-adapted darkness was then continuously irradiated for 1 s (1,500 mol·m−2·s−1) by an array of three light-emitted diodes in the sensor.
Relative stress injury was quantified by determining the ratio of ion leakage into the external aqueous medium to the total ion concentration of the stressed tissue, as assessed through the electrical conductivity of the external medium[30]. The membrane injury was calculated as:
${ \rm RSI}\; ({\text{%}}) = 1-\dfrac{Ec1}{Ec2}\times 100 $ Biochemical attributes
-
Dried samples were ground to 1 mm particles and crude protein (CP), lignin, and fiber were analyzed by near-infrared reflectance spectroscopy (NIRS) using the method given by Fekadu et al.[31]. All results are reported as % dry mass (% DM).
Total soluble sugars were determined using the method given by Yemm & Willis[32].
Statistical analysis
-
The data was analyzed statistically for ANOVA using complete randomized design (CRD) by using SPSS 13.0 (Statistical Package for the Social Sciences) (SPSS Inc., Chicago, IL, USA) using Tukey's HSD test at 0.05 significance level and was expressed as mean ± standard errors. Treatments were compared with CD values at a 5% level of significance. Pearson's correlation analysis was conducted to explore potential associations among the traits, aiming to identify any potential relationships between variables. Correlation analysis was done using different packages of R software version 4.0.5.
-
The growth attributes were significantly influenced by both salt stress and OSA treatments. The data is presented in Tables 1 & 2. According to Table 1, the effect of ortho-silicic acid (OSA) on the fresh weight (FW), plant height (HT), dry weight (DW), and leaf area of sorghum genotype CSV 33 MF was evaluated under different levels of salt stress.
Table 1. Effect of ortho-silicic acid (OSA) on fresh weight stem (FWS), fresh weight leaf (FWL), fresh weight root (FWR), plant height (PH), dry weight stem (DWS), dry weight leaf (DWL), dry weight root (DWR) and leaf area (LA) of Sorghum genotype CSV 33MF grown under different levels of salt stress.
Salt level OSA
(mg·L−1)FWS
(g·plant−1)FWL
(g·plant−1)FWR
(g·plant−1)PH
(cm)DWS
(g·plant−1)DWL
(g·plant−1)DWR
(g·plant−1)LA
(cm2)0 dS·m−1 0 29.73cd ± 0.64 11.40bc ± 0.55 10.06abcd ± 0.29 114.0ab ± 8.39 9.01bc ± 0.19 2.84abc ± 0.14 3.05abc ± 0.09 689.0abc ± 33.4 1.5 33.90ab ± 0.55 12.50ab ± 0.47 11.66ab ± 0.23 129.7a ± 4.18 9.97ab ± 0.16 3.12ab ± 0.12 3.38ab ± 0.08 756.6ab ± 28.7 2.5 34.83a ± 0.46 13.76a ± 0.61 12.13a ± 0.27 136.0a ± 5.29 10.85a ± 0.14 3.43a ± 0.15 3.67a ± 0.07 832.0a ± 35.2 4 dS·m−1 0 28.20de ± 0.83 11.16bc ± 0.38 9.86bcde ± 0.73 112.0ab ± 3.79 8.26cd ± 0.25 2.70bcd ± 0.18 2.98abc ± 0.22 663.6bc ± 43.4 1.5 30.83bcd ± 0.44 12.06ab ± 0.17 11.43abc ± 0.23 120.3a ± 7.36 9.03bc ± 0.15 2.92abc ± 0.05 3.20ac ± 0.05 717.3ab ± 11.2 2.5 32.26abc ± 0.23 12.56ab ± 0.32 11.76ab ± 0.29 124.3a ± 5.90 9.49abc ± 0.06 3.14ab ± 0.08 3.41ab ± 0.23 769.6ab ± 18.4 6 dS·m−1 0 21.03gh ± 0.43 8.60de ± 0.06 7.80ef ± 0.42 82.6cd ± 4.42 5.81ef ± 0.55 2.18d ± 0.01 2.36cde ± 0.13 479.6de ± 03.0 1.5 24.10fg ± 0.40 9.16d ± 0.55 9.33de ± 0.69 93.0bc ± 1.16 6.50e ± 0.53 2.36cd ± 0.28 2.48cde ± 0.36 499.3d ± 29.6 2.5 25.20ef ± 0.55 9.76cd ± 0.27 9.40cde ± 0.12 95.3bc ± 1.33 6.73de ± 0.38 2.46cd ± 0.07 2.75bcd ± 0.07 548.3cd ± 16.0 8 dS·m−1 0 14.40i ± 1.46 5.56f ± 0.37 5.90f ± 0.32 47.7e ± 2.33 3.85g ± 0.45 1.40e ± 0.05 1.80e ± 0.21 302.0f ± 12.2 1.5 17.00i ± 0.89 6.03f ±0.13 6.76f ± 0.41 58.7de ± 4.33 4.64fg ± 0.27 1.47e ± 0.04 2.01de ± 0.10 318.0f ± 05.0 2.5 17.83hi ± 0.53 6.70ef ±0.15 7.16f ± 0.46 63.0de ± 2.08 4.88fg ± 0.16 1.54e ± 0.01 2.11de ± 0.10 340.0f ± 05.1 MSE 1.43 0.43 0.505 12.5 0.298 0.045 0.085 49.8 C.D 2.03 1.11 1.20 13.9 0.92 0.36 0.49 82.8 S.E (m) 0.69 0.38 0.41 4.74 0.31 0.12 0.17 28.2 S.E (d) 0.98 0.54 0.58 6.71 0.45 0.17 0.24 39.9 Data having the same letters in the column do not differ significantly while groups with different letters suggest a significant difference (Tukey's HSD test p < 0.05) with error degree of freedom = 24; MSE (Mean Square Error) at 5%. * Values are presented as mean ± standard error (n = 3). Table 2. Effect of ortho-silicic acid (OSA) on fresh weight stem (FWS), fresh weight leaf (FWL), fresh weight root (FWR), plant height (PH), dry weight stem (DWS), dry weight leaf (DWL), dry weight root (DWR) and leaf area (LA) of Sorghum genotype SSG 59-3 grown under different levels of salt stress.
Salt level OSA
(mg·L−1)FWS
(g·plant−1)FWL
(g·plant−1)FWR
(g·plant−1)PH
(cm)DWS
(g·plant−1)DWL
(g·plant−1)DWR
(g·plant−1)LA
(cm2)0 dS·m−1 0 29.10a ± 0.47 11.53abc ± 1.47 10.03abc ± 0.69 118.7b ± 4.8 8.82b ± 0.14 2.88ab ± 0.37 3.04ab ± 0.21 697.0c ± 31.5 1.5 31.57a ± 0.69 13.77a ± 0.76 10.56ab ± 0.32 132.3ab ± 1.3 9.55ab ± 0.20 3.42a ± 0.18 3.23ab ± 0.14 829.0ab ± 15.6 2.5 32.56a ± 0.54 13.97a ± 0.43 11.23a ± 1.02 140.0a ± 2.5 10.47a ± 0.42 3.63a ± 0.12 3.38a ± 0.40 879.0a ± 19.7 4 dS·m−1 0 27.73ab ± 1.65 11.27abc ± 1.33 9.67abc ± 0.57 116.7bc ± 4.1 8.06bc ± 0.51 2.82abc ± 0.33 2.92ab ± 0.33 681.7c ± 23.7 1.5 29.67a ± 1.30 12.50ab ± 0.35 11.10a ± 0.35 128.0ab ± 2.9 8.58b ± 0.40 3.12a ± 0.08 3.14ab ± 0.10 755.0bc ± 19.9 2.5 31.80a ± 1.67 13.30a ± 0.50 10.26ab ± 0.30 132.3ab ± 0.9 9.01ab ± 0.41 3.32a ± 0.12 3.21ab ± 0.19 804.0ab ± 30.1 6 dS·m−1 0 19.27cd ± 0.38 8.03cdef ± 0.70 7.67cdef ± 0.24 87.0d ± 1.5 5.77d ± 0.12 1.94cdef ± 0.17 2.29bc ± 0.16 360.7de ± 16.2 1.5 21.60c ± 0.66 8.50cde ± 0.45 8.40bcde ± 0.32 98.0d ± 1.5 6.29d ± 0.16 2.06bcde ± 0.11 2.42abc ± 0.12 389.3d ± 03.2 2.5 22.90bc ± 1.78 8.93bcd ± 0.43 8.83abcd ± 0.09 100.7cd ± 5.1 6.56cd ± 0.37 2.18bcd ± 0.13 2.57abc ± 0.23 434.7d ± 14.8 8 dS·m−1 0 12.60e ± 0.50 4.30f ± 0.25 5.70f ± 0.40 53.3e ± 1.2 3.75e ± 0.22 1.12f ± 0.07 1.66c ± 0.08 247.7f ± 17.0 1.5 14.37de ± 0.68 4.63ef ± 0.73 5.87ef ± 0.18 62.7e ± 1.6 4.04e ± 0.21 1.23ef ± 0.09 1.72c ± 0.15 269.0ef ± 25.5 2.5 15.90de ± 0.47 5.07def ± 0.72 6.77def ± 0.46 66.0e ± 2.8 4.21e ± 0.04 1.28def ± 0.10 1.85c ± 0.06 284.7ef ± 08.1 MSE 3.22 1.76 0.772 22.9 0.272 0.100 0.123 19.82 C.D 3.04 2.25 1.49 9.28 0.88 0.54 0.60 59.8 S.E (m) 1.04 0.77 0.51 3.16 0.30 0.18 0.20 20.4 S.E (d) 1.46 1.08 0.72 4.47 0.43 0.26 0.29 28.8 Data having the same letters in the column do not differ significantly while groups with different letters suggest a significant difference (Tukey's HSD test p < 0.05) with error degree of freedom = 24; MSE (Mean Square Error) at 5%. * Values are presented as mean ± standard error (n = 3). Fresh weight
-
The fresh weight of stem, leaf, and root showed a drastic decline under salt stress. OSA was able to mitigate the negative effects of salt stress to some extent. At control (0), the highest percent increase in FW was observed at 2.5 mg·L−1 of OSA, with stem FW increasing by 17.1%, leaf FW by 20.7%, and root FW by 20.6% in CSV 33MF. Exogenous OSA application also resulted in increased FW of stem, leaf, and root at 4 dS·m−1 with the highest increase observed at 2.5 mg·L−1, with stem FW increasing by 14.4%, leaf FW by 12.5 %, and root FW by 19.3%. Under 8 dS·m−1 salt level, the highest decline in fresh weight was observed which was mitigated to some extent by OSA application which increased FW of stem, leaf, and root. The highest percent increase in FW was observed at 2.5 mg·L−1 of OSA, with stem FW increasing by 23.8%, leaf FW by 20.5%, and root FW by 21.4%. Similar trends were observed in Table 2 demonstrating the impact of salt stress and OSA on sorghum genotype SSG 59-3. The imposition of elevated salt stress levels resulted in a significant decrease in the fresh weight of leaves, with the maximum reduction of 62.6% observed at 8 dS·m−1 in comparison to the control. However, the application of ortho-silicic acid (OSA) at concentrations of 1.5 and 2.5 mg·L−1 led to an increase in the fresh weight of leaves, with more pronounced enhancements observed at 2.5 mg·L−1.
Dry weight
-
The dry weight of the leaf, stem and root showed a declining trend with the increasing salt level from control to 8 dS·m−1. Fold change was found maximum in leaf dry weight at 8 dS·m−1 of salt stress i.e. 0.59 and 0.55 in CSV33MF and SSG 59-3 respectively, with respect to the control. Dry weight enhancement was noticed after exogenous OSA application. Maximum increase was observed at 2.5 mg·L−1 OSA application. After the application of 2.5 mg·L−1 of OSA, the percent increase was maximum at the control of salt stress in both genotypes i.e. CSV33MF (20.6%) and SSG 59-3 (11.2%) with respect to the control. Likewise, the dry weight of leaves exhibited a declining trend with escalating salt stress levels in the SSG 59-3 genotype. The highest percentage decline of 45.39% was observed at 8 dS·m−1 of salt stress compared to the control. However, the foliar application of OSA resulted in an increment in the dry weight of leaves, with the maximum enhancement observed at 2.5 mg·L−1. Similar results were also obtained for dry weight of stem and root under different levels of salt stress and foliar application of ortho-silicic acid. The contribution towards dry weight was more from the stem as compared to the root.
Plant height
-
The plant height was reduced in both genotypes due to the effect of salt stress. At 0 dS·m−1 salt level, plant height was recorded highest (136.0 ± 5.29 cm) at 2.5 mg·L−1 of OSA demonstrating a fold change of 1.19 as compared to control conditions of treatment. The plant height also showed a percent increase of 12.6% and 15.7% at 1.5 mg·L−1 and 2.5 mg·L−1 of OSA, respectively as compared to the control at 6 dS·m−1. The plant height exhibited a significant percent increase of 32.2% at 8 dS·m−1 after the exogenous application of 2.5 mg·L−1 OSA as compared to the control of the treatment. Plant height also experienced a significant reduction with increasing levels of salt stress in the SSG 59-3 genotype. At 8 dS·m−1, there was a higher percentage decline of 55.4% compared to the control level. The foliar application of OSA at concentrations of 1.5 and 2.5 mg·L−1 resulted in significant enhancements in plant height, with the maximum increase of 23.8% observed at 8 dS·m−1 at 2.5 mg·L−1 OSA.
Leaf area
-
Leaf area per plant decreased with increasing salt levels ranging from control to 8 dS·m−1. The highest decline in leaf area was observed at 8 dS·m−1 of salt level, but on comparison of both genotypes, SSG 59-3 (64.4%) had a maximum decrease in leaf area per plant as compared to CSV 33MF (56.2%) with respect to control. Leaf area per plant was increased after the foliar spray of ortho-silicic acid at 1.5 and 2.5 mg·L−1, but the maximum rise in leaf area was observed at 2.5 mg·L−1 of OSA. The leaf area showed a significant percent increase of 20.7% at 2.5 mg·L−1 of OSA compared to the control at 0 dS·m−1. After exogenous application of 2.5 mg·L−1 OSA, the leaf area also exhibited a significant percent increase of 15.9% at 4 dS·m−1 and 14.3 % at 6 dS·m−1 in CSV33MF genotype. The most drastic reduction in leaf area was observed at 8 dS·m−1 which was 56.16% in CSV33MF and 64.56% in SSG 59-3. Exogenous application of 2.5 mg·L−1 OSA mitigated the effects of salt stress on leaf area and increased leaf area by fold change of 1.13 in CSV33MF and 1.15 in SSG 59-3.
Overall, both genotypes exhibited reductions in fresh weight, dry weight, plant height, and leaf area per plant as salt stress levels increased. Nevertheless, the application of OSA mitigated these adverse effects and led to improvements in these growth parameters, with greater enhancements observed at 2.5 mg·L−1 of OSA.
Physiological attributes
-
The leaf water potential values became increasingly negative as salt levels were incremented from the control to 8 dS·m−1 in both genotypes at 40 Days after sowing (DAS) (Tables 3 & 4). A comparison of the two genotypes revealed that SSG 59-3 exhibited the most negative value (−1.15 MPa) compared to CSV33MF (−1.13 MPa) at the 8 dS·m−1 salt level. The water potential of the leaves became less negative when different concentrations of ortho-silicic acid were applied to both genotypes. SSG 59-3 displayed a less mean negative value (−0.50 MPa) compared to CSV33MF (−0.57 MPa) after the application of 2.5 mg·L−1 OSA at control. The relative water content (RWC) progressively decreased with increasing salt stress levels at 40 DAS in both genotypes. The maximum decrease in RWC was observed at the 8 dS·m−1 salt level in both genotypes, with a decrease of 18.3% in CSV33MF and 18.5% in SSG 59-3 compared to their respective controls. The foliar application of 2.5 mg·L−1 of ortho-silicic acid increased the RWC at each level of salt stress in both genotypes. In CSV33MF, the RWC increased from 81.2% to 85.5% at 4 dS·m−1, from 71.6% to 76.1% at 6 dS·m−1, and from 66.2% to 72.0% at 8 dS·m−1. A similar enhancement in RWC was observed in SSG 59-3. Relative Stress Injury exhibited an increasing trend with the imposition of salt stress, ranging from the control to 8 dS·m−1. The maximum leakage was estimated at the 8 dS·m−1 salt level in both genotypes, with SSG 59-3 showing more damage (42.3%) compared to CSV33MF (36.8%) with respect to the control. The foliar application of 2.5 mg·L−1 of ortho-silicic acid prevented electrolyte leakage to some extent.
Table 3. Effect of ortho-silicic acid (OSA) on water potential (Ψw), Relative Water Content (RWC), Relative Stress Injury (RSI), Transpiration Rate (E), Stomatal Conductance (gs), Assimilation Rate (A), Chlorophyll Fluoroscence (CHLF) and Chlorophyll content (CHL) of Sorghum genotype CSV33MF grown under different levels of salt stress.
Salt level OSA (mg·L−1) Ψw (MPa) RWC (%) RSI (%) E (mmol H2O·m−1·s−1) gs (mmol H2O·m−1·s−1) A (μmol CO2·m−1·s−1) CHLF (Fv/Fm) CHL (SPAD) 0 dS·m−1 0 −0.673bc ± 0.023 84.45abc ± 5.49 11.13f ± 0.39 3.58ab ± 0.07 0.103abc ± 0.012 11.12bcd ± 0.80 0.729abc ± 0.011 36.6abc± 4.3 1.5 −0.583ab ± 0.015 85.89ab ± 2.14 10.54f ± 0.72 3.88ab ± 0.25 0.120ab ± 0.010 12.09abc ± 1.10 0.739ab ± 0.001 39.2ab ± 2.6 2.5 −0.496a ± 0.012 87.74a ± 2.10 10.45f ± 0.33 4.14a ± 0.06 0.147a ± 0.009 14.68a ± 0.31 0.772a ± 0.008 42.5a ± 1.4 4 dS·m−1 0 −0.783de ± 0.013 81.19abcd ± 1.98 21.30de ± 2.12 3.35bc ± 0.17 0.093abc ± 0.012 10.78bcd ± 0.53 0.703bcde ± 0.008 33.5bcde± 1.3 1.5 −0.700cd ± 0.012 84.20abc ± 3.03 20.63de ± 1.91 3.69ab ± 0.07 0.107abc ± 0.009 11.87abc ± 0.25 0.710bcd ± 0.006 35.0bcd ± 1.9 2.5 −0.667bc ± 0.018 85.50ab ± 1.38 18.30e ± 0.55 4.04ab ± 0.13 0.127ab ± 0.015 12.55ab ± 0.31 0.719abcd ± 0.004 38.7abc ± 2.3 6 dS·m−1 0 −0.996h ± 0.009 71.59de ± 4.01 28.97bc ± 0.55 1.80ef ± 0.10 0.050bc ± 0.010 7.84de ± 1.29 0.679cde ± 0.010 28.7def ± 1.3 1.5 −0.893fg ± 0.003 74.32cde ± 0.39 27.30bc ± 0.72 2.09de ± 0.12 0.063bc ± 0.009 8.94cde ± 1.03 0.723abcd ± 0.003 32.5cde ± 2.3 2.5 −0.833ef ± 0.018 76.07bcde ± 2.15 24.03cd ± 0.07 2.71cd ± 0.23 0.083abc ± 0.012 9.27bcde ± 0.45 0.736abc ± 0.003 34.3bcd ± 1.9 8 dS·m−1 0 −1.127i ± 0.023 66.17e ± 4.00 36.80a ± 0.61 1.09f ± 0.11 0.030c ± 0.010 6.21e ± 0.24 0.650e ± 0.005 21.8g ± 1.2 1.5 −1.010h ± 0.012 70.30e± 1.48 34.23a ± 0.61 1.57ef ± 0.16 0.047bc ± 0.009 7.31e ± 0.33 0.665de ± 0.009 25.6fg ± 1.0 2.5 −0.957gh ± 0.035 71.97de ± 4.42 31.87ab ± 1.12 2.16de ± 0.06 0.070abc ± 0.010 8.20de ± 0.10 0.687bcde ± 0.015 27.5efg ± 2.7 MSE 0.001 5.89 3.02 0.06 0.0008 1.372 0.0004 4.84 C.D 0.052 5.13 2.96 0.42 0.031 1.98 0.023 3.73 S.E (m) 0.018 1.76 1.00 0.14 0.011 0.68 0.008 1.27 S.E (d) 0.025 2.49 1.42 0.20 0.015 0.96 0.011 1.80 Data having the same letters in the column do not differ significantly while groups with different letters suggest a significant difference (Tukey's HSD test p < 0.05) with error degree of freedom = 24; MSE (Mean Square Error) at 5%. * Values are presented as mean ± standard error (n = 3). Table 4. Effect of ortho-silicic acid (OSA) on water potential (Ψw), Relative Water Content (RWC), Relative Stress Injury (RSI), Transpiration Rate (E), Stomatal Conductance (gs), Assimilation Rate (A), Chlorophyll Fluoroscence (CHLF) and Chlorophyll content (CHL) of Sorghum genotype SSG 59-3 grown under different levels of salt stress.
Salt level OSA (mg·L−1) Ψw (MPa) RWC (%) RSI (%) E (mmol H2O·m−1·s−1) gs (mmol H2O·m−1·s−1) A (μmol CO2·m−1·s−1) CHLF (Fv/Fm) CHL (SPAD) 0 dS·m−1 0 −.713bc ± 0.026 82.47ab ± 1.98 12.93f ± 0.43 3.30bc ± 0.13 0.097abc ± 0.009 10.85abc ± 0.61 0.713abc ± 0.006 33.5cd ± 0.7 1.5 −0.630ab ± 0.015 84.84a ± 2.44 11.77f ± 0.73 3.74ab ± 0.08 0.117a ± 0.009 11.54ab ± 0.30 0.738a ± 0.014 37.4ab ± 1.1 2.5 −0.570a ± 0.025 86.48b ± 1.69 11.33f ± 0.33 4.02a ± 0.15 0.136a ± 0.015 13.34a ± 0.76 0.751a ± 0.001 40.1a ± 0.6 4 dS·m−1 0 −0.837cd ± 0.017 79.29ab ± 1.88 22.83e ± 0.58 3.15c ± 0.06 0.093abcd ± 0.008 10.14bcd ± 1.17 0.710abc ± 0.001 31.1de ± 0.5 1.5 −0.743bc ± 0.015 82.32ab ± 1.72 22.06e ± 0.80 3.42bc ± 0.07 0.103ab ± 0.012 11.90ab ± 0.12 0.714abc ± 0.001 34.2bcd ± 0.6 2.5 −0.713bc ± 0.020 84.59a ± 2.10 19.57e ± 0.58 3.58abc ± 0.09 0.128a ± 0.015 12.71ab ± 0.16 0.724ab ± 0.006 37.3abc ± 0.4 6 dS·m−1 0 −1.023ef ± 0.052 69.96cd ± 0.71 32.47c ± 0.60 1.54ef ± 0.16 0.030e ± 0.010 6.84e ± 0.21 0.657cd ± 0.009 26.4fg ± 1.0 1.5 −0.943de ± 0.029 74.45bc ± 0.78 30.60c ± 0.78 2.04de ± 0.08 0.040cde ± 0.010 7.40de ± 0.07 0.700abc ± 0.001 29.5ef ± 0.9 2.5 −0.877d ± 0.009 75.76bc ± 1.78 26.90d ± 0.10 2.55d ± 0.08 0.057bcde ± 0.009 8.27cde ± 0.08 0.715ab ± 0.008 32.2de ± 0.5 8 dS·m−1 0 −1.150f ± 0.042 63.96d ± 0.68 42.33a ± 0.69 0.92g ± 0.14 0.017e ± 0.008 5.81e ± 0.23 0.637d ± 0.001 20.0h ± 0.8 1.5 −1.063ef ± 0.044 68.76cd ± 1.09 39.40ab ± 0.71 1.32fg ± 0.06 0.020e ± 0.009 6.12e ± 0.33 0.665cd ± 0.014 23.5gh ± 0.9 2.5 −1.030ef ± 0.010 69.45cd ± 1.82 36.63a ± 1.30 1.61ef ± 0.07 0.037de ± 0.010 7.11e ± 0.70 0.678bcd ± 0.001 25.7fg ± 0.8 MSE 0.002 8.28 1.45 0.31 0.0008 0.96 0.0004 1.65 C.D 0.084 4.88 2.04 0.16 0.031 1.30 0.021 2.18 S.E (m) 0.029 1.66 0.69 0.05 0.011 0.45 0.007 0.74 S.E (d) 0.040 2.35 0.98 0.07 0.015 0.63 0.010 1.05 Data having the same letters in the column do not differ significantly while groups with different letters suggest a significant difference (Tukey’s HSD test p < 0.05) with error degree of freedom = 24; MSE (Mean Square Error) at 5%. * Values are presented as mean ± standard error (n = 3). The chlorophyll content also declined with increasing salt stress levels from the control (0) to 8 dS·m−1 in both genotypes. The maximum fold change was observed at the 8 dS·m−1 salt level, contributing to a fold change of approximately 0.6 in both CSV33MF and SSG 59-3 compared to the control. A progressive increase in chlorophyll content was observed in both genotypes with the application of different concentrations of ortho-silicic acid. The fold change was maximum at 2.5 mg·L−1 of ortho-silicic acid in CSV33MF (1.285) and SSG 59-3 (1.207) at the 8 dS·m−1 salt level compared to the control. Chlorophyll fluorescence or photochemical quantum yield also declined with the imposition of salt stress in both genotypes at 40 DAS. The quantum yield values decreased from the control to 8 dS·m−1, ranging from 0.73 to 0.65 in CSV33MF and 0.71 to 0.64 in SSG 59-3, respectively. The application of 2.5 mg·L−1 of ortho-silicic acid resulted in a progressive increase in quantum yield at each salt level, as well as in the control. The maximum increase was noticed at the 6 dS·m−1 salt level in CSV33MF, where it increased from 0.68 to 0.74.
The rate of photosynthesis decreased with increasing salt stress levels from the control (0) to 8 dS·m−1 in both genotypes at 40 DAS. The percent decrease in photosynthetic rate was 44.2% in CSV33MF and 46.5% in SSG 59-3 at the 8 dS·m−1 salt level compared to the control. The foliar application of 2.5 mg·L−1 of ortho-silicic acid enhanced the rate of photosynthesis in both genotypes. The percent increase was noticed at each level of salt stress in CSV33MF (14.1%, 15.4%, and 32.2% at 4, 6, and 8 dS·m−1, respectively) compared to the control. Similar increments were also observed in genotype SSG 59-3. A progressive decline was noticed in the rate of transpiration with an increase in salt levels from the control to 8 dS·m−1. The fold change in transpiration rate was highest at the 8 dS·m−1 salt level, with 0.305 in CSV33MF and 0.282 in SSG 59-3 compared to the control. At the highest salt level (8 dS·m−1), the application of 2.5 mg·L−1 of ortho-silicic acid showed a significant increase in transpiration rate (88.7% in CSV33MF and 73.1% in SSG 59-3). Stomatal conductance also decreased with an increase in salt levels in both genotypes. The percent decline in stomatal conductance observed at 4, 6, and 8 dS·m−1 salt levels was 5.0%, 50.2%, and 70.1%, respectively, in CSV33MF, and 5.2%, 68.4%, and 84.4% in SSG 59-3 compared to their respective controls. The foliar application of ortho-silicic acid (1.5 and 2.5 mg·L−1) led to an improvement in stomatal conductance in both genotypes, while the maximum increase was observed at 2.5 mg·L−1 OSA at 8 dS·m−1 leading to a fold change of 2.33 in the CSV33MF genotype.
Biochemical parameters
-
A decrease in protein content was observed with the increase in salt levels from control to 8 dS·m−1 at 40 DAS as described in Fig. 1. In the sorghum genotypes CSV33MF and SSG 59-3, protein content decreased from 8.89 to 6.61 and 8.59 to 6.72% DM, respectively, with the onset of salt stress (0 to 8 dS·m−1). The foliar application of ortho-silicic acid (2.5 mg·L−1) increased protein content under both stressed and control conditions. The maximum increase in protein content (23.9% in CSV33MF and 15.2% in SSG 59-3) was observed with 2.5 mg·L−1 OSA at 8 dS·m−1 salt level compared to their respective controls.
Figure 1.
Effect of ortho-silicic acid (OSA) on protein (% DM), fiber (% DM), Total Soluble Sugar (TSS) (% DM) and lignin (% DM) of Sorghum genotypes CSV33MF and SSG 59-3 grown under different levels of salt stress at 40 DAS. Data having the same letters in the column do not differ significantly while groups with different letters suggest a significant difference (Tukey's HSD test p < 0.05) with error degree of freedom = 48.
The total soluble sugar (TSS) content of both sorghum genotypes was significantly influenced by both salt stress (4, 6, and 8 dS·m−1) and OSA (1.5 and 2.5 mg·L−1). The results revealed that plants grown under stress conditions exhibited higher TSS values compared to the control. The maximum TSS content was estimated at 8 dS·m−1 salt level in both genotypes (CSV33MF and SSG 59-3). Significant increases in TSS content were observed with the application of ortho-silicic acid at 1.5 and 2.5 mg·L−1 concentrations. The highest increase was observed in CSV33MF at 8 dS·m−1 salt level, where TSS content increased from 7.40 to 7.97 at 2.5 mg·L−1 OSA.
The fiber content significantly decreased with increasing levels of salt stress from control to 8 dS·m−1 in both genotypes at 40 DAS. The decrease was 14.1% in CSV33MF and 10.8% in SSG 59-3 at 8 dS·m−1 compared to the control. Application of all concentrations of ortho-silicic acid caused an increase in fiber content in both genotypes under stressed and control conditions, but the maximum increment was observed with 2.5 mg·L−1 OSA in CSV33MF compared to SSG 59-3 under control conditions. Lignin content increased with each increment in salt levels in both genotypes at 40 DAS. The percentage increase in lignin content was 5.6%, 14.9%, and 18.3% at 4, 6, and 8 dS·m−1 salt levels, respectively, in CSV33MF compared to their respective controls. Foliar application of OSA (1.5 and 2.5 mg·L−1) led to an increase in lignin content in both genotypes, with the maximum increase observed at 2.5 mg·L−1. The percentage increase was higher at 8 dS·m−1 salt level in CSV33MF (4.5%) and at 6 dS·m−1 in SSG 59-3 (6.8%) compared to their respective controls.
-
All data generated or analyzed during this study are included in this published article, and are available from the corresponding author upon reasonable request.
-
About this article
Cite this article
Pankaj, Devi S, Dhaka P, Kumari G, Satpal, et al. 2024. Enhancing salt stress tolerance of forage sorghum by foliar application of ortho-silicic acid. Grass Research 4: e016 doi: 10.48130/grares-0024-0014
Enhancing salt stress tolerance of forage sorghum by foliar application of ortho-silicic acid
- Received: 27 April 2024
- Accepted: 03 July 2024
- Published online: 16 July 2024
Abstract: Soil salinity poses a significant threat to global food security as salt-affected soils are expected to increase more under the influence of climate change. Sorghum is the world's 5th most important cereal crop and is moderately salt tolerant. Salt stress causes osmotic stress in sorghum and induces several physiological changes, such as membrane disruption, reactive oxygen species (ROS) generation, nutrient imbalance, decreased photosynthetic activity, and decreased stomatal aperture. This research focused on minimizing the detrimental effects of soil salinity on crop productivity by exploring the potential of ortho-silicic acid (OSA) as a mitigating agent for salt stress and analyzing its impact on growth, physiological and biochemical attributes. A pot experiment was performed under control and 4, 6, and 8 dS·m−1 NaCl with OSA concentrations of 1.5 and 2.5 mg·L−1. Results indicated that OSA application improved growth attributes, including fresh weight, plant height, dry weight, and leaf area, under various salt stress levels. Physiological attributes such as photosynthesis rate, transpiration rate, stomatal conductance, and relative water content were 23.7%, 32.4%, 51.3%, and 6.4% higher under 2.5 mg·L−1 OSA treatment, respectively compared to control. Nutritional attributes such as crude protein, fiber, total soluble sugars, and lignin were also improved under OSA treatment. The concentration of 2.5 mg·L−1 OSA treatment was found to be more effective under saline and non-saline conditions for increasing sorghum productivity. This research offers a promising strategy to increase crop productivity and resilience in the face of escalating soil salinity due to climate change.
-
Key words:
- Climate change /
- OSA /
- Photosynthesis /
- Silicon /
- Sorghum bicolor (L.)