[1]
|
Dwyer JR, Cummer SA. 2013. Radio emissions from terrestrial gamma-ray flashes. Journal of Geophysical Research: Space Physics 118:3769−90 doi: 10.1002/jgra.50188
CrossRef Google Scholar
|
[2]
|
Screen JA. 2014. Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nature Climate Change 4:577−82 doi: 10.1038/nclimate2268
CrossRef Google Scholar
|
[3]
|
Wang K, Li Y, Wang Y, Yang X. 2017. On the asymmetry of the urban daily air temperature cycle. Journal of Geophysical Research: Atmospheres 122:5625−35 doi: 10.1002/2017JD026589
CrossRef Google Scholar
|
[4]
|
Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, et al. 2008. Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. Synthesis and Assessment Product 3.3, U.S. Climate Change Science Program and the Subcommittee on Global Change Research, US. 165 pp.
|
[5]
|
Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, et al. 2010. De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. The Plant Journal 64:589−603 doi: 10.1111/j.1365-313X.2010.04350.x
CrossRef Google Scholar
|
[6]
|
Peraudeau S, Roques S, Quinones CO, Fabre D, Van Rie J, et al. 2015. Increase in night temperature in rice enhances respiration rate without significant impact on biomass accumulation. Field Crops Research 171:67−78 doi: 10.1016/j.fcr.2014.11.004
CrossRef Google Scholar
|
[7]
|
Xu Q, Huang B, Wang Z. 2003. Differential effects of lower day and night soil temperatures on shoot and root growth of creeping bentgrass. HortScience 38:449−54 doi: 10.21273/HORTSCI.38.3.449
CrossRef Google Scholar
|
[8]
|
Bahuguna RN, Solis CA, Shi W, Jagadish KSV. 2017. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum 159:59−73 doi: 10.1111/ppl.12485
CrossRef Google Scholar
|
[9]
|
García GA, Dreccer MF, Miralles DJ, Serrago RA. 2015. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Global Change Biology 21:4153−64 doi: 10.1111/gcb.13009
CrossRef Google Scholar
|
[10]
|
Hein NT, Wagner D, Bheemanahalli R, Šebela D, Bustamante C, et al. 2019. Integrating field-based heat tents and cyber-physical system technology to phenotype high night-time temperature impact on winter wheat. Plant Methods 15:41 doi: 10.1186/s13007-019-0424-x
CrossRef Google Scholar
|
[11]
|
Loka DA, Oosterhuis DM. 2010. Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environmental and Experimental Botany 68:258−63 doi: 10.1016/j.envexpbot.2010.01.006
CrossRef Google Scholar
|
[12]
|
Zhang C, Li G, Chen T, Feng B, Fu W, et al. 2018. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11:14 doi: 10.1186/s12284-018-0206-5
CrossRef Google Scholar
|
[13]
|
Lyman NB, Jagadish KSV, Nalley LL, Dixon BL, Siebenmorgen T. 2013. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS One 8:e72157 doi: 10.1371/journal.pone.0072157
CrossRef Google Scholar
|
[14]
|
Fu J, Huang B. 2003. Growth and physiological response of creeping bentgrass to elevated night temperature. HortScience 38:299−301 doi: 10.21273/HORTSCI.38.2.299
CrossRef Google Scholar
|
[15]
|
Djanaguiraman M, Prasad PVV, Boyle DL, Schapaugh WT. 2011. High-temperature stress and soybean leaves: leaf anatomy and photosynthesis. Crop Science 51:2125−31 doi: 10.2135/cropsci2010.10.0571
CrossRef Google Scholar
|
[16]
|
Impa SM, Sunoj VSJ, Krassovskaya I, Bheemanahalli R, Obata T, et al. 2019. Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature. Plant, Cell & Environment 42: 1233−46 doi: 10.1111/pce.13488
CrossRef Google Scholar
|
[17]
|
Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, et al. 2016. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Frontiers in Plant Science 7:1250 doi: 10.3389/fpls.2016.01250
CrossRef Google Scholar
|
[18]
|
Kanno K, Mae T, Makino A. 2009. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Science and Plant Nutrition 55:124−31 doi: 10.1111/j.1747-0765.2008.00343.x
CrossRef Google Scholar
|
[19]
|
Mohammed AR, Cothren JT, Chen MH, Tarpley L. 2015. 1-Methylcyclopropene (1-MCP)-induced alteration in leaf photosynthetic rate, chlorophyll fluorescence, respiration and membrane damage in rice (Oryza sativa L.) under high night temperature. Journal of Agronomy and Crop Science 201:105−16 doi: 10.1111/jac.12096
CrossRef Google Scholar
|
[20]
|
Xu ZZ, Zhou GS, Shimizu H. 2009. Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Science 49:1843−51 doi: 10.2135/cropsci2008.12.0725
CrossRef Google Scholar
|
[21]
|
Prasad PVV, Boote KJ, Allen LH Jr. 2006. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology 139:237−51 doi: 10.1016/j.agrformet.2006.07.003
CrossRef Google Scholar
|
[22]
|
Narayanan S, Prasad PVV, Fritz AK, Boyle DL, Gill BS. 2015. Impact of high night-time and high daytime temperature stress on winter wheat. Journal of Agronomy and Crop Science 201:206−18 doi: 10.1111/jac.12101
CrossRef Google Scholar
|
[23]
|
Prasad PVV, Djanaguiraman M. 2011. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology 38:993−1003 doi: 10.1071/FP11035
CrossRef Google Scholar
|
[24]
|
Ristic Z, Bukovnik U, Prasad PVV. 2007. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science 47:2067−73 doi: 10.2135/cropsci2006.10.0674
CrossRef Google Scholar
|
[25]
|
Xu ZZ, Zhou GS. 2005. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil 269:131−39 doi: 10.1007/s11104-004-0397-y
CrossRef Google Scholar
|
[26]
|
Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK. 2008. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science 48:2372−80 doi: 10.2135/cropsci2007.12.0717
CrossRef Google Scholar
|
[27]
|
Hideg É, Kos PB, Schreiber U. 2008. Imaging of NPQ and ROS formation in tobacco leaves: heat inactivation of the water - water cycle prevents down-regulation of PSII. Plant and Cell Physiology 49:1879−86 doi: 10.1093/pcp/pcn170
CrossRef Google Scholar
|
[28]
|
Müller P, Li XP, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology 125:1558−66 doi: 10.1104/pp.125.4.1558
CrossRef Google Scholar
|
[29]
|
Melis A. 1999. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in Plant Science 4:130−35 doi: 10.1016/S1360-1385(99)01387-4
CrossRef Google Scholar
|
[30]
|
Wise RR, Olson AJ, Schrader SM, Sharkey TD. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell & Environment 27:717−24 doi: 10.1111/j.1365-3040.2004.01171.x
CrossRef Google Scholar
|
[31]
|
Takeda T, Yokota A, Shigeoka S. 1995. Resistance of photosynthesis to hydrogen peroxide in algae. Plant and Cell Physiology 36:1089−95 doi: 10.1093/oxfordjournals.pcp.a078852
CrossRef Google Scholar
|
[32]
|
Bukhov NG, Wiese C, Neimanis S, Heber U. 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynthesis Research 59:81−93 doi: 10.1023/A:1006149317411
CrossRef Google Scholar
|
[33]
|
Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD. 2004. Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell & Environment 27:725−35 doi: 10.1111/j.1365-3040.2004.01172.x
CrossRef Google Scholar
|
[34]
|
Singh B, Chastain DR, Jumaa S, Wijewardana C, Redoña ED, et al. 2019. Projected day/night temperatures specifically limits rubisco activity and electron transport in diverse rice cultivars. Environmental and Experimental Botany 159:191−99 doi: 10.1016/j.envexpbot.2018.12.018
CrossRef Google Scholar
|
[35]
|
Glaubitz U, Li X, Köhl KI, van Dongen JT, Hincha DK, et al. 2013. Differential physiological responses of different rice (Oryza sativa) cultivars to elevated night temperature during vegetative growth. Functional Plant Biology 41:437−48 doi: 10.1071/FP13132
CrossRef Google Scholar
|
[36]
|
Glaubitz U, Li X, Schaedel S, Erban A, Sulpice R, et al. 2017. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. Plant, Cell & Environment 40:121−37 doi: 10.1111/pce.12850
CrossRef Google Scholar
|
[37]
|
Amthor JS. 2000. The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Annals of Botany 86:1−20 doi: 10.1006/anbo.2000.1175
CrossRef Google Scholar
|
[38]
|
Long SP. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell & Environment 14:729−39 doi: 10.1111/j.1365-3040.1991.tb01439.x
CrossRef Google Scholar
|
[39]
|
Peters DB, Pendleton JW, Hageman RH, Brown CM. 1971. Effect of night air temperature on grain yield of corn, wheat, and soybeans. Agronomy Journal 63:809 doi: 10.2134/agronj1971.00021962006300050046x
CrossRef Google Scholar
|
[40]
|
Arshad MS, Farooq M, Asch F, Krishna JSV, Prasad PVV, et al. 2017. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry 115:57−72 doi: 10.1016/j.plaphy.2017.03.011
CrossRef Google Scholar
|
[41]
|
Cheng W, Sakai H, Yagi K, Hasegawa T. 2010. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology 150:1174−81 doi: 10.1016/j.agrformet.2010.05.001
CrossRef Google Scholar
|
[42]
|
Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221:32−49 doi: 10.1111/nph.15283
CrossRef Google Scholar
|
[43]
|
Moura DS, Brito GG, Campos ÂD, Moraes ÍL, Porto FGS, et al. 2017. Non-structural carbohydrates accumulation in contrasting rice genotypes subjected to high night temperatures. Journal of Agricultural Science 9:302−15 doi: 10.5539/jas.v9n12p302
CrossRef Google Scholar
|
[44]
|
Impa SM, Vennapusa AR, Bheemanahalli R, Sabela D, Boyle D, et al. 2020. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant, Cell & Environment 43:431−47 doi: 10.1111/pce.13671
CrossRef Google Scholar
|
[45]
|
Glaubitz U, Erban A, Kopka J, Hincha DK, Zuther E. 2015. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. Journal of Experimental Botany 66:6385−97 doi: 10.1093/jxb/erv352
CrossRef Google Scholar
|
[46]
|
ElSayed AI, Rafudeen MS, Golldack D. 2014. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biology 16:1−8 doi: 10.1111/plb.12053
CrossRef Google Scholar
|
[47]
|
Loewus FA, Murthy PPN. 2000. myo-Inositol metabolism in plants. Plant Science 150:1−19 doi: 10.1016/S0168-9452(99)00150-8
CrossRef Google Scholar
|
[48]
|
Yan S, Liu Q, Li W, Yan J, Fernie AR. 2022. Raffinose family oligosaccharides: crucial regulators of plant development and stress responses. Critical Reviews in Plant Sciences 41:286−303 doi: 10.1080/07352689.2022.2111756
CrossRef Google Scholar
|
[49]
|
Hildebrandt TM, Nesi AN, Araujo WL, Braun HP. 2015. Amino acid catabolism in plants. Molecular Plant 8:1563−79 doi: 10.1016/j.molp.2015.09.005
CrossRef Google Scholar
|
[50]
|
Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. 2018. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific Reports 8:5710 doi: 10.1038/s41598-018-24012-y
CrossRef Google Scholar
|
[51]
|
Wadsworth GJ. 1997. The plant aspartate aminotransferase gene family. Physiologia Plantarum 100:998−1006 doi: 10.1111/j.1399-3054.1997.tb00028.x
CrossRef Google Scholar
|
[52]
|
Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, et al. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237−49 doi: 10.1007/s00425-010-1130-0
CrossRef Google Scholar
|
[53]
|
Gill SS, Tuteja N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior 5:26−33 doi: 10.4161/psb.5.1.10291
CrossRef Google Scholar
|
[54]
|
Groppa MD, Benavides MP. 2008. Polyamines and abiotic stress: recent advances. Amino Acids 34:35−45 doi: 10.1007/s00726-007-0501-8
CrossRef Google Scholar
|
[55]
|
Kavi Kishor PB, Sreenivasulu N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?. Plant, Cell & Environment 37:300−11 doi: 10.1111/pce.12157
CrossRef Google Scholar
|
[56]
|
Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, et al. 2010. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. Journal of Plant Physiology 167:1360−70 doi: 10.1016/j.jplph.2010.05.013
CrossRef Google Scholar
|
[57]
|
Lv WT, Lin B, Zhang M, Hua XJ. 2011. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiology 156:1921−33 doi: 10.1104/pp.111.175810
CrossRef Google Scholar
|
[58]
|
Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, et al. 2015. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications 6:7879 doi: 10.1038/ncomms8879
CrossRef Google Scholar
|
[59]
|
Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63:1593−608 doi: 10.1093/jxb/err460
CrossRef Google Scholar
|
[60]
|
Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4:273 doi: 10.3389/fpls.2013.00273
CrossRef Google Scholar
|
[61]
|
Wu C, Cui K, Wang W, Li Q, Fahad S, et al. 2016. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports 6:34978 doi: 10.1038/srep34978
CrossRef Google Scholar
|
[62]
|
Ohtaka K, Yoshida A, Kakei Y, Fukui K, Kojima M, et al. 2020. Difference between day and night temperatures affects stem elongation in tomato (Solanum lycopersicum) seedlings via regulation of gibberellin and auxin synthesis. Frontiers in Plant Science 11:577235 doi: 10.3389/fpls.2020.577235
CrossRef Google Scholar
|
[63]
|
Sharma L, Dalal M, Verma RK, Kumar SVV, Yadav SK, et al. 2018. Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environmental and Experimental Botany 150:9−24 doi: 10.1016/j.envexpbot.2018.02.013
CrossRef Google Scholar
|
[64]
|
Sakata T, Oshin T, Miura S, Tomabechi M, Tsunaga Y, et al. 2010. Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences of the United States of America 107:8569−74 doi: 10.1073/pnas.1000869107
CrossRef Google Scholar
|
[65]
|
Banowetz GM, Ammar K, Chen DD. 1999. Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Annals of Botany 83:303−07 doi: 10.1006/anbo.1998.0823
CrossRef Google Scholar
|
[66]
|
Wu C, Cui K, Wang W, Li Q, Fahad S, et al. 2017. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Frontiers in Plant Science 8:371 doi: 10.3389/fpls.2017.00371
CrossRef Google Scholar
|
[67]
|
Rezaul IM, Feng B, Chen T, Fu W, Zhang C, et al. 2019. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum 165:644−63 doi: 10.1111/ppl.12759
CrossRef Google Scholar
|
[68]
|
Hussien A, Tavakol E, Horner DS, Muñoz-Amatriaín M, Muehlbauer GJ, et al. 2014. Genetics of tillering in rice and barley. The Plant Genome 7:plantgenome2013.10.0032 doi: 10.3835/plantgenome2013.10.0032
CrossRef Google Scholar
|
[69]
|
Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, et al. 2018. Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany 69:3883−98 doi: 10.1093/jxb/ery200
CrossRef Google Scholar
|
[70]
|
Mohammed R, Cothren JT, Tarpley L. 2013. High night temperature and abscisic acid affect rice productivity through altered photosynthesis, respiration and spikelet fertility. Crop Science 53:2603−12 doi: 10.2135/cropsci2013.01.0060
CrossRef Google Scholar
|
[71]
|
Janda T, Lejmel MA, Molnár AB, Majláth I, Pál M, et al. 2020. Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion. PLoS One 15:e0227608 doi: 10.1371/journal.pone.0227608
CrossRef Google Scholar
|
[72]
|
Cox DTC, Maclean IMD, Gardner AS, Gaston KJ. 2020. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Global Change Biology 26:7099−111 doi: 10.1111/gcb.15336
CrossRef Google Scholar
|