[1]
|
Gururani MA, Venkatesh J, Ganesan M, Strasser RJ, Han Y, et al. 2015. In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One 10(5):e0127200 doi: 10.1371/journal.pone.0127200
CrossRef Google Scholar
|
[2]
|
Lulli F, Volterrani M, Grossi N, Armeni R, Stefanini S, et al. 2012. Physiological and morphological factors influencing wear resistance and recovery in C3 and C4 turfgrass species. Functional Plant Biology 39(3):214−21 doi: 10.1071/FP11234
CrossRef Google Scholar
|
[3]
|
Youngner VB. 1961. Accelerated wear tests on turfgrasses. Agronomy Journal 53:217−18 doi: 10.2134/agronj1961.00021962005300040003x
CrossRef Google Scholar
|
[4]
|
Waltz C. 2015. 2015 Sod Producers' Report Annual survey examines inventory and price. Report, KIPDF. pp. 44−48. https://kipdf.com/2015-sod-producers-report-annual-survey-examines-inventory-and-price_5adfe2907f8b9abc6d8b4658.html
|
[5]
|
Dhandapani M, Hong SB, Aswath CR, Kim DH. 2008. Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes. In Vitro Cellular & Developmental Biology - Plant 44(1):8−13 doi: 10.1007/s11627-006-9021-6
CrossRef Google Scholar
|
[6]
|
Liu L, Qiu L, Zhu Y, Luo L, Han X, et al. 2023. Comparisons between plant and animal stem cells regarding regeneration potential and application. International Journal of Molecular Sciences 24(5):4392 doi: 10.3390/ijms24054392
CrossRef Google Scholar
|
[7]
|
Pornaro C, Menegon A, Macolino S. 2018. Stolon development in four turf-type perennial ryegrass cultivars. Agronomy Journal 110:2159−64 doi: 10.2134/agronj2018.02.0138
CrossRef Google Scholar
|
[8]
|
Pornaro C, Macolino S, Richardson MD. 2019. Rhizome and stolon development of bermudagrass cultivars in a transition-zone environment. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 69(8):657−66 doi: 10.1080/09064710.2019.1639805
CrossRef Google Scholar
|
[9]
|
Giolo M, Pornaro C, Onofri A, Macolino S. 2020. Seeding time affects bermudagrass establishment in the transition zone environment. Agronomy 10:1151 doi: 10.3390/agronomy10081151
CrossRef Google Scholar
|
[10]
|
Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ. 2007. Differences in freeze tolerance of zoysiagrasses: I. role of proteins. Semantic Scholar 47:2162−69 doi: 10.2135/cropsci2006.11.0739
CrossRef Google Scholar
|
[11]
|
Karcher DE, Richardson MD, Landreth JW, McCalla JH, Jr. 2005. Recovery of zoysiagrass varieties from divot injury. Applied Turfgrass Science 2(1):1−8 doi: 10.1094/ATS-2005-0728-01-RS
CrossRef Google Scholar
|
[12]
|
Trappe JM, Karcher DE, Richardson MD, Patton AJ. 2011. Bermudagrass and zoysiagrass cultivar selection: part 2, divot recovery. Applied Turfgrass Science 8:1−10 doi: 10.1094/ATS-2011-0630-02-RS
CrossRef Google Scholar
|
[13]
|
Li L, He X, Zhao F, Zhu C, Zeng H. 2018. WUS and PIN1-related genes undergo dynamic expressional change during organ regeneration in response to wounding in Zoysia japonica. Molecular Biology Reports 45(6):1733−44 doi: 10.1007/s11033-018-4317-2
CrossRef Google Scholar
|
[14]
|
Li X, Lin Y, Zhao S, Zhao X, Geng Z, et al. 2018. Transcriptome changes and its effect on physiological and metabolic processes in tea plant during mechanical damage. Forest Pathology 48(4):e12432 doi: 10.1111/efp.12432
CrossRef Google Scholar
|
[15]
|
Shanmukhan AP, Mathew MM, Radhakrishnan D, Aiyaz M, Prasad K. 2020. Regrowing the damaged or lost body parts. Current Opinion in Plant Biology 53:117−27 doi: 10.1016/j.pbi.2019.12.007
CrossRef Google Scholar
|
[16]
|
Krishnan S, Ma Y, Emily M. 2016. Leaf Trimming and high temperature regulation of phytohormones and polyamines in creeping bentgrass leaves. Journal of the American Society for Horticultural Science 141(1):66−75 doi: 10.21273/JASHS.141.1.66
CrossRef Google Scholar
|
[17]
|
Ma X, Xu Q, Meyer WA, Huang B. 2016. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism. Annals of Botany 118(3):481−94 doi: 10.1093/aob/mcw120
CrossRef Google Scholar
|
[18]
|
Jiang P, Han P, He M, Shui G, Guo C, et al. 2024. Appropriate mowing can promote the growth of Anabasis aphylla through the auxin metabolism pathway. BMC Plant Biology 24(1):482 doi: 10.1186/s12870-024-05204-3
CrossRef Google Scholar
|
[19]
|
Lukaszuk E, Rys M, Możdżeń K, Stawoska I, Skoczowski A, et al. 2017. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiologiae Plantarum 39(1):17 doi: 10.1007/s11738-016-2309-1
CrossRef Google Scholar
|
[20]
|
Zhang J, Meng Q, Wang Q, Zhang H, Tian H, et al. 2024. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis. International Journal of Biological Macromolecules 267:131323 doi: 10.1016/j.ijbiomac.2024.131323
CrossRef Google Scholar
|
[21]
|
De La Rosa-Carrillo MDL, Dominguez-Rosales MS, Perez-Reyes ME, Balch EPM. 2012. In vitro culture and propagation of threatened cacti of the Turbinicarpus genus. Interciencia 37(2):114−20
Google Scholar
|
[22]
|
Asano Y, Katsumoto H, Inokuma C, Kaneko S, Ito Y, et al. 1996. Cytokinin and thiamine requirements and stimulative effects of riboflavin and α-ketoglutaric acid on embryogenic callus induction from the seeds of Zoysia japonica Steud. Journal of Plant Physiology 149(3-4):413−17 doi: 10.1016/S0176-1617(96)80142-8
CrossRef Google Scholar
|
[23]
|
Cao L, Wang G, Ye X, Li F, Wang S, et al. 2024. Physiological, metabolic, and transcriptomic analyses reveal mechanisms of proliferation and somatic embryogenesis of litchi (Litchi chinensis Sonn.) embryogenic callus promoted by D-Arginine treatment. International Journal of Molecular Sciences 25(7):3965 doi: 10.3390/ijms25073965
CrossRef Google Scholar
|
[24]
|
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550 doi: 10.1186/s13059-014-0550-8
CrossRef Google Scholar
|
[25]
|
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139−40 doi: 10.1093/bioinformatics/btp616
CrossRef Google Scholar
|
[26]
|
Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols 4(8):1184−91 doi: 10.1038/nprot.2009.97
CrossRef Google Scholar
|
[27]
|
Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28(1):27−30 doi: 10.1093/nar/28.1.27
CrossRef Google Scholar
|
[28]
|
Yu G, Wang LG, Han Y, He QY. 2012. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284−87 doi: 10.1089/omi.2011.0118
CrossRef Google Scholar
|
[29]
|
Luo W, Brouwer C. 2013. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29(14):1830−31 doi: 10.1093/bioinformatics/btt285
CrossRef Google Scholar
|
[30]
|
Gu Z, Hübschmann D. 2022. Make interactive complex heatmaps in R. Bioinformatics 38(5):1460−62 doi: 10.1093/bioinformatics/btab806
CrossRef Google Scholar
|
[31]
|
Shuai B, Reynaga-Peña CG, Springer PS. 2002. The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiology 129(2):747−61 doi: 10.1104/pp.010926
CrossRef Google Scholar
|
[32]
|
Lin WC, Shuai B, Springer PS. 2003. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. The Plant Cell 15(10):2241−52 doi: 10.1105/tpc.014969
CrossRef Google Scholar
|
[33]
|
Hussain SB, Shi CY, Guo LX, Kamran HM, Sadka A, et al. 2017. Recent advances in the regulation of citric acid metabolism in citrus fruit. Critical Reviews in Plant Sciences 36(4):241−56 doi: 10.1080/07352689.2017.1402850
CrossRef Google Scholar
|
[34]
|
Mockaitis K, Estelle M. 2008. Auxin receptors and plant development: a new signaling paradigm. Annual Review of Cell and Developmental Biology 24:55−80 doi: 10.1146/annurev.cellbio.23.090506.123214
CrossRef Google Scholar
|
[35]
|
Dello Loio R, Linhares FS, Sabatini S. 2008. Emerging role of cytokinin as a regulator of cellular differentiation. Current Opinion in Plant Biology 11(1):23−27 doi: 10.1016/j.pbi.2007.10.006
CrossRef Google Scholar
|
[36]
|
Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, et al. 2020. Local auxin biosynthesis is required for root regeneration after wounding. Nature Plants 6(8):1020−30 doi: 10.1038/s41477-020-0737-9
CrossRef Google Scholar
|
[37]
|
Cui G, Zhao M, Tan H, Wang Z, Meng M, et al. 2021. RNA sequencing reveals dynamic carbohydrate metabolism and phytohormone signaling accompanying post-mowing regeneration of forage winter wheat (Triticum aestivum L.). Frontiers in Plant Science 12:664933 doi: 10.3389/fpls.2021.664933
CrossRef Google Scholar
|
[38]
|
Tian X, Zhang C, Xu J. 2018. Control of cell fate reprogramming towards de novo shoot organogenesis. Plant and Cell Physiology 59(4):713−19 doi: 10.1093/pcp/pcx207
CrossRef Google Scholar
|
[39]
|
Guilfoyle TJ. 1998. Aux/IAA proteins and auxin signal transduction. Trends in Plant Science 3(6):205−07 doi: 10.1016/S1360-1385(98)01244-8
CrossRef Google Scholar
|
[40]
|
Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49(3-4):373−85 doi: 10.1023/A:1015207114117
CrossRef Google Scholar
|
[41]
|
Ren H, Gray WM. 2015. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8(8):1153−64 doi: 10.1016/j.molp.2015.05.003
CrossRef Google Scholar
|
[42]
|
Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, et al. 2012. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal 71(4):684−97 doi: 10.1111/j.1365-313X.2012.05024.x
CrossRef Google Scholar
|
[43]
|
Kong Y, Zhu Y, Gao C, She W, Lin W, et al. 2013. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant and Cell Physiology 54(4):609−21 doi: 10.1093/pcp/pct028
CrossRef Google Scholar
|
[44]
|
Kant S, Bi YM, Zhu T, Rothstein SJ. 2009. SAUR39, a small auxin-up rna gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology 151(2):691−701 doi: 10.1104/pp.109.143875
CrossRef Google Scholar
|
[45]
|
Jing H, Korasick DA, Emenecker RJ, Morffy N, Wilkinson EG, et al. 2022. Regulation of AUXIN RESPONSE FACTOR condensation and nucleo-cytoplasmic partitioning. Nature Communications 13(1):4015 doi: 10.1038/s41467-022-31628-2
CrossRef Google Scholar
|
[46]
|
Deng N, Liu C, Song Q, Peng P, Ma F, et al. 2020. Genomic level identification of AUXIN RESPONSE FACTOR gene family in Gnetum luofuense C. Y. Cheng. Bangladesh Journal of Botany 49(3):867−76
Google Scholar
|