[1]
|
Choulet F, Alberti A, Theil S, Glover N, Barbe V, et al. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721 doi: 10.1126/science.1249721
CrossRef Google Scholar
|
[2]
|
Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862−66 doi: 10.1126/science.1143986
CrossRef Google Scholar
|
[3]
|
Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, et al. 2010. A genetic framework for grain size and shape variation in wheat. The Plant Cell 22:1046−56 doi: 10.1105/tpc.110.074153
CrossRef Google Scholar
|
[4]
|
Evers AD, Cox RI, Shaheedullah MZ, Withey RP. 1990. Predicting milling extraction rate by image analysis of wheat grains. Aspects of Applied Biology 25:417−26
Google Scholar
|
[5]
|
Xie Q, Mayes S, Sparkes DL. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany 66:6715−30 doi: 10.1093/jxb/erv378
CrossRef Google Scholar
|
[6]
|
Shewry PR, Mitchell RAC, Tosi P, Wan Y, Underwood C, et al. 2012. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science 56:21−30 doi: 10.1016/j.jcs.2011.11.007
CrossRef Google Scholar
|
[7]
|
Xiang D, Quilichini TD, Liu Z, Gao P, Pan Y, et al. 2019. The transcriptional landscape of polyploid wheats and their diploid ancestors during embryogenesis and grain development. The Plant Cell 31:2888−911 doi: 10.1105/tpc.19.00397
CrossRef Google Scholar
|
[8]
|
Guo Y, Chen Y, Wang Y, Wu X, Zhang X, et al. 2023. The translational landscape of bread wheat during grain development. The Plant Cell 35:1848−67 doi: 10.1093/plcell/koad075
CrossRef Google Scholar
|
[9]
|
Zhao L, Yang Y, Chen J, Lin X, Zhang H, et al. 2023. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biology 24:7 doi: 10.1186/s13059-022-02844-2
CrossRef Google Scholar
|
[10]
|
Hao C, Jiao C, Hou J, Li T, Liu H, et al. 2020. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant 13:1733−51 doi: 10.1016/j.molp.2020.09.001
CrossRef Google Scholar
|
[11]
|
Wang X, Dong L, Hu J, Pang Y, Hu L, et al. 2019. Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping. Theoretical and Applied Genetics 132:3115−28 doi: 10.1007/s00122-019-03410-4
CrossRef Google Scholar
|
[12]
|
Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg LH. 2019. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica 215:103 doi: 10.1007/s10681-019-2426-1
CrossRef Google Scholar
|
[13]
|
Su Q, Zhang X, Zhang W, Zhang N, Song L, et al. 2018. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science 9:1484 doi: 10.3389/fpls.2018.01484
CrossRef Google Scholar
|
[14]
|
Cabral AL, Jordan MC, Larson G, Somers DJ, Humphreys DG, et al. 2018. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’. PLoS ONE 13:e0190681 doi: 10.1371/journal.pone.0190681
CrossRef Google Scholar
|
[15]
|
Cheng R, Kong Z, Zhang L, Xie Q, Jia H, et al. 2017. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theoretical and Applied Genetics 130:1405−14 doi: 10.1007/s00122-017-2896-2
CrossRef Google Scholar
|
[16]
|
Gu L, Wei B, Fan R, Jia X, Wang X, et al. 2015. Development, identification and utilization of introgression lines using Chinese endemic and synthetic wheat as donors. Journal of Integrative Plant Biology 57:688−97 doi: 10.1111/jipb.12324
CrossRef Google Scholar
|
[17]
|
Gao F, Wen W, Liu J, Rasheed A, Yin G, et al. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross zhou 8425B/Chinese spring. Frontiers in Plant Science 6:1099 doi: 10.3389/fpls.2015.01099
CrossRef Google Scholar
|
[18]
|
Cui F, Zhao C, Ding A, Li J, Wang L, et al. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics 127:659−75 doi: 10.1007/s00122-013-2249-8
CrossRef Google Scholar
|
[19]
|
Huang XQ, Cöster H, Ganal MW, Röder MS. 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 106:1379−89 doi: 10.1007/s00122-002-1179-7
CrossRef Google Scholar
|
[20]
|
Yan Y, Wang ML, Guo YT, Ding CH, Niu KX, et al. 2023. HSP90.2 promotes CO2 assimilation rate, grain weight, and yield in wheat. Plant Biotechnology Journal 21:1229−39 doi: 10.1111/pbi.14032
CrossRef Google Scholar
|
[21]
|
Chen Y, Yan Y, Wu TT, Zhang GL, Yin H, et al. 2020. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nature Communications 11:6266 doi: 10.1038/s41467-020-20133-z
CrossRef Google Scholar
|
[22]
|
Gao Y, Li Y, Xia W, Dai M, Dai Y, et al. 2023. The regulation of grain weight in wheat. Seed Biology 2:17 doi: 10.48130/seedbio-2023-0017
CrossRef Google Scholar
|
[23]
|
Xiong M, Feng GN, Gao Q, Zhang CQ, Li QF, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2 doi: 10.48130/seedbio-2022-0002
CrossRef Google Scholar
|
[24]
|
Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology 70:435−63 doi: 10.1146/annurev-arplant-050718-095851
CrossRef Google Scholar
|
[25]
|
Li W, Yang B. 2017. Translational genomics of grain size regulation in wheat. Theoretical and Applied Genetics 130:1765−71 doi: 10.1007/s00122-017-2953-x
CrossRef Google Scholar
|
[26]
|
Li N, Li Y. 2016. Signaling pathways of seed size control in plants. Current Opinion in Plant Biology 33:23−32 doi: 10.1016/j.pbi.2016.05.008
CrossRef Google Scholar
|
[27]
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, et al. 2020. Engineering improved photosynthesis in the era of synthetic biology. Plant Communications 1:100032 doi: 10.1016/j.xplc.2020.100032
CrossRef Google Scholar
|
[28]
|
Niu KX, Chang CY, Zhang MQ, Guo YT, Yan Y, et al. 2023. Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight. Nature Plants 9:965−77 doi: 10.1038/s41477-023-01432-x
CrossRef Google Scholar
|
[29]
|
Al-Sheikh Ahmed S, Zhang J, Ma W, Dell B. 2018. Contributions of TaSUTs to grain weight in wheat under drought. Plant Molecular Biology 98:333−347 doi: 10.1007/s11103-018-0782-1
CrossRef Google Scholar
|
[30]
|
Gaur A, Jindal Y, Singh V, Tiwari R, Kumar D, et al. 2022. GWAS to identify novel QTNs for WSCs accumulation in wheat peduncle under different water regimes. Frontiers in Plant Science 13:825687 doi: 10.3389/fpls.2022.825687
CrossRef Google Scholar
|
[31]
|
Miao L, Mao X, Wang J, Liu Z, Zhang B, et al. 2017. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Frontiers in Plant Science 8:368 doi: 10.3389/fpls.2017.00368
CrossRef Google Scholar
|
[32]
|
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39:623−30 doi: 10.1038/ng2014
CrossRef Google Scholar
|
[33]
|
Hong Y, Chen L, Du LP, Su Z, Wang J, et al. 2014. Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional & Integrative Genomics 14:341−49 doi: 10.1007/s10142-014-0380-5
CrossRef Google Scholar
|
[34]
|
Zhang Y, Li D, Zhang D, Zhao X, Cao X, et al. 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal 94:857−66 doi: 10.1111/tpj.13903
CrossRef Google Scholar
|
[35]
|
Liu H, Li HF, Hao CY, Wang K, Wang YE, et al. 2020. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal 18:1330−42 doi: 10.1111/pbi.13298
CrossRef Google Scholar
|
[36]
|
Zhang Y, Yang C, Li Y, Zheng N, Chen H, et al. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. The Plant Cell 19:1912−29 doi: 10.1105/tpc.106.048488
CrossRef Google Scholar
|
[37]
|
Wang J, Wang R, Mao X, Zhang J, Liu Y, et al. 2020. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany 71:5377−88 doi: 10.1093/jxb/eraa271
CrossRef Google Scholar
|
[38]
|
Zhang G, Yang J, Zhao X, Li Q, Wu Y, et al. 2021. Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. Plant Science 309:110913 doi: 10.1016/j.plantsci.2021.110913
CrossRef Google Scholar
|
[39]
|
Song L, Liu J, Cao B, Liu B, Zhang X, et al. 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617:118−124 doi: 10.1038/s41586-023-06023-6
CrossRef Google Scholar
|
[40]
|
Huang K, Wang D, Duan P, Zhang B, Xu R, et al. 2017. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal 91:849−60 doi: 10.1111/tpj.13613
CrossRef Google Scholar
|
[41]
|
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, et al. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics 42:545−49 doi: 10.1038/ng.592
CrossRef Google Scholar
|
[42]
|
Cao J, Liu K, Song W, Zhang J, Yao Y, et al. 2021. Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253:44 doi: 10.1007/s00425-020-03531-x
CrossRef Google Scholar
|
[43]
|
Cao L, Li T, Geng S, Zhang Y, Pan Y, et al. 2023. TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat (Triticum aestivum L.). Frontiers in Plant Science 14:1178624 doi: 10.3389/fpls.2023.1178624
CrossRef Google Scholar
|
[44]
|
Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. 1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences 96:10284−89 doi: 10.1073/pnas.96.18.10284
CrossRef Google Scholar
|
[45]
|
Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, et al. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proceedings of the National Academy of Sciences 96:7575−80 doi: 10.1073/pnas.96.13.7575
CrossRef Google Scholar
|
[46]
|
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, et al. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant Journal 67:907−16 doi: 10.1111/j.1365-313X.2011.04643.x
CrossRef Google Scholar
|
[47]
|
Fan C, Xing Y, Mao H, Lu T, Han B, et al. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112:1164−71 doi: 10.1007/s00122-006-0218-1
CrossRef Google Scholar
|
[48]
|
Li S, Liu Y, Zheng L, Chen L, Li N, et al. 2012. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytologist 194:690−703 doi: 10.1111/j.1469-8137.2012.04083.x
CrossRef Google Scholar
|
[49]
|
Ren X, Zhi L, Liu L, Meng D, Su Q, et al. 2021. Alternative splicing of TaGS3 differentially regulates grain weight and size in bread wheat. International Journal of Molecular Sciences 22:11692 doi: 10.3390/ijms222111692
CrossRef Google Scholar
|
[50]
|
Huang X, Qian Q, Liu Z, Sun H, He S, et al. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics 41:494−97 doi: 10.1038/ng.352
CrossRef Google Scholar
|
[51]
|
Li A, Hao C, Wang Z, Geng S, Jia M, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant 15:504−19 doi: 10.1016/j.molp.2022.01.004
CrossRef Google Scholar
|
[52]
|
Kim EJ, Russinova E. 2020. Brassinosteroid signalling. Current Biology 30:R294−R298 doi: 10.1016/j.cub.2020.02.011
CrossRef Google Scholar
|
[53]
|
Yoo MJ, Albert VA, Soltis PS, Soltis DE. 2006. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biology 6:3 doi: 10.1186/1471-2229-6-3
CrossRef Google Scholar
|
[54]
|
Tong H, Liu L, Jin Y, Du L, Yin Y, et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-Like Kinase to mediate Brassinosteroid responses in rice. The Plant Cell 24:2562−77 doi: 10.1105/tpc.112.097394
CrossRef Google Scholar
|
[55]
|
Cheng X, Xin M, Xu R, Chen Z, Cai W, et al. 2020. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. The Plant Cell 32:923−34 doi: 10.1105/tpc.19.00580
CrossRef Google Scholar
|
[56]
|
Zhang X, Wang J, Huang J, Lan H, Wang C, et al. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences 109:21534−39 doi: 10.1073/pnas.1219776110
CrossRef Google Scholar
|
[57]
|
Qi P, Lin YS, Song XJ, Shen JB, Huang W, et al. 2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research 22:1666−80 doi: 10.1038/cr.2012.151
CrossRef Google Scholar
|
[58]
|
Hu Z, He H, Zhang S, Sun F, Xin X, et al. 2012. A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. Journal of Integrative Plant Biology 54:979−90 doi: 10.1111/jipb.12008
CrossRef Google Scholar
|
[59]
|
Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, et al. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 132:1799−1814 doi: 10.1007/s00122-019-03316-1
CrossRef Google Scholar
|
[60]
|
Wang C, Zhang L, Xie Y, Guo X, Zhang Y, et al. 2022. A superior allele of the wheat gene TaGL3.3-5B, selected in the breeding process, contributes to seed size and weight. Theoretical and Applied Genetics 135:1879−91 doi: 10.1007/s00122-022-04081-4
CrossRef Google Scholar
|
[61]
|
Xu H, Sun H, Dong J, Ma C, Li J, et al. 2022. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. Theoretical and Applied Genetics 135:2907−23 doi: 10.1007/s00122-022-04158-0
CrossRef Google Scholar
|
[62]
|
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, et al. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics 45:707−11 doi: 10.1038/ng.2612
CrossRef Google Scholar
|
[63]
|
Jia M, Li Y, Wang Z, Tao S, Sun G, et al. 2021. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. The Plant Journal 108:1754−67 doi: 10.1111/tpj.15541
CrossRef Google Scholar
|
[64]
|
Guo L, Ma M, Wu L, Zhou M, Li M, et al. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnology Journal 20:168−82 doi: 10.1111/pbi.13704
CrossRef Google Scholar
|
[65]
|
Ma M, Wang Q, Li Z, Cheng H, Li Z, et al. 2015. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. The Plant Journal 83:312−25 doi: 10.1111/tpj.12896
CrossRef Google Scholar
|
[66]
|
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741−45 doi: 10.1126/science.1113373
CrossRef Google Scholar
|
[67]
|
Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, et al. 2012. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist 195:574−84 doi: 10.1111/j.1469-8137.2012.04194.x
CrossRef Google Scholar
|
[68]
|
Lu J, Chang C, Zhang HP, Wang SX, Sun G, et al. 2015. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS ONE 10:e0144765 doi: 10.1371/journal.pone.0144765
CrossRef Google Scholar
|
[69]
|
Shoaib M, Yang W, Shan Q, Sun L, Wang D, et al. 2020. TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. Theoretical and Applied Genetics 133:3151−63 doi: 10.1007/s00122-020-03661-6
CrossRef Google Scholar
|
[70]
|
Mao H, Jian C, Cheng X, Chen B, Mei F, et al. 2022. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal 20:846−61 doi: 10.1111/pbi.13764
CrossRef Google Scholar
|
[71]
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, et al. 2023. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnology Journal 21:979−89 doi: 10.1111/pbi.14009
CrossRef Google Scholar
|
[72]
|
Wang S, Wu K, Yuan Q, Liu X, Liu Z, et al. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44:950−54 doi: 10.1038/ng.2327
CrossRef Google Scholar
|
[73]
|
Yan X, Zhao L, Ren Y, Dong Z, Cui D, et al. 2019. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports 9:2702 doi: 10.1038/s41598-019-38570-2
CrossRef Google Scholar
|
[74]
|
Liu Y, Chen J, Yin C, Wang Z, Wu H, et al. 2023. A high-resolution genotype–phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biology 24:196 doi: 10.1186/s13059-023-03044-2
CrossRef Google Scholar
|
[75]
|
Liu J, Chen Z, Wang Z, Zhang Z, Xie X, et al. 2021. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Molecular Plant 14:1472−88 doi: 10.1016/j.molp.2021.05.021
CrossRef Google Scholar
|
[76]
|
Adamski NM, Simmonds J, Brinton JF, Backhaus AE, Chen Y, et al. 2021. Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. The Plant Cell 33:2296−319 doi: 10.1093/plcell/koab119
CrossRef Google Scholar
|
[77]
|
Ur Rehman S, Wang J, Chang X, Zhang X, Mao X, et al. 2019. A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theoretical and Applied Genetics 132:907−19 doi: 10.1007/s00122-018-3247-7
CrossRef Google Scholar
|
[78]
|
Zhang ZG, Lv GD, Li B, Wang JJ, Zhao Y, et al. 2017. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLOS One 12:e0174425 doi: 10.1371/journal.pone.0174425
CrossRef Google Scholar
|
[79]
|
Kong X, Wang F, Wang Z, Gao X, Geng S, et al. 2023. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat. Plant Biotechnology Journal 21:1990−2001 doi: 10.1111/pbi.14107
CrossRef Google Scholar
|
[80]
|
Ma L, Li T, Hao C, Wang Y, Chen X, et al. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal 14:1269−80 doi: 10.1111/pbi.12492
CrossRef Google Scholar
|
[81]
|
Wang S, Yan X, Wang Y, Liu H, Cui D, et al. 2016. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Frontiers in Plant Science 7:783 doi: 10.3389/fpls.2016.00783
CrossRef Google Scholar
|
[82]
|
Hu MJ, Zhang HP, Liu K, Cao JJ, Wang SX, et al. 2016. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science 7:1902 doi: 10.3389/fpls.2016.01902
CrossRef Google Scholar
|
[83]
|
Sajjad M, Ma X, Habibullah Khan S, Shoaib M, Song Y, et al. 2017. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biology 17:164 doi: 10.1186/s12870-017-1114-3
CrossRef Google Scholar
|
[84]
|
Milner MJ, Bowden S, Craze M, Wallington EJ. 2021. Ectopic expression of TaBG1 increases seed size and alters nutritional characteristics of the grain in wheat but does not lead to increased yields. BMC Plant Biology 21:524 doi: 10.1186/s12870-021-03294-x
CrossRef Google Scholar
|
[85]
|
Ma D, Yan J, He Z, Wu L, Xia X. 2012. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding 29:43−52 doi: 10.1007/s11032-010-9524-z
CrossRef Google Scholar
|
[86]
|
Jiang Y, Jiang Q, Hao C, Hou J, Wang L, et al. 2015. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theoretical and Applied Genetics 128:131−43 doi: 10.1007/s00122-014-2417-5
CrossRef Google Scholar
|
[87]
|
Hou J, Jiang Q, Hao C, Wang Y, Zhang H, et al. 2014. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology 164:1918−29 doi: 10.1104/pp.113.232454
CrossRef Google Scholar
|
[88]
|
Jiang Q, Hou J, Hao C, Wang L, Ge H, et al. 2011. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics 11:49−61 doi: 10.1007/s10142-010-0188-x
CrossRef Google Scholar
|
[89]
|
Liu H, Si X, Wang Z, Cao L, Gao L, et al. 2023. TaTPP-7A positively feedback regulates grain filling and wheat grain yield through T6P-SnRK1 signalling pathway and sugar-ABA interaction. Plant Biotechnology Journal 21:1159−75 doi: 10.1111/pbi.14025
CrossRef Google Scholar
|
[90]
|
Rose JKC, Lee SJ. 2010. Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiology 153:433−36 doi: 10.1104/pp.110.154872
CrossRef Google Scholar
|
[91]
|
Aebi M. 2013. N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833:2430−37 doi: 10.1016/j.bbamcr.2013.04.001
CrossRef Google Scholar
|
[92]
|
Zhu X, Rong W, Wang K, Guo W, Zhou M, et al. 2022. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal 20:777−93 doi: 10.1111/pbi.13760
CrossRef Google Scholar
|
[93]
|
Dale EM, Housley TL. 1986. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiology 82:7−10 doi: 10.1104/pp.82.1.7
CrossRef Google Scholar
|
[94]
|
Dickinson DB, Preiss J. 1969. Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiology 44:1058−62 doi: 10.1104/pp.44.7.1058
CrossRef Google Scholar
|
[95]
|
Hou J, Li T, Wang Y, Hao C, Liu H, et al. 2017. ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnology Journal 15:1533−43 doi: 10.1111/pbi.12735
CrossRef Google Scholar
|
[96]
|
Irshad A, Guo H, Zhang S, Gu J, Zhao L, et al. 2019. EcoTILLING reveals natural allelic variations in starch synthesis key gene TaSSIV and its haplotypes associated with higher thousand grain weight. Genes 10:307 doi: 10.3390/genes10040307
CrossRef Google Scholar
|
[97]
|
Kirchberger S, Tjaden J, Neuhaus HE. 2008. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. The Plant Journal 56:51−63 doi: 10.1111/j.1365-313X.2008.03583.x
CrossRef Google Scholar
|
[98]
|
Wang Y, Hou J, Liu H, Li T, Wang K, et al. 2019. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany 70:1497−511 doi: 10.1093/jxb/erz032
CrossRef Google Scholar
|
[99]
|
Irshad A, Guo H, Ur Rehman S, Wang X, Gu J, et al. 2021. Identification of single nucleotide polymorphism in TaSBEIII and development of KASP marker associated with grain weight in wheat. Frontiers in Genetics 12:1484 doi: 10.3389/fgene.2021.697294
CrossRef Google Scholar
|
[100]
|
Guo X, Fu Y, Lee YRJ, Chern M, Li M, et al. 2022. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal 20:1311−26 doi: 10.1111/pbi.13809
CrossRef Google Scholar
|
[101]
|
Ma S, Han W, Li L, Zheng X, Wang X. 2019. The thermal stability, structural changeability, and aggregability of glutenin and gliadin proteins induced by wheat bran dietary fiber. Food & Function 10:172−79 doi: 10.1039/c8fo01810c
CrossRef Google Scholar
|
[102]
|
Payne PI. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology 38:141−53 doi: 10.1146/annurev.pp.38.060187.001041
CrossRef Google Scholar
|
[103]
|
Cho K, Beom HR, Jang YR, Altenbach SB, Vensel WH, et al. 2018. Proteomic profiling and epitope analysis of the complex α-, γ-, and ω-gliadin families in a commercial bread wheat. Frontiers in Plant Science 9:818 doi: 10.3389/fpls.2018.00818
CrossRef Google Scholar
|
[104]
|
Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, et al. 2014. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. Frontiers in Plant Science 5:621 doi: 10.3389/fpls.2014.00621
CrossRef Google Scholar
|
[105]
|
Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, et al. 1997. The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. The Plant Cell 9:171−84 doi: 10.1105/tpc.9.2.171
CrossRef Google Scholar
|
[106]
|
Zhu J, Fang L, Yu J, Zhao Y, Chen F, et al. 2018. 5-Azacytidine treatment and TaPBF-D over-expression increases glutenin accumulation within the wheat grain by hypomethylating the Glu-1 promoters. Theoretical and Applied Genetics 131:735−46 doi: 10.1007/s00122-017-3032-z
CrossRef Google Scholar
|
[107]
|
Dong G, Ni Z, Yao Y, Nie X, Sun Q. 2007. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Molecular Biology 63:73−84 doi: 10.1007/s11103-006-9073-3
CrossRef Google Scholar
|
[108]
|
Guo W, Yang H, Liu Y, Gao Y, Ni Z, et al. 2015. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. The Plant Journal 84:347−59 doi: 10.1111/tpj.13003
CrossRef Google Scholar
|
[109]
|
Gao Y, An K, Guo W, Chen Y, Zhang R, et al. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell 33:603−22 doi: 10.1093/plcell/koaa040
CrossRef Google Scholar
|
[110]
|
Li J, Xie L, Tian X, Liu S, Xu D, et al. 2021. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. The Plant Journal 108:829−40 doi: 10.1111/tpj.15485
CrossRef Google Scholar
|
[111]
|
Wang X, Liu Y, Hao C, Li T, Majeed U, et al. 2023. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. Theoretical and Applied Genetics 136:123 doi: 10.1007/s00122-023-04365-3
CrossRef Google Scholar
|
[112]
|
Xie L, Liu S, Zhang Y, Tian W, Xu D, et al. 2023. Efficient proteome-wide identification of transcription factors targeting Glu-1: A case study for functional validation of TaB3-2A1 in wheat. Plant Biotechnology Journal 21:1952−65 doi: 10.1111/pbi.14103
CrossRef Google Scholar
|
[113]
|
Sun F, Liu X, Wei Q, Liu J, Yang T, et al. 2017. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Frontiers in Plant Science 8:1133 doi: 10.3389/fpls.2017.01133
CrossRef Google Scholar
|
[114]
|
Li Q, Li L, Yang X, Warburton ML, Bai G, et al. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology 10:143 doi: 10.1186/1471-2229-10-143
CrossRef Google Scholar
|
[115]
|
Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, et al. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany 63:5945−55 doi: 10.1093/jxb/ers249
CrossRef Google Scholar
|
[116]
|
Xia T, Li N, Dumenil J, Li J, Kamenski A, et al. 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell 25:3347−59 doi: 10.1105/tpc.113.115063
CrossRef Google Scholar
|
[117]
|
Xie Q, Sparkes DL. 2021. Dissecting the trade-off of grain number and size in wheat. Planta 254:3 doi: 10.1007/s00425-021-03658-5
CrossRef Google Scholar
|
[118]
|
Li T, Jiang J, Zhang S, Shu H, Wang Y, et al. 2015. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Journal of Experimental Botany 66:5691−701 doi: 10.1093/jxb/erv160
CrossRef Google Scholar
|
[119]
|
Khan N, Zhang Y, Wang J, Li Y, Chen X, et al. 2022. TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. Journal Experimental Botany 73:6678−96 doi: 10.1093/jxb/erac327
CrossRef Google Scholar
|
[120]
|
Calderini DF, Castillo FM, Arenas-M A, Molero G, Reynolds MP, et al. 2021. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytologist 230:629−40 doi: 10.1111/nph.17048
CrossRef Google Scholar
|