[1]
|
Luís Â, Neiva DM, Pereira H, Gominho J, Domingues F, et al. 2016. Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Industrial Crops and Products 91:97−103 doi: 10.1016/j.indcrop.2016.06.022
CrossRef Google Scholar
|
[2]
|
Fernando S, Adhikari S, Chandrapal C, Murali N. 2006. Biorefineries: current status, challenges, and future direction. Energy & Fuels 20(4):1727−37 doi: 10.1021/ef060097w
CrossRef Google Scholar
|
[3]
|
Acquah GE, Krigstin S, Wetzel S, Cooper P, Cormier D. 2016. Heterogeneity of forest harvest residue from eastern Ontario biomass harvests. Forest Products Journal 66(3-4):164−75 doi: 10.13073/FPJ-D-14-00098
CrossRef Google Scholar
|
[4]
|
Eker M, Spinelli R, Gürlevik, N. 2017. Recovering energy biomass from sustainable forestry using local labor resources. Journal of Cleaner Production 157:57−64 doi: 10.1016/j.jclepro.2017.04.134
CrossRef Google Scholar
|
[5]
|
Vance ED, Prisley SP, Schilling EB, Tatum VL, Wigley TB, et al. 2018. Environmental implications of harvesting lower-value biomass in forests. Forest Ecology and Management 407:47−56 doi: 10.1016/j.foreco.2017.10.023
CrossRef Google Scholar
|
[6]
|
Marchioro CA, Santos KL, Siminski A. 2020. Present and future of the critically endangered Araucaria angustifolia due to climate change and habitat loss. Forestry 93(3):401−10 doi: 10.1093/forestry/cpz066
CrossRef Google Scholar
|
[7]
|
Huss J, Dobner M Jr, Paixão CA, Ten Caten A, Siminski A. 2020. Regeneration of Araucaria angustifolia in pine plantations in the South of Brazil – a silvicultural approach. Scientia Forestalis 48(127):1−14 doi: 10.18671/scifor.v48n127.16
CrossRef Google Scholar
|
[8]
|
Ricken P, Póvoa de Mattos P, Muñoz Braz E, Hess AF, Nakajima NY, et al. 2022. Growth models for Araucaria angustifolia (BERTOL.) Kuntze in different ecological gradients in the state of Santa Catarina. Floresta 52(4):450−57 doi: 10.5380/rf.v52i4.71978
CrossRef Google Scholar
|
[9]
|
Constantino V, Motta ACV, Barbosa JZ, Dolinski MA, Zanette F, et al. 2018. Initial growth of Araucaria angustifolia rootstock in response to fertilization with nitrogen, phosphorus and potassium. Floresta 49(1):99−108 doi: 10.5380/rf.v49i1.57467
CrossRef Google Scholar
|
[10]
|
Céspedes CL, Avila JG, Garcia AM, Becerra J, Flores C, et al. 2006. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Zeitschrift für Naturforschung C 61(1−2):35−43 doi: 10.1515/znc-2006-1-207
CrossRef Google Scholar
|
[11]
|
Freitas AM, Almeida MTR, Andrighetti-fröhner CR, Cardozo FTGS, Barardi CRM, et al. 2009. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. Journal of Ethnopharmacology 126(3):512−17 doi: 10.1016/j.jep.2009.09.005
CrossRef Google Scholar
|
[12]
|
Lin HA, Mideros SX. 2021. Accurate quantification and detection of Septoria glycines in soybean using quantitative PCR. Current Plant Biology 25:100192 doi: 10.1016/j.cpb.2020.100192
CrossRef Google Scholar
|
[13]
|
Allioui N, Siah A, Brinis L, Reignault P, Halama P. 2016. Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria. Phytopathol Mediterr 55:89−97
Google Scholar
|
[14]
|
Zeng F, Arnao E, Zhang G, Olaya G, Wullschleger J, et al. 2015. Characterization of quinone outside inhibitor fungicide resistance in Cercospora sojina and development of diagnostic tools for its identification. Plant Disease 99:544−50 doi: 10.1094/PDIS-05-14-0460-RE
CrossRef Google Scholar
|
[15]
|
Neves DL, Wang A, Weems JD, Kelly HM, Mueller DS, et al. 2022. Identification of Septoria glycines isolates from soybean with resistance to quinone outside inhibitor fungicides. Plant Disease 106(10):2631−37 doi: 10.1094/PDIS-08-21-1836-RE
CrossRef Google Scholar
|
[16]
|
Parodi L. 1977. Argentine encyclopaedia of agriculture and gardening. 3rd Edition. Argentina: ACME. 1162 pp.
|
[17]
|
Mascherpa D, Carazzone C, Marrubini G, Gazzani G, Papetti A. 2012. Identification of phenolic constituents in Cichorium endivia var. crispum and var. latifolium salads by high-performance liquid chromatography with diode array detection and electrospray ioniziation tandem mass spectrometry. Journal of Agricultural and Food Chemistry 60(49):12142−50 doi: 10.1021/jf3034754
CrossRef Google Scholar
|
[18]
|
Sequín CJ, Sampietro DA, Sgariglia MA, Soberón JR, Catalán CAN, et al. 2020. Use of extracts from Prosopis nigra in the control of Cercospora kikuchii and Septoria glycines. Industrial Crops and Products 158:112979 doi: 10.1016/j.indcrop.2020.112979
CrossRef Google Scholar
|
[19]
|
Mangeaud A, Elías Panigo DH. 2018. R-Medic. A simple and intuitive statistical analysis software. Methodo Investigación Aplicada a las Ciencias Biológicas 3(1):18−22 doi: 10.22529/me.2018.3(1)05
CrossRef Google Scholar
|
[20]
|
da Cunha IP, Gonçalves EK, Nascimento LES, de Melo DW, Biluca FC, et al. 2021. Araucaria angustifolia (bert.) Otto kuntze): Comparative evaluation of phenolic composition, antioxidant and antimicrobial activities of seeds cooking water. Research, Society and Development 10(9):e8810917942 doi: 10.33448/rsd-v10i9.17942
CrossRef Google Scholar
|
[21]
|
Fischer TE, Marcondes A, Zardo DM, Nogueira A, Calhelha RC, et al. 2022. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants 11(12):2431 doi: 10.3390/antiox11122431
CrossRef Google Scholar
|
[22]
|
Aristimuño Ficoseco ME, Vattuone MA. Audenaert K, Catalán CAN, Sampietro DA. 2014. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species. Journal of Applied Microbiology 116(5):1262−73 doi: 10.1111/jam.12436
CrossRef Google Scholar
|
[23]
|
Gomez AA, Sampietro DA, Mandova T, Grougnet R, Kritsanida M, et al. 2018. Antifungal compounds in Prosopis ruscifolia: identification and analysis of their usefulness in the control of toxigenic Aspergillus species. Dominguezia 34:37−45
Google Scholar
|
[24]
|
Zahara K, Bibi Y, Masood S, Nisa S, Qayyum A, et al. 2021. Using HPLC–DAD and GC–MS analysis isolation and identification of anticandida compounds from Gui Zhen Cao Herbs (Genus Bidens): An important Chinese medicinal formulation. Molecules 26(19):5820 doi: 10.3390/molecules26195820
CrossRef Google Scholar
|
[25]
|
Borovaya S, Lukyanchuk L, Manyakhin A, Zorikova O. 2020. Effect of Reynoutria japonica extract upon germination and upon resistance of its seeds against phytopathogenic fungi Triticum aestivum L., Hordeum vulgare L., and Glycine max (L.) Merr. Organic Agriculture 10:89−95 doi: 10.1007/s13165-019-00254-6
CrossRef Google Scholar
|
[26]
|
Scher JM, Speakman JB, Zapp J, Becker H. 2004. Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray. Phytochemistry 65(18):2583−88 doi: 10.1016/j.phytochem.2004.05.013
CrossRef Google Scholar
|
[27]
|
Magsi FH, Li Z, Cai X, Yamamoto M, Bian L, et al. 2022. Identification of a unique three-component sex pheromone produced by the tea black tussock moth, Dasychira baibarana (Lepidoptera: Erebidae: Lymantriinae). Pest Management Science 78(6):2607−17 doi: 10.1002/ps.6892
CrossRef Google Scholar
|
[28]
|
Ando T, Yamakawa R. 2011. Analyses of lepidopteran sex pheromones by mass spectrometry. TrAC. Trends in Analytical Chemistry 30(7):990−1002 doi: 10.1016/j.trac.2011.03.010
CrossRef Google Scholar
|
[29]
|
Igwe OU, Okpara M. 2014. Chromatographic and spectrometric characterization of bioactive compounds from the leaves of Hyptis lanceolata Poir. International Journal of Chemical and Physical Sciences 2(1):547−53
Google Scholar
|
[30]
|
Croley TR, Zemribo R, Lynn BC Jr. 1999. Waveform activated rearrangement of n-butylbenzene molecular ions during tandem mass spectrometry in the quadrupole ion trap. International journal of mass spectrometry 190−191:265−79 doi: 10.1016/S1387-3806(99)00025-1
CrossRef Google Scholar
|
[31]
|
Miranda ACML, Loureiro MRB, Cardoso JN. 1999. Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of bicyclic compounds. Organic Geochemistry 30(9):1027−38 doi: 10.1016/S0146-6380(99)00003-0
CrossRef Google Scholar
|
[32]
|
Wu CL, Chen WY, Chu CS. 2007. Bisabolenes and nor-sesquiterpenes from Bazzania tridens. Natural Product Communications 2(4):1934578X0700200403 doi: 10.1177/1934578x0700200403
CrossRef Google Scholar
|
[33]
|
Tanaka JCA, Vidotti GJ, da Silva CC. 2003. A new tormentic acid derivative from Luehea divaricata Mart. (Tiliaceae). Journal of the Brazilian Chemical Society 14:475−78 doi: 10.1590/S0103-50532003000300024
CrossRef Google Scholar
|
[34]
|
Hopper DJ. 1986. Oxygenase properties of the (4-hydroxybenzoyl) methanol-cleavage enzyme from an Alcaligenes sp. Biochemical Journal 239(2):469−72 doi: 10.1042/bj2390469
CrossRef Google Scholar
|
[35]
|
Cheng MJ, Lo WL, Huang JC, Yeh YT, Hong ZL, et al. 2010. Isolation of a new monoterpenic ester from the leaves of Michelia compressa (Maxim.) Sargent var. formosana Kanehira (Magnoliaceae). Natural Product Research 24(7):682−86 doi: 10.1080/14786410903281774
CrossRef Google Scholar
|
[36]
|
Mahmood U, Kaul VK, Acharya R, Jirovetz L. 2003. p-Coumaric acid esters from Tanacetum longifolium. Phytochemistry 64(4):851−53 doi: 10.1016/j.phytochem.2003.08.023
CrossRef Google Scholar
|
[37]
|
Pizzolitto RP, Jacquat AG, Usseglio VL, Achimón F, Cuello AE, et al. 2020. Quantitative-structure-activity relationship study to predict the antifungal activity of essential oils against Fusarium verticillioides. Food Control 108:106836 doi: 10.1016/j.foodcont.2019.106836
CrossRef Google Scholar
|
[38]
|
López AG, Theumer MG, Zygadlo JA, Rubinstein HR. 2004. Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B1 production in corn grain. Mycopathologia 158:343−49 doi: 10.1007/s11046-005-3969-3
CrossRef Google Scholar
|