-
A field experiment was done in the 2019/20−2021/22 cropping seasons (October to April) in Muzokomba, Buhera, Manicaland Province, Zimbabwe. The area is > 800 m altitude above sea level and is located in Zimbabwe’s natural farming region V which receives ≤ 450 mm of rainfall per annum. The cropping season is characterized by severe mid-season dry spells. The field was used for cereal crop production without the use of fertilizers before the experiment. The area is predominantly occupied by Lixisols[22].
Experimental design
-
The experiment had tied ridges combined with three manure application rates laid as a 2 × 4 factorial in a completely randomized block design (CRBD) with three replicates. The plots were made of tied ridges that were 2 m apart with a ridge height of 35 cm. Cross ties were put at 5 m intervals and were raised to 20 cm in height to minimize breakage from the flowing water.
An early maturity (120 days to maturity) SeedCo maize variety (SC537) was planted in the last week of October each year. The planting population was 0.8 inter-row × 0.23 in row spacing to obtain a total of 52,000 plants ha−1. Each experimental plot was 10 m × 8 m with a net area of 25 m2. Generally, in Zimbabwe maize crop requires 67 kg N ha−1 hence the quantities of fertilizer applied were calculated based on this N requirement. Inorganic fertilizer (21 kg N ha−1 was supplied through Compound D (7% N) : (14% P2O5) : (7% K2O) at 300 kg ha−1 at planting and the reminder 46 kg N ha−1 was applied through Ammonium nitrate at 100 kg N ha−1 after maize emergence). All the organic manure was applied before planting the maize. The inorganic fertilizer was applied using the blanket recommended rate (300 kg ha−1 i.e., 21 kg N ha−1) in the Muzokomba area. The organic manure application rates were also applied according to the N requirement of the maize crop. Hence, the quantities of organic manure applied were determined according to the amount of extractable NO2/NO3 (mg kg−1) in the manure (Table 1). Cattle manure was applied at 50% N (low manure), 100% N (standard manure), and 150% N (high manure) which corresponded to 7.5 t ha−1, 15 t ha−1, and 22.5 t ha−1 respectively. The cattle manure was repeatedly applied in each year of the experiment to mimic the cultural practice in the smallholder agricultural sector. Therefore, the treatment combinations for tied ridges were tied ridges + 7.5 t ha−1 low cattle manure (TLM), tied ridges + 15 t ha−1 standard cattle manure (TSM), and tied ridges + 22.5 t ha−1 high cattle manure (THM) application rates. For no-tied ridges were: No-tied ridges + 7.5 t ha−1 low cattle manure (NTLM), No-tied ridges + 15 t ha−1 standard cattle manure (NTSM), and No-tied ridges + 22.5 t ha−1 high cattle manure (NTHM) application rates. The No-tied ridges + 0% cattle manure (NT0%) and tied ridges + 0% cattle (T 0%) manure were included as positive controls.
Table 1. The initial chemical properties of the soil at the Muzokomba area, experimental field and cattle manure used in the study.
Parameter Soil Cattle manure Sand (%) 78 ± 2.3 2 ± 0.1 Silt (%) 18 ± 2.3 0.7 ± 0.2 Clay (%) 3 ± 2.3 0.01 ± 001 pH (H2O) 4.2 ± 1.2 6.98 ± 0.3 EC (dSm−1) 4.1 ± 0.03 8.12 ± 0.1 CEC (cmol(+)kg−1) 8.0 ± 0.5 314.2 ± 0.8 Total C (%) 0.7 ± 0.04 30.5 ± 0.4 Total N (%) 0.5 ± 0.03 4.16 ± 0.2 C:N ratio 0.3 ± 0.01 8.8 ± 0.7 Olsen extractable P (mg kg−1) 55.0 ± 7.3 620.4 ± 17.8 Extractable NO2/NO3 (mg kg−1) 29.2 ± 2.04 980.5 ± 8.7 Extractable NH4 (mg kg−1) 98.4 ± 0.8 386.3 ± 2.8 K (mg kg−1) 6.4 ± 0.6 3.2 ± 0.5 Ca (cmol(+) kg−1) 0.3 ± 0.05 27.1 ± 2.5 Mg (cmol(+) kg−1) 24.5 ± 1.9 10.8 ± 2.1 Na (cmol(+) kg−1) 0.45 ± 0.03 2.6 ± 0.7 Cu (cmol(+) kg−1) 110.1 ± 36.1 305.2 ± 38.6 Zn (cmol(+) kg−1) 70.2 ± 6.9 412.8 ± 0.6 Bulk density (kg cm−3) 1.52 ± 0.8 − EC, electrical conductivity; CEC, cation exchange capacity. Data are means ± standard error of the means for three replicates. Soil sampling and analysis
-
Four soil samples were taken to a depth of 0−40 cm using a soil auger in July 2019. Soil samples were mixed in a plastic bucket to produce a composite sample (1 kg) which was shade-dried for soil analysis. Cattle manure was sourced from the local farmers in the Muzokomba area and sun-dried for one week to attain uniform moisture content. Then, 500 g of manure was randomly sampled and taken for analysis while the bulky manure was stored for use. The soil and cattle manure were analyzed as explained by Parwada et al.[23]. Briefly, soil pH and electrical conductivities (ECs) were determined in a soil-water suspension (ratio of 1:5) using a TPS meter, and soil texture was analyzed by the hydrometer method as described in Okalebo et al.[24]. Total carbon (C), nitrogen (N), Olsen extractable P, and exchangeable ammonium and nitrate and nitrite in both the cattle manure were analyzed as described by Parwada & Van Tol.[12]. Bulk density (ρb) was determined using the core method.
Data collection
-
Soil water storage was measured gravimetrically (drying method, w/w) to a depth of 120 cm at 20 cm increments before sowing and at planting to emergence, emergence to tassling, tassling to silking, silking to physiological maturity, and dry-down period growth stages of maize. Three random locations in each plot were taken to measure soil water storage. Bulk density (ρb) was determined using the core method and calculated as:
$ {\rho }_{b}=\dfrac{M}{V}\, $ where,
is the bulk density (g cm−3),$ {\rho }_{b} $ is the mass of oven-dried soil (g) and$ M $ is the volume of soil (cm3).$ V $ Soil water storage (0−120 cm) was calculated using the formula:
$ {S}_{w}= h \;\times\; d\;\times\; b{\text{%}} \;\times\; 10 \, $ where, Sw (mm) is the sum of soil water storages at different soil layers, h (cm) is soil layer depth; d (g cm−3) is soil bulk density in different soil layer and b% is the percentage of soil moisture in weight.
Dry matter was measured from planting to emergence, emergence to tassling, tassling to silking, silking to physiological maturity and dry-down period growth stages of maize. The maize samples collected at each respective growth stage were dried in an oven at 105 °C for 1 h and then were dried at 75 °C to constant weight. Five maize plants per plot were used (destructively sampled) for each measurement at different growth stages of maize. The dry matter accumulation (DMA) was as follows:
$ Dry\;matter\;accumulation=\dfrac{DMW\left(t\right)}{Plot\;area\;\left(ha\right)}\, $ where, DMW is dry matter weight.
Rainfall use efficiency was calculated using the following formula:
$ RUE=Y/R \, $ where, RUE represents the rainfall use efficiency for the biomass yield (kg ha−1 mm−1); Y is the dry matter accumulation of the maize and R is the rainfall.
Soil samples were collected from the surface layers (0–20 cm) of all plots during off season of maize in September each year. Four soil samples were collected for each treatment replicate, were combined into a composite sample, air-dried, and were sieved before chemical analysis. All chemical parameters were calculated based on the oven-dry (105 °C) weight of the soil. Soil organic matter (SOM) was determined using the dichromate oxidation method, total N by micro-Kjeldahl digestion, total P was determined by the wet oxidation procedure described by Rowland & Grimshaw[25], and total K by extraction with 1N ammonium acetate (NH4OAc) solution at pH 7.046.
Data analysis
-
Collected data were tested for normality and observed to follow a normal distribution and homoscedasticity, and thus, two-factor analysis of variance (ANOVA) was done to compare soil water storage, rainfall use efficiency, and growth parameters of maize under different cattle manure application rates and tied ridges. All data were analyzed using JMP version 11.0.0 statistical software. The significance of treatment effects was determined using the Duncan test at p ≤ 0.05.
-
Initial soil from the experimental field was classified as sandy loam soil with 78% sand, 18% silt, and 3% clay. The cattle manure contained some soil particles though in small quantities compared to the soil (Table 1). The soil and cattle manure had pH values of 4.2 and 6.98 respectively. The soil had a total of 0.5% nitrogen, 0.7% soil organic carbon, and 55.0 mg kg−1 phosphorous while the cattle manure had higher values of the corresponding parameters (Table 1). The cattle manure had 33.5 times more extractable NO2/NO3 (mg kg−1) than the soil (Table 1). The soil had a bulk density of 1.52 kg cm−3.
Rainfall received during the study period
-
The study area received a total annual rainfall of 393.6, 350.6, and 369.9 mm in the 2019/20, 2020/21, and 2021/22 cropping seasons, respectively (Fig. 1). The rainfall was not uniformly distributed and rarely exceeded a mean of 25 mm in a pentad. A pentad was defined as having ≥ 25 mm of rain in five days and only two pentads were recorded during the 2019 to 2022 rainy seasons which translated to only 10% frequency of occurrence of 25 mm of rain in a pentad (Fig. 1). Generally, the study area received a below-normal rainfall of ≥ 400 mm per year throughout the study period.
The rainfall quantity was generally lower at the planting and maize emergence (P-E) and dry-down periods (Dry-P) (Fig. 2). Rainfall received during the emergence to tassling (E-T) was < 100 mm in all three cropping seasons.
Figure 2.
Total rainfall (mm) distribution according to maize growth stages in the years of 2019/20–2021/22. P-E: Planting to Emergence; E-T: Emergence to Tassling; T-SK: Tassling to Silking; SK-PM: Silking to Physiological maturity and Dry-P: Dry-down period.
Soil water storage
-
No tied ridges + inorganic fertilizers had significantly (p < 0.05) the lowest soil water storage at all maize growth stages. The no-tied ridges + cattle manure application rates treatment combinations had significantly (p < 0.05) lower soil water storage compared to the tied ridges combined with the respective manure application rates (Table 2). The soil water storage was significantly (p < 0.05) highest at the P-E stages and thereafter showed a gradual decline with the maize growth to Dry-P in all the treatment combinations (Table 2). Tied ridges + > 7.5 t ha−1 cattle manure treatments had significantly the highest soil moisture storage. Soil water storage under NTHM and TLM application rates did not significantly differ in all the maize growth stages in the three seasons (Table 2). In the three-year study, the soil water storage was significantly (p < 0.05) increased by 6% from an average of 286.3 mm in NTHM and TLM treatments to 300 mm in tied ridges + > 7.5 t ha−1 cattle manure application rates treatments (Table 2).
Table 2. Soil water storage at 0–120 cm soil profile as influenced by manure management.
Year Treatments Soil water storage (mm) P-E E-T T-SK SK-PM Dry-P 2020 NT0% 255.2 ± 5a 240.6 ± 4a 201.3 ± 5a 176.8 ± 6a 181.4 ± 7a NTLM 269.5 ± 8b 252.2 ± 3b 236.1 ± 3b 196.2 ± 4b 205.0 ± 2b NTSM 272.1 ± 6b 258.0 ± 5b 238.3 ± 6b 198.1 ± 5b 226.1 ± 2b NTHM 284.3 ± 7c 269.3 ± 7c 249.2 ± 8c 216.4 ± 7c 231.0 ± 6c T0% 254.2 ± 5a 242.2 ± 4a 200.2 ± 5a 177.8 ± 6a 183.4 ± 7a TLM 288.6 ± 2c 270.6 ± 2c 246.4 ± 2c 220.6 ± 8c 233.2 ± 1c TSM 299.1 ± 4d 281.1 ± 4d 259.1 ± 4d 228.5 ± 1d 249.1 ± 4d THM 299.3 ± 7d 293.3 ± 7d 261.0 ± 5d 230.6 ± 8d 250.1 ± 3d 2021 NT0% 254.1 ± 5a 242.5 ± 4a 202.3 ± 4a 175.6 ± 6a 183.4 ± 6a NTLM 266.4 ± 6b 255.4 ± 6b 236.1 ± 3b 196.2 ± 4b 206.1 ± 5b NTSM 270.2 ± 4b 256.2 ± 4b 238.3 ± 6b 198.1 ± 5b 228.2 ± 7b NTHM 285.1 ± 3c 265.1 ± 3c 248.1 ± 5c 216.4 ± 7c 239.1 ± 6c T0% 256.2 ± 5a 243.5 ± 4a 201.3 ± 5a 175.7 ± 6a 180.4 ± 6a TLM 286.6 ± 2c 288.6 ± 2b 246.4 ± 2c 221.0 ± 5c 241.3 ± 1c TSM 294.1 ± 4d 290.1 ± 4b 258.3 ± 7d 226.6 ± 3d 254.2 ± 4d THM 302.5 ± 8d 302.5 ± 8c 260.3 ± 2d 233.4 ± 9d 258.0 ± 8d 2022 NT0% 254.2 ± 4a 241.5 ± 4a 201.2 ± 4a 175.6 ± 5a 180.4 ± 7a NTLM 266.5 ± 8b 249.2 ± 2b 238.4 ± 6b 198.3 ± 1b 204.6 ± 1b NTSM 270.1 ± 6b 254.0 ± 1b 237.2 ± 8b 196.0 ± 3b 226.1 ± 6b NTHM 266.3 ± 7c 264.3 ± 5c 250.1 ± 6c 217.2 ± 8c 253.0 ± 5c T0% 253.2 ± 4a 240.6 ± 4a 200.3 ± 4a 175.8 ± 5a 180.4 ± 5a TLM 285.6 ± 2c 265.2 ± 7c 247.3 ± 9c 219.8 ± 6c 255.2 ± 7c TSM 298.1 ± 4d 279.2 ± 3d 260.4 ± 6d 226.4 ± 2d 266.3 ± 4d THM 301.3 ± 7d 283.4 ± 2d 265.2 ± 3d 231.2 ± 5d 267.0 ± 5d Values in the same column and same year followed by different letters indicate significant differences (Duncan p < 0.05). Dry matter accumulation
-
There were no significant differences in dry matter accumulation (DMA) at the P-E growth stage in most of the treatment combinations except for the tied ridges + high manure application which recorded high dry matter accumulations in 2022 (Table 3). No tied ridges + 0% cattle manure application rate had significantly (p < 0.05) recorded the lowest dry matter accumulation at subsequent growth stages from the P-E (Table 3). No tied ridges + cattle manure application rates treatments combinations had significantly (p < 0.05) lower dry matter accumulation compared to the tied ridges combined with the respective manure application rates (Table 3). Dry matter accumulation was significantly (p < 0.05) increasing from the E-T stages and was highest (162.1 t ha−1) at the SK-PM in 2022 but started to decline at the Dry-P maize growth stage in all the treatment combinations (Table 3). Generally, the tied ridges + > 7.5 t ha−1 cattle manure treatments recorded significantly (p < 0.05) higher dry matter accumulation from the E-T to Dry-P maize growth stage. The DMA was significantly (p < 0.05) the same in no-tied ridges + high cattle manure and TLM application rates at all maize growth stages in the three seasons. The average DMA from 2020 to 2022 was significantly (p < 0.05) increased by 9% from 23.2 t ha−1 in NTHM to 32.7 t ha−1 in tied ridges + > 7.5 t ha−1 cattle manure application rates treatments (Table 3).
Table 3. Effect of manure management on dry matter accumulation at different growth stages and grain yield of maize.
Year Treatments Dry matter accumulation (t ha−1) Grain yield (t ha−1) P-E E-T T-SK SK-PM Dry-P 2020 NT0% 1.1 ± 0.1a 9.0 ± 1.2a 29.5 ± 2.6a 58.6 ± 2.2a 20.1 ± 2.3a 0.2 ± 0.01a NTLM 1.2 ± 0.2a 16.4 ± 2.0b 52.8 ± 3.1b 76.4 ± 3.0b 30.6 ± 3.2b 0.4 ± 0.01b NTSM 1.2 ± 0.2a 18.7 ± 3.2c 65.6 ± 3.3c 87.4 ± 3.2c 40.8 ± 3.1c 0.6 ± 0.1c NTHM 1.3 ± 0.3a 23.5 ± 3.0d 76.3 ± 3.0d 96.2 ± 3.1d 52.4 ± 3.2d 0.8 ± 0.3d T0% 1.2 ± 0.1a 8.0 ± 1.1a 28.5 ± 2.5a 56.6 ± 2.1a 20.1 ± 2.2a 0.2 ± 0.01a TLM 1.4 ± 0.3a 22.7 ± 3.0d 80.3 ± 2.3d 100.8 ± 3.1d 53.2 ± 2.1d 0.9 ± 0.3d TSM 1.4 ± 0.3a 32.3 ± 3.1e 120.4 ± 3.2e 154.6 ± 3.3e 72.6 ± 3.0e 1.2 ± 0.5e THM 1.6 ± 0.3a 33.6 ± 3.1e 125.7 ± 3.8e 160.3 ± 3.5e 75.4 ± 3.2e 2.4 ± 0.7e 2021 NT0% 1.1 ± 0.2a 8.0 ± 1.1a 28.5 ± 2.5a 59.6 ± 2.1a 21.1 ± 2.2a 0.2 ± 0.01a NTLM 1.2 ± 0.1a 16.6 ± 2.1b 50.9 ± 3.0b 77.1 ± 3.1b 31.8 ± 3.1b 0.5 ± 0.1b NTSM 1.2 ± 0.3a 17.9 ± 3.0c 66.6 ± 3.2c 86.8 ± 3.1c 42.2 ± 3.2c 0.6 ± 0.1c NTHM 1.3 ± 0.2a 24.4 ± 3.2d 75.4 ± 3.2d 97.2 ± 3.0d 45.7 ± 3.3d 0.7 ± 0.3d T0% 1.2 ± 0.1a 9.0 ± 1.3a 28.5 ± 2.6a 57.5 ± 2.2a 20.1 ± 2.3a 0.3 ± 0.01a TLM 1.3 ± 0.2a 23.3 ± 3.1d 78.1 ± 2.1d 103.2 ± 3.2d 35.5 ± 2.0d 1.2 ± 0.5e TSM 1.4 ± 0.2a 31.4 ± 3.2e 119.5 ± 3.0e 153.4 ± 3.2e 38.8 ± 3.2e 1.4 ± 0.5e THM 1.3 ± 0.2a 32.8 ± 3.0e 124.6 ± 3.5e 158.9 ± 3.3e 37.3 ± 3.1e 2.8 ± 0.7f 2022 NT0% 1.1 ± 0.1a 9.1 ± 1.2a 28.5 ± 2.6a 57.5 ± 2.2a 20.0 ± 2.1a 0.2 ± 0.01a NTLM 1.3 ± 0.3a 15.1 ± 2.2b 52.3 ± 3.2b 77.8 ± 3.1b 32.3 ± 3.1b 0.4 ± 0.1b NTSM 1.2 ± 0.2a 19.4 ± 3.1c 66.8 ± 3.2c 88.5 ± 3.5c 41.6 ± 3.0c 0.7 ± 0.1c NTHM 1.3 ± 0.1a 24.5 ± 3.1d 78.2 ± 3.1d 97.3 ± 3.0d 45.7 ± 3.1d 0.7 ± 0.3c T0% 1.1 ± 0.1a 9.1 ± 1.3a 29.4 ± 2.5a 57.5 ± 2.1a 20.1 ± 2.1a 0.2 ± 0.01a TLM 1.9 ± 0.2b 25.2 ± 3.2d 82.4 ± 2.6d 101.5 ± 3.2d 47.6 ± 2.0d 1.3 ± 0.8e TSM 2.4 ± 0.2c 31.6 ± 3.2d 121.5 ± 3.1d 155.3 ± 3.2d 48.4 ± 3.1d 2.9 ± 0.8f THM 2.6 ± 0.3c 32.7 ± 3.0e 126.0 ± 3.3e 162.1 ± 3.0e 47.3 ± 3.0e 3.2 ± 0.9g Values in the same column and same year followed by different letters indicate significant differences (Duncan p < 0.05). The DMA significantly (p <0.05) increased by 79.6% from 32.7 t ha−1 at E-T to 162.1 t ha−1 at SK-PM under the THM treatment in 2022 (Table 3). The grain yield was highest (3.2 t ha−1) in tied ridges + 22.5 t ha−1 cattle manure application rate in 2022 and lowest (0.2 t ha−1) in no tied ridges + 0% cattle manure (Table 3).
Rainfall use efficiency
-
The rainfall use efficiency (RUE) was significantly (p < 0.05) highest (1.7 kg ha−1 mm−1) under the THM at the P-E growth stage in the 2022 growing season (Table 4). Like on the dry matter accumulation generally, the no tied ridges + inorganic fertilizers had significantly (p < 0.05) the lowest RUE from the E-T to Dry-P maize growth stage compared to other treatment combinations (Table 4). The no tied ridges + cattle manure application rates treatment combinations had significantly (p < 0.05) lower RUE compared to the tied ridges combined with the respective manure application rates (Table 4). The RUE was significantly (p < 0.05) increasing from the E-T stages and was highest (92.6 kg ha−1 mm−1) at the SK-PM in 2021 under tied ridges + cattle manure treatments. The RUE started to decrease from the SK-PM to Dry-P maize growth stage in all the treatment combinations (Table 4). Generally, the tied ridges + > 7.5 t ha−1 cattle manure treatments showed significant (p < 0.05) increase in RUE from the E-T to Dry-P maize growth stage compared to other treatment combinations. The rainfall use efficiency was significantly (p < 0.05) the same in no tied ridges + high cattle manure and tied ridges + low cattle manure application rates at all the maize growth stages in the three seasons. The RUE was significantly (p < 0.05) increased by 65.8% from 45.0 kg ha−1 mm−1 in no tied ridges + high manure to 72.6 kg ha−1 mm−1 in tied ridges + 22.5 t ha−1 cattle manure application rates treatment at S-SK in the 2022 season (Table 4).
Table 4. Effect of manure management on rainfall use efficiency at different growth stages of maize.
Year Treatments Rainfall use efficiency (kg ha−1 mm−1) Grain yield (t ha−1) P-E E-T T-SK SK-PM Dry-P 2020 NT0% 0.8 ± 0.2a 5.0 ± 1.1a 14.9 ± 4.2a 31.6 ± 3.2a 17.4 ± 2.1a 0.56 ± 2.1a NTLM 0.8 ± 0.1a 9.2 ± 2.1b 28.5 ± 3.3b 42.4 ± 3.0b 28.2 ± 3.1b 1.17 ± 2.1a NTSM 0.8 ± 0.2a 10.1 ± 3.2c 36.4 ± 3.2c 48.1 ± 3.1c 22.7 ± 3.2c 1.75 ± 0.6b NTHM 0.9 ± 0.1a 12.3 ± 3.1d 41.2 ± 4.2d 53.4 ± 3.3d 48.0 ± 3.3d 2.33 ± 1.1c T0% 0.8 ± 0.2a 5.0 ± 1.1a 15.9 ± 4.2a 32.6 ± 3.2a 18.4 ± 2.1a 0.58 ± 2.1a TLM 1.2 ± 0.2a 12.8 ± 3.1d 43.9 ± 4.3d 56.0 ± 3.2d 48.9 ± 3.2d 2.63 ± 1.2c TSM 1.2 ± 0.2a 18.2 ± 3.2e 65.1 ± 4.4e 85.9 ± 3.4e 66.5 ± 3.1e 3.51 ± 1.3d THM 1.4 ± 0.2a 19.0 ± 3.2e 67.9 ± 4.2e 89.0 ± 3.6f 69.0 ± 3.0e 7.01 ± 1.5f 2021 NT0% 0.8 ± 0.2a 5.0 ± 1.1a 15.6 ± 4.1a 31.5 ± 3.2a 17.4 ± 2.1a 0.55 ± 2.1a NTLM 0.8 ± 0.1a 8.8 ± 2.2b 28.1 ± 3.1b 44.9 ± 3.2b 36.2 ± 3.0b 1.40 ± 0.8a NTSM 0.8 ± 0.2a 9.5 ± 3.1c 36.8 ± 3.0c 50.6 ± 3.2c 41.0 ± 3.0c 1.68 ± 0.9b NTHM 0.9 ± 0.2a 12.9 ± 3.2d 41.6 ± 4.1d 56.7 ± 3.1d 43.8 ± 3.0d 1.96 ± 0.9b T0% 0.8 ± 0.2a 5.0 ± 1.1a 16.2 ± 4.2a 36.2 ± 3.2a 19.3 ± 2.1a 0.59 ± 2.1a TLM 0.9 ± 0.1a 12.3 ± 3.2d 43.1 ± 4.1d 60.2 ± 3.1d 43.9 ± 3.0d 3.37 ± 1.2d TSM 1.0 ± 0.1a 16.6 ± 3.1e 66.0 ± 4.0e 89.4 ± 3.2f 42.9 ± 3.2e 3.93 ± 1.2d THM 0.9 ± 0.1a 17.4 ± 3.2e 68.8 ± 4.1e 92.6 ± 3.2f 42.4 ± 2.9e 7.86 ± 1.6f 2022 NT0% 0.8 ± 0.2a 5.0 ± 1.1a 14.9 ± 4.2a 33.5 ± 3.2a 17.3 ± 2.1a 0.56 ± 2.1a NTLM 0.9 ± 0.1a 9.2 ± 2.1b 30.1 ± 2.9b 41.8 ± 3.2b 33.3 ± 3.0b 1.14 ± 0.7a NTSM 0.9 ± 0.2a 11.8 ± 2.1c 38.5 ± 3.1c 47.5 ± 3.0c 43.0 ± 3.1c 1.99 ± 0.9b NTHM 0.8 ± 0.1a 15.0 ± 3.1e 45.0 ± 4.0d 52.2 ± 3.2d 46.7 ± 3.2d 1.99 ± 0.9b T0% 0.8 ± 0.2a 5.0 ± 1.1a 15.9 ± 4.2a 32.6 ± 3.2a 18.4 ± 2.1a 0.58 ± 2.1a TLM 1.3 ± 0.1a 15.3 ± 3.2e 44.2 ± 3.8d 54.5 ± 3.1d 47.2 ± 3.0d 3.70 ± 1.2d TSM 1.6 ± 0.2a 19.3 ± 4.2e 70.0 ± 4.2e 83.6 ± 3.5e 49.2 ± 3.0de 8.26 ± 1.2f THM 1.7 ± 0.2b 20.0 ± 4.1ef 72.6 ± 4.1e 87.0 ± 3.0e 50.0 ± 2.8e 9.12 ± 1.6g Values in the same column and same year followed by different letters indicate significant differences (Duncan p < 0.05). The RUE significantly (p <0.05) increased by 335% from 20.0 kg ha−1 mm−1 at E-T to 87.0 kg ha−1 mm−1 at SK-PM and decreased by 42.5% from the SK-PM to 50.0 kg ha−1 mm−1 at the Dry-P growth stage respectively in tied ridges + 22.5 t ha−1 cattle manure application rates treatment in 2022 (Table 4). The RUE on the grain yield was generally higher on the tied ridges + cattle manure than on no-tied ridges + cattle manure. The RUE for the overall maize grain yield was significantly (p < 0.05) was lowest (0.58 kg ha−1 mm−1) and highest (9.12 kg ha−1 mm−1) in the tied ridge control and tied ridges + 22.5 t ha−1 cattle manure application rates treatment in 2022 respectively (Table 4).
Characterisation of the soil properties under tied ridged plots after three years of manure application
-
Most of the measured soil properties changed due to the addition of the cattle manure except for the sand (%), silt (%), and clay (%) for the entire study period (Table 5). The soil pH was improved from 4.1 in the control to 6.2 in the tied ridges + high cattle manure application rates. Total N (%), extractable NO2/NO3, total C (%), K, and other measured nutrient elements increased significantly as the quantity of the manure applied increased. There was a slight increase in the measured soil parameters in the ≤ 7.5 t ha−1 cattle manure application rates treatments compared to the > 7.5 t ha−1 manure application rates treatments (Table 5).
Table 5. Soil nutrients and soil organic matter in tied-ridged plots as a function of the different manure treatments during 2020–2022.
Parameter Control Low manure Medium manure High manure 2020 2021 2022 2020 2021 2022 2020 2021 2022 Sand (%) 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 74 ± 3.1 Silt (%) 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 21 ± 2.3 Clay (%) 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 5 ± 1.3 pH (H2O) 4.1 ± 2.1 4.3 ± 2.0 4.4 ± 2.1 4.3 ± 2.1 5.1 ± 0.3 5.3 ± 2.2 5.8 ± 2.1 6.2 ± 2.2 6.6 ± 2.0 6.6 ± 2.2 EC(dSm−1) 6.2 ± 0.23 7.2 ± 0.6 7.6 ± 0.7 7.8 ± 0.6 9.1 ± 0.2 9.0 ± 0.3 9.6 ± 0.3 11.2 ± 0.6 15.1 ± 0.7 19.1 ± 0.7 CEC (cmol(+) kg−1) 4.3 ± 1.4 8.3 ± 1.4 8.2 ± 1.4 8.1 ± 1.3 19.2 ± 1.2 18.8 ± 1.3 21.1 ± 1.2 21.3 ± 1.5 23.1 ± 1.4 28.2 ± 1.5 Total C (%) 0.4 ± 0.01 0.8 ± 0.02 0.9 ± 0.01 0.8 ± 0.03 1.1 ± 0.3 1.2 ± 0.2 1.4 ± 0.3 1.2 ± 0.8 1.6 ± 0.8 2.2 ± 0.7 Total N (%) 0.2 ± 0.02 0.5 ± 0.02 0.6 ± 0.02 0.5 ± 0.02 0.6 ± 0.01 0.6 ± 0.02 0.9 ± 0.02 0.9 ± 0.03 1.6 ± 0.3 2.9 ± 0.3 C:N ratio 0.5 ± 0.01 0.6 ± 0.01 0.7 ± 0.01 0.6 ± 0.01 0.5 ± 0.7 0.5 ± 0.6 0.5 ± 0.7 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 Olsen extractable P
(mg kg−1)55.0 ± 5.2 60.0 ± 5.3 59.0 ± 5.0 60.0 ± 5.3 82.4 ± 8.8 81.0 ± 9.2 87.0 ± 9.2 56.0 ± 5.2 60.0 ± 5.2 65.0 ± 5.2 Extractable NO2/NO3
(mg kg−1)25.1 ± 2.0 122.1 ± 2.0 123.1 ± 2.2 122.1 ± 2.2 250.5 ± 6.7 251.0 ± 7.0 258.3 ± 6.0 258.1 ± 7.0 265.1 ± 6.1 273.1 ± 7.1 Extractable NH4
(mg kg−1)96.2 ± 0.5 109.1 ± 0.9 108.0 ± 0.9 109.2 ± 0.8 376.2 ± 2.7 377.3 ± 2.8 381.2 ± 2.6 397.5 ± 0.6 418.2 ± 0.7 438.2 ± 0.8 K (mg kg−1) 6.4 ± 0.4 4.5 ± 0.7 4.3 ± 0.6 3.9 ± 0.6 4.8 ± 0.4 4.6 ± 0.5 5.3 ± 0.7 3.6 ± 0.3 6.2 ± 0.4 10.1 ± 0.5 Ca (cmol(+) kg−1) 0.3 ± 0.03 27 ± 4.1 26.9 ± 4.2 27.0 ± 4.1 30.3 ± 2.4 31.2 ± 2.4 39.2 ± 2.5 41.0 ± 4.4 42.2 ± 4.1 45.2 ± 3.5 Mg (cmol(+) kg−1) 20.6 ± 1.2 11.3 ± 1.4 11.3 ± 1.3 10.9 ± 1.8 10.6 ± 2.0 10.1 ± 1.6 11.5 ± 1.6 9.5 ± 1.1 8.0 ± 1.0 13.2 ± 1.4 Na (cmol(+) kg−1) 0.3 ± 0.01 2.4 ± 0.02 2.5 ± 0.01 2.5 ± 0.02 3.6 ± 0.7 3.7 ± 0.8 4.0 ± 0.9 3.9 ± 0.6 4.1 ± 0.3 5.1 ± 0.4 Cu (cmol(+) kg−1) 111 ± 9.8 201 ± 25.8 204. ± 25.8 202 ± 25.8 315 ± 38.6 312 ± 20.1 328 ± 20.2 351 ± 22.6 356 ± 22.7 360 ± 25.6 Zn (cmol(+) kg−1) 64.1 ± 5.5 330.6 ± 2.9 331.6 ± 4.1 332.3 ± 3.1 416.9 ± 0.8 415.6 ± 0.9 417.7 ± 0.8 432.6 ± 5.3 433.6 ± 5.4 438.2 ± 5.2 Bulk density (kg cm−3) 1.53 ± 0.8 1.48 ± 0.6 1.46 ± 0.6 1.42 ± 0.6 1.45 ± 0.7 1.32 ± 0.6 1.28 ± 0.8 1.32 ± 0.6 1.10 ± 0.6 0.80 ± 0.4 EC, electrical conductivity; CEC, cation exchange capacity. Data are means ± standard error of the means for three replicates. The results showed the cumulative effects of applying of high quantity (22.5 t ha−1) of cattle manure for three consecutive years. The highest values of measured soil parameters were observed in the third year (2022) in the 22.5 t ha−1 cattle manure application rate treatment (Table 5). The bulk density decreased by 47.71% from 1.52 kg cm−3 in the control to 0.80 kg cm−3 in the tied ridges + 22.5 t ha−1 cattle manure application rate in 2022.
-
The research did not receive any specific funding, but was performed as part of employment at the Midlands State University, Zimbabwe and Marondera University of Agricultural Sciences and Technology, Zimbabwe. The authors gratefully acknowledge the Mr. Takaendesa Muzokomba for the resources to carry this study at his field.
-
About this article
Cite this article
Parwada C, Makore F, Chipomho J, Makuvaro V, Bandason W. 2024. Effects of tied ridges and different cattle manure application rates on soil moisture and rainfall use efficiency on maize growth and yield in semi-arid regions of Zimbabwe. Technology in Agronomy 4: e021 doi: 10.48130/tia-0024-0018
Effects of tied ridges and different cattle manure application rates on soil moisture and rainfall use efficiency on maize growth and yield in semi-arid regions of Zimbabwe
- Received: 11 December 2023
- Revised: 18 May 2024
- Accepted: 22 May 2024
- Published online: 02 August 2024
Abstract: A 3-year rainfed field experiment was carried out to determine the effects of combined tied ridges and cattle manure application rates on maize productivity. The experiment was laid as a 2 × 4 factorial in a completely randomized block design (CRBD) with three replicates. Treatment combinations were tied ridges + 7.5 t ha−1 low cattle manure (TLM), tied ridges + 15 t ha−1 standard cattle manure (TSM), and tied ridges + 22.5 t ha−1 high cattle manure (THM) application rates. No-tied ridges + low, medium, and high quantities of cattle manure were used as positive controls. Early maturing maize variety (SC537) was then planted at 52,000 plants ha−1 in each plot. Soil water storage, soil bulk density, rainfall, dry matter accumulation (DMA), and grain yield were measured. Rainfall use efficiency (RUE) was then calculated. Analysis of variance was carried out to determine the effects of tied ridging and cattle manure on soil moisture content, RUE, and grain yield. The addition of cattle manure in tied ridges increased the soil moisture content, RUE, DMA, and grain yield. The measured parameters were significantly (p < 0.05) increasing with an increase in the quantity of cattle manure applied. The THM had 40% higher soil moisture content, 20% more RUE, and > 50% DMA compared to TLM. Grain yields significantly (p < 0.05) increased with an increase in application rates of cattle manure with the highest (3.2 t ha−1) recorded in the 2022 season under the THM treatment. The THM had significantly (p < 0.05) higher grain yield compared to no-tied ridges combined with corresponding cattle manure application rates. Farmers can practice tied ridges and 22.5 t ha−1 cattle manure to improve RUE and maize grain yields in the semi-arid areas of Zimbabwe.
-
Key words:
- Arid conditions /
- Drought /
- Maize production /
- Organic manure /
- Soil water