[1]
|
Jin Q, Jiang Q, Zhao L, Su C, Li S, et al. 2017. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. Journal of Biotechnology 259:199−203 doi: 10.1016/j.jbiotec.2017.07.011
CrossRef Google Scholar
|
[2]
|
Logan N, Vos P. 2015. Bacillus. In Bergey's Manual of Systematics of Archaea and Bacteria. USA: Bergey's Manual Trust. pp. 1–163. doi: 10.1002/9781118960608.gbm00530
|
[3]
|
Rooney AP, Price NPJ, Ehrhardt C, Swezey JL, Bannan JD. 2009. Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. International Journal of Systematic and Evolutionary Microbiology 59:2429−36 doi: 10.1099/ijs.0.009126-0
CrossRef Google Scholar
|
[4]
|
Priest FG, Goodfellow M, Shute L, Berkeley R. 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. International Journal of Systematic Bacteriology 37:69−71 doi: 10.1099/00207713-37-1-69
CrossRef Google Scholar
|
[5]
|
Gordon R, Haynes W, Pang C, Smith N. 1973. The genus Bacillus Handbook No. 427. U.S. Department of Agriculture, Washington, D.C., USA
|
[6]
|
Nakamura LK. 1989. Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. International Journal of Systematic Bacteriology 39:295−300 doi: 10.1099/00207713-39-3-295
CrossRef Google Scholar
|
[7]
|
Roberts MS, Nakamura LK, Cohan FM. 1994. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. International Journal of Systematic Bacteriology 44:256−64 doi: 10.1099/00207713-44-2-256
CrossRef Google Scholar
|
[8]
|
Roberts M, Nakamura L, Cohan F. 1996. Bacillus vallismortis sp. nov. , a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. International Journal of Systematic Bacteriology 46:470−75 doi: 10.1099/00207713-46-2-470
CrossRef Google Scholar
|
[9]
|
Palmisano M, Nakamura L, Duncan K, Istock C, Cohan F. 2001. Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. International Journal of Systematic and Evolutionary Microbiology 51:1671−79 doi: 10.1099/00207713-51-5-1671
CrossRef Google Scholar
|
[10]
|
Ruiz-García C, Béjar V, Martínez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology 55:191−95 doi: 10.1099/ijs.0.63310-0
CrossRef Google Scholar
|
[11]
|
Ruiz-García C, Quesada E, Martínez-Checa F, Llamas I, Urdaci MC, et al. 2005. Bacillus axarquiensis sp. nov. and Bacillus malacitensis sp. nov., isolated from river-mouth sediments in southern Spain. International Journal of Systematic and Evolutionary Microbiology 55:1279−85 doi: 10.1099/ijs.0.63567-0
CrossRef Google Scholar
|
[12]
|
Gatson J, Benz B, Chandrasekaran C, Satomi M, Venkateswaran K, et al. 2006. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. International Journal of Systematic and Evolutionary Microbiology 56:1475−84 doi: 10.1099/ijs.0.63946-0
CrossRef Google Scholar
|
[13]
|
Shivaji S, Chaturvedi P, Suresh K, Reddy GSN, Dutt CBS, et al. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov. , Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology 56:1465−73 doi: 10.1099/ijs.0.64029-0
CrossRef Google Scholar
|
[14]
|
Satomi M, La Duc MT, Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. International Journal of Systematic and Evolutionary Microbiology 56:1735−40 doi: 10.1099/ijs.0.64189-0
CrossRef Google Scholar
|
[15]
|
Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology 60:2490−95 doi: 10.1099/ijs.0.015487-0
CrossRef Google Scholar
|
[16]
|
Sumpavapol P, Tongyonk L, Tanasupawat S, Chokesajjawatee N, Luxananil P, et al. 2010. Bacillus siamensis sp. nov. , isolated from salted crab (poo-khem) in Thailand. International Journal of Systematic and Evolutionary Microbiology 60:2364−70 doi: 10.1099/ijs.0.018879-0
CrossRef Google Scholar
|
[17]
|
Lai Q, Liu Y, Shao Z. 2014. Bacillus xiamenensis sp. nov. , isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek 105:99−107 doi: 10.1007/s10482-013-0057-4
CrossRef Google Scholar
|
[18]
|
Chen YG, Gu FL, Li JH, Xu F, He SZ, et al. 2015. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean. Current Microbiology 70:235−239 doi: 10.1007/s00284-014-0707-4
CrossRef Google Scholar
|
[19]
|
Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2015. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. International Journal of Systematic and Evolutionary Microbiology 65:2104−9 doi: 10.1099/ijs.0.000226
CrossRef Google Scholar
|
[20]
|
Kim SJ, Dunlap CA, Kwon SW, Rooney AP. 2015. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste. International Journal of Systematic and Evolutionary Microbiology 65:3586−90 doi: 10.1099/ijsem.0.000462
CrossRef Google Scholar
|
[21]
|
Liu B, Liu G, Cetin S, Schumann P, Pan Z, et al. 2016. Bacillus gobiensis sp. nov., isolated from a soil sample. International Journal of Systematic and Evolutionary Microbiology 66:379−84 doi: 10.1099/ijsem.0.000729
CrossRef Google Scholar
|
[22]
|
Dunlap CA. 2015. Phylogenomic analysis shows that 'Bacillus vanillea' is a later heterotypic synonym of Bacillus siamensis. International Journal of Systematic and Evolutionary Microbiology 65:3507−10 doi: 10.1099/ijsem.0.000444
CrossRef Google Scholar
|
[23]
|
Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology 66:1212−17 doi: 10.1099/ijsem.0.000858
CrossRef Google Scholar
|
[24]
|
Nakamura LK, Roberts MS, Cohan FM. 1999. Note: Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. International Journal of Systematic and Evolutionary Microbiology 49:1211−15 doi: 10.1099/00207713-49-3-1211
CrossRef Google Scholar
|
[25]
|
Sansinenea E. 2019. Bacillus spp.: as plant growth-promoting Bacteria. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications, eds Singh HB, C Keswani C, Reddy MS, Sansinenea E, García-Estrada C. Singapore: Springer. pp. 225–37. doi: 10.1007/978-981-13-5862-3_11
|
[26]
|
Chen L, Shi H, Heng J, Wang D, Bian K. 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research 218:41−48 doi: 10.1016/j.micres.2018.10.002
CrossRef Google Scholar
|
[27]
|
Li FZ, Zeng YJ, Zong MH, Yang JG, Lou WY. 2020. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. Journal of Biotechnology 323:42−53 doi: 10.1016/J.JBIOTEC.2020.07.021
CrossRef Google Scholar
|
[28]
|
Kang X, Zhang W, Cai X, Zhu T, Xue Y, et al. 2018. Bacillus velezensis CC09: a potential 'Vaccine' for controlling wheat diseases. Molecular plant-microbe interactions 31:623−32 doi: 10.1094/mpmi-09-17-0227-r
CrossRef Google Scholar
|
[29]
|
Khan MS, Gao J, Chen X, Zhang M, Yang F, et al. 2020. The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum harbors antifungal activity and plant growth-promoting effects. Journal of Microbiology and Biotechnology 30:668−80 doi: 10.4014/jmb.1910.10021
CrossRef Google Scholar
|
[30]
|
Shin JH, Park BS, Kim HY, Lee KH, Kim KS. 2021. Antagonistic and plant growth-promoting effects of Bacillus velezensis BS1 isolated from rhizosphere soil in a pepper field. The Plant Pathology Journal 37:307−14 doi: 10.5423/PPJ.NT.03.2021.0053
CrossRef Google Scholar
|
[31]
|
Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an 'Operational Group B. amyloliquefaciens' within the B. subtilis species complex. Frontiers in Microbiology 8:22 doi: 10.3389/fmicb.2017.00022
CrossRef Google Scholar
|
[32]
|
Chen L, Gu W, Xu HY, Yang GL, Shan XF, et al. 2018. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 8:114 doi: 10.1007/s13205-018-1125-2
CrossRef Google Scholar
|
[33]
|
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology 25:1007−14 doi: 10.1038/nbt1325
CrossRef Google Scholar
|
[34]
|
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, et al. 2014. Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions 27:87−100 doi: 10.1094/mpmi-09-13-0262-r
CrossRef Google Scholar
|
[35]
|
Cho SE, Oh JY, Lee DH. 2022. Complete mitochondrial genome sequence of Colletotrichum siamense isolated in South Korea. Microbiology Resource Announcements 11:e0105521 doi: 10.1128/mra.01055-21
CrossRef Google Scholar
|
[36]
|
Kim SY, Song H, Sang MK, Weon HY, Song J. 2017. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid. Journal of Biotechnology 259:221−27 doi: 10.1016/j.jbiotec.2017.06.1206
CrossRef Google Scholar
|
[37]
|
Liu G, Kong Y, Fan Y, Geng C, Peng D, et al. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. Journal of Biotechnology 249:20−24 doi: 10.1016/j.jbiotec.2017.03.018
CrossRef Google Scholar
|
[38]
|
Pan HQ, Li QL, Hu JC. 2017. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. Journal of Biotechnology 247:25−28 doi: 10.1016/j.jbiotec.2017.02.022
CrossRef Google Scholar
|
[39]
|
Lim SBY, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, et al. 2018. Genome sequence of Bacillus velezensis SGAir0473, isolated from tropical air collected in Singapore. Genome Announcements 6:e00642-18 doi: 10.1128/genomeA.00642-18
CrossRef Google Scholar
|
[40]
|
Petrova P, Velikova P, Petrov K. 2019. Genome sequence of Bacillus velezensis 5RB, an overproducer of 2,3-butanediol. Microbiology Resource Announcements 8:e01475-18 doi: 10.1128/MRA.01475-18
CrossRef Google Scholar
|
[41]
|
Xu P, Xie S, Liu W, Jin P, Wei D, et al. 2020. Comparative Genomics Analysis Provides New Strategies for Bacteriostatic Ability of Bacillus velezensis HAB-2. Frontiers in Microbiology 11:594079 doi: 10.3389/fmicb.2020.594079
CrossRef Google Scholar
|
[42]
|
Ding H, Mo W, Yu S, Cheng H, Peng L, et al. 2021. Whole genome sequence of Bacillus velezensis strain GUMT319: a potential biocontrol agent against tobacco black shank disease. Frontiers in Microbiology 12:658113 doi: 10.3389/fmicb.2021.658113
CrossRef Google Scholar
|
[43]
|
Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods 10:563 doi: 10.3390/foods10030563
CrossRef Google Scholar
|
[44]
|
Lee H, Jung DH, Seo DH, Chung WH, Seo MJ. 2021. Genome analysis of 1-deoxynojirimycin (1-DNJ)-producing Bacillus velezensis K26 and distribution of Bacillus sp. harboring a 1-DNJ biosynthetic gene cluster. Genomics 113:647−53 doi: 10.1016/j.ygeno.2020.09.061
CrossRef Google Scholar
|
[45]
|
Dong X, Tu C, Xie Z, Luo Y, Zhang L, et al. 2022. The genome of Bacillus velezensis SC60 provides evidence for its plant probiotic effects. Microorganisms 10:767 doi: 10.3390/microorganisms10040767
CrossRef Google Scholar
|
[46]
|
Farooq SA, de Jong A, Khaliq S, Kuipers OP. 2022. Draft genome sequences of Bacillus velezensis strains AF_3B and OS2, Bacillus amyloliquefaciens strain BS9, Bacillus halotolerans strain A1, and Bacillus sp. strain BS3, producing biosurfactants with antimicrobial potential. Microbiology Resource Announcements 11:e0048222 doi: 10.1128/mra.00482-22
CrossRef Google Scholar
|
[47]
|
Na HE, Heo S, Kim YS, Kim T, Lee G, et al. 2022. The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. LWT 161:13398 doi: 10.1016/j.lwt.2022.113398
CrossRef Google Scholar
|
[48]
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, et al. 2023. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Scientific Reports 13:19095 doi: 10.1038/s41598-023-46672-1
CrossRef Google Scholar
|
[49]
|
Su Z, Liu G, Liu X, Li S, Lu X, et al. 2023. Functional analyses of the Bacillus velezensis HMB26553 genome provide evidence that its genes are potentially related to the promotion of plant growth and prevention of cotton rhizoctonia damping-off. Cells 12:1301 doi: 10.3390/cells12091301
CrossRef Google Scholar
|
[50]
|
Zhu Z, Peng Q, Man Y, Li Z, Zhou X, et al. 2020. Analysis of the antifungal properties of Bacillus velezensis B-4 through a bioassay and complete-genome sequencing. Frontiers in Genetics 11:703 doi: 10.3389/fgene.2020.00703
CrossRef Google Scholar
|
[51]
|
Fazle Rabbee M, Baek KH. 2020. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 25:254973 doi: 10.3390/molecules25214973
CrossRef Google Scholar
|
[52]
|
Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, et al. 2019. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology 19:5 doi: 10.1186/s12866-018-1380-8
CrossRef Google Scholar
|
[53]
|
Adeniji AA, Aremu OS, Babalola OO. 2019. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. MicrobiologyOpen 8:e00742 doi: 10.1002/mbo3.742
CrossRef Google Scholar
|
[54]
|
Jin P, Wang H, Tan Z, Xuan Z, Dahar GY, et al. 2020. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pesticide Biochemistry and Physiology 163:102−7 doi: 10.1016/j.pestbp.2019.11.004
CrossRef Google Scholar
|
[55]
|
Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, et al. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils 51:403−15 doi: 10.1007/s00374-015-0996-1
CrossRef Google Scholar
|
[56]
|
Backer R, Rokem J, Ilangumaran G, Lamont J, Praslickova D, et al. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1473 doi: 10.3389/fpls.2018.01473
CrossRef Google Scholar
|
[57]
|
Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, et al. 2022. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal 16:774−87 doi: 10.1038/s41396-021-01125-3
CrossRef Google Scholar
|
[58]
|
Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. 2019. The classification and evolution of bacterial cross-feeding. Frontiers in Ecology and Evolution 7:153 doi: 10.3389/fevo.2019.00153
CrossRef Google Scholar
|
[59]
|
Sasse J, Martinoia E, Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science 23:25−41 doi: 10.1016/j.tplants.2017.09.003
CrossRef Google Scholar
|
[60]
|
Gu S, Wei Z, Shao Z, Friman VP, Cao K, et al. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology 5:1002−10 doi: 10.1038/s41564-020-0719-8
CrossRef Google Scholar
|
[61]
|
Tsotetsi T, Nephali L, Malebe M, Tugizimana F. 2022. Bacillus for plant growth promotion and stress resilience: what have we learned? Plants 11:2482 doi: 10.3390/plants11192482
CrossRef Google Scholar
|
[62]
|
Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, et al. 2021. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems 6:e00770-20 doi: 10.1128/mSystems.00770-20
CrossRef Google Scholar
|
[63]
|
Russel J, Røder HL, Madsen JS, Burmølle M, Sørensen SJ. 2017. Antagonism correlates with metabolic similarity in diverse bacteria. Proceedings of the National Academy of Sciences of the United States of America 114:10684−88 doi: 10.1073/pnas.1706016114
CrossRef Google Scholar
|
[64]
|
Xia L, Miao Y, Cao AL, Liu Y, Liu Z, et al. 2022. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus. Nature Communications 13:1023 doi: 10.1038/s41467-022-28668-z
CrossRef Google Scholar
|
[65]
|
Zhou J, Ning D. 2017. Stochastic community assembly: does it matter in microbial ecology? Microbiology & Molecular Biology Reviews 81:e00002−17
Google Scholar
|
[66]
|
Gao R, Stock AM. 2009. Biological insights from structures of two-component proteins. Annual Review of Microbiology 63:133−54 doi: 10.1146/ANNUREV.MICRO.091208.073214
CrossRef Google Scholar
|
[67]
|
Mascher T, Helmann JD, Unden G. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiology and Molecular Biology Reviews 70:910−938 doi: 10.1128/MMBR.00020-06
CrossRef Google Scholar
|
[68]
|
López D, Kolter R. 2010. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS microbiology reviews 34:134−49 doi: 10.1111/J.1574-6976.2009.00199.X
CrossRef Google Scholar
|
[69]
|
Omer Bendori S, Pollak S, Hizi D, Eldar A. 2015. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. Journal of Bacteriology 197:592−602 doi: 10.1128/JB.02382-14
CrossRef Google Scholar
|
[70]
|
Whitten AE, Jacques DA, Hammouda B, Hanley T, King GF, et al. 2007. The structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition. Journal of Molecular Biology 368:407−20 doi: 10.1016/J.JMB.2007.01.064
CrossRef Google Scholar
|
[71]
|
Yan F, Yu Y, Wang L, Luo Y, Guo JH, et al. 2016. The comER gene plays an important role in biofilm formation and sporulation in both Bacillus subtilis and Bacillus cereus. Frontiers in Microbiology 7:1025 doi: 10.3389/FMICB.2016.01025
CrossRef Google Scholar
|
[72]
|
Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, et al. 2016. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Molecular Microbiology 101:606−624 doi: 10.1111/MMI.13411
CrossRef Google Scholar
|
[73]
|
Marlow VL, Porter M, Hobley L, Kiley TB, Swedlow JR, et al. 2014. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. Journal of Bacteriology 196:16−27 doi: 10.1128/JB.00930-13
CrossRef Google Scholar
|
[74]
|
Ogura M, Shimane K, Asai K, Ogasawara N, Tanaka T. 2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Molecular microbiology 49:1685−97 doi: 10.1046/J.1365-2958.2003.03665.X
CrossRef Google Scholar
|
[75]
|
Verhamme DT, Kiley TB, Stanley-Wall NR. 2007. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Molecular Microbiology 65:554−68 doi: 10.1111/j.1365-2958.2007.05810.x
CrossRef Google Scholar
|
[76]
|
Verhamme DT, Murray EJ, Stanley-Wall NR. 2009. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. Journal of Bacteriology 191:100−8 doi: 10.1128/JB.01236-08
CrossRef Google Scholar
|
[77]
|
Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D. 2000. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 97:9246−51 doi: 10.1073/PNAS.160010597
CrossRef Google Scholar
|
[78]
|
Li Y, Zhang H, Li Y, Chen S. 2021. Fusaricidin biosynthesis is controlled via a KinB-Spo0A-AbrB signal pathway in Paenibacillus polymyxa WLY78. Molecular Plant-Microbe Interactions 34:1378−89 doi: 10.1094/MPMI-05-21-0117-R
CrossRef Google Scholar
|
[79]
|
Qiu SQ, Chen Y, Peng XJ, He SJ, Cheng JK, et al. 2022. Asymmetric construction of an aryl-alkene axis by palladium-catalyzed Suzuki–Miyaura coupling reaction. Angewandte Chemie International Edition 61:e202211211 doi: 10.1002/ANIE.202211211
CrossRef Google Scholar
|
[80]
|
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, et al. 2017. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research 77:1783−812 doi: 10.1158/0008-5472.Can-16-2929
CrossRef Google Scholar
|
[81]
|
Andersson DI, Hughes D, Kubicek-Sutherland JZ. 2016. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates 26:43−57 doi: 10.1016/j.drup.2016.04.002
CrossRef Google Scholar
|
[82]
|
Diaz AR, Core LJ, Jiang M, Morelli M, Chiang CH, et al. 2012. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. Journal of Bacteriology 194:1378−88 doi: 10.1128/jb.06747-11
CrossRef Google Scholar
|
[83]
|
Okada M, Sato I, Cho SJ, Iwata H, Nishio T, et al. 2005. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nature Chemical Biology 1:23−24 doi: 10.1038/nchembio709
CrossRef Google Scholar
|
[84]
|
Dogsa I, Choudhary KS, Marsetic Z, Hudaiberdiev S, Vera R, et al. 2014. ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: a census in prokaryotic genomes. PLoS ONE 9:e96122 doi: 10.1371/journal.pone.0096122
CrossRef Google Scholar
|
[85]
|
Spacapan M, Danevčič T, Mandic-Mulec I. 2018. ComX-induced exoproteases degrade ComX in Bacillus subtilis PS-216. Frontiers in Microbiology 9:105 doi: 10.3389/fmicb.2018.00105
CrossRef Google Scholar
|
[86]
|
Na HE, Heo S, Kim T, Lee G, Lee JH, et al. 2023. ComQXPA quorum-sensing systems contribute to enhancing the protease activity of Bacillus velezensis DMB05 from fermented soybeans. International Journal of Food Microbiology 401:110294 doi: 10.1016/j.ijfoodmicro.2023.110294
CrossRef Google Scholar
|
[87]
|
Pottathil M, Jung A, Lazazzera BA. 2008. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. Journal of Bacteriology 190:4095−99 doi: 10.1128/JB.00187-08
CrossRef Google Scholar
|
[88]
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. 2017. Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. Annual Review of Genetics 51:311−33 doi: 10.1146/annurev-genet-120116-023507
CrossRef Google Scholar
|
[89]
|
Guan C, Cui W, Cheng J, Zhou L, Guo J, et al. 2015. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microbial Cell Factories 14:150 doi: 10.1186/S12934-015-0341-2
CrossRef Google Scholar
|
[90]
|
Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I. 2014. Private link between signal and response in Bacillus subtilis quorum sensing. Proceedings of the National Academy of Sciences of the United States of America 111:1586−91 doi: 10.1073/PNAS.1316283111/-/DCSUPPLEMENTAL/PNAS.201316283SI.PDF
CrossRef Google Scholar
|
[91]
|
Nakano MM, Zuber P. 1989. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. Journal of Bacteriology 171:5347−53 doi: 10.1128/JB.171.10.5347-5353.1989
CrossRef Google Scholar
|
[92]
|
Jahns AC, Eilers H, Alexeyev OA. 2016. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro. Anaerobe 42:111−18 doi: 10.1016/j.anaerobe.2016.10.001
CrossRef Google Scholar
|
[93]
|
Yehuda A, Slamti L, Malach E, Lereclus D, Hayouka Z. 2019. Elucidating the hot spot residues of quorum sensing peptidic autoinducer PapR by multiple amino acid replacements. Frontiers in Microbiology 10:1246 doi: 10.3389/fmicb.2019.01246
CrossRef Google Scholar
|
[94]
|
de F Cardoso P, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. 2019. Diversity of the Rap–Phr quorum-sensing systems in the Bacillus cereus group. Current Genetics 65:1367−81 doi: 10.1007/s00294-019-00993-9
CrossRef Google Scholar
|
[95]
|
Bischofs IB, Hug JA, Liu AW, Wolf DM, Arkin AP. 2009. Complexity in bacterial cell–cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proceedings of the National Academy of Sciences 106:6459−64 doi: 10.1073/pnas.0810878106
CrossRef Google Scholar
|
[96]
|
Hunt K, Butler F, Jordan K. 2017. Uncoupling 'growth' and 'increasing cell numbers' of Listeria monocytogenes in naturally contaminated milk from a sub-clinically infected cow. Food Control 71:228−33 doi: 10.1016/j.foodcont.2016.07.002
CrossRef Google Scholar
|
[97]
|
Preda VG, Săndulescu O. 2019. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries 7:e100 doi: 10.15190/d.2019.13
CrossRef Google Scholar
|
[98]
|
Yang F, Jiang H, Ma K, Wang X, Liang S, et al. 2023. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Frontiers in Microbiology 14:1279695 doi: 10.3389/FMICB.2023.1279695/BIBTEX
CrossRef Google Scholar
|
[99]
|
Xavier KB, Bassler BL. 2003. LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology 6:191−197 doi: 10.1016/S1369-5274(03)00028-6
CrossRef Google Scholar
|
[100]
|
Xiong Q, Liu D, Zhang H, Dong X, Zhang G, et al. 2020. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Applied Microbiology and Biotechnology 104:7177−85 doi: 10.1007/s00253-020-10713-w
CrossRef Google Scholar
|
[101]
|
Dong YH, Xu JL, Li XZ, Zhang LH. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences 97:3526−31 doi: 10.1073/PNAS.060023897
CrossRef Google Scholar
|
[102]
|
Sun X, Liu J, Deng S, Li R, Lv W, et al. 2022. Quorum quenching Bacteria Bacillus velezensis DH82 on biological control of vibrio parahaemolyticus for sustainable aquaculture of Litopenaeus vannamei. Frontiers in Marine Science 9:780055 doi: 10.3389/fmars.2022.780055
CrossRef Google Scholar
|
[103]
|
Nakaya Y, Uchiike M, Hattori M, Moriyama M, Abe K, et al. 2023. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Molecular Microbiology 120:384−96 doi: 10.1111/MMI.15126
CrossRef Google Scholar
|
[104]
|
Olishevska S, Nickzad A, Déziel E. 2019. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology 103:1189−215 doi: 10.1007/S00253-018-9541-0
CrossRef Google Scholar
|
[105]
|
Basi-Chipalu S, Sthapit P, Dhital S. 2022. A review on characterization, applications and structure-activity relationships of Bacillus species-produced bacteriocins. Drug Discoveries & Therapeutics 16:55−62 doi: 10.5582/DDT.2021.01087
CrossRef Google Scholar
|
[106]
|
Doekel S, Marahiel MA. 2001. Biosynthesis of natural products on modular peptide synthetases. Metabolic Engineering 3:64−77 doi: 10.1006/MBEN.2000.0170
CrossRef Google Scholar
|
[107]
|
Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in Microbiology 6:780 doi: 10.3389/fmicb.2015.00780
CrossRef Google Scholar
|
[108]
|
Zhang L, Sun C. 2018. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Applied and Environmental Microbiology 84:e00445−18 doi: 10.1128/AEM.00445-18
CrossRef Google Scholar
|
[109]
|
Kim PI, Ryu J, Kim YH, Chi YT. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology 20:138−45 doi: 10.4014/JMB.0905.05007
CrossRef Google Scholar
|
[110]
|
Sajitha KL, Dev SA, Maria Florence EJ. 2016. Identification and characterization of lipopeptides from Bacillus subtilis B1 against sapstain fungus of rubberwood through MALDI-TOF-MS and RT-PCR. Current Microbiology 73:46−53 doi: 10.1007/S00284-016-1025-9/METRICS
CrossRef Google Scholar
|
[111]
|
Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, et al. 2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology 140:27−37 doi: 10.1016/j.jbiotec.2008.10.011
CrossRef Google Scholar
|
[112]
|
Lv J, Da R, Cheng Y, Tuo X, Wei J, et al. 2020. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. BioMed Research International 2020:3104613 doi: 10.1155/2020/3104613
CrossRef Google Scholar
|
[113]
|
Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16:115−25 doi: 10.1016/j.tim.2007.12.009
CrossRef Google Scholar
|
[114]
|
Zhou D, Hu F, Lin J, Wang W, Li S. 2019. Genome and transcriptome analysis of Bacillus velezensis BS-37, an efficient surfactin producer from glycerol, in response to d-/l-leucine. MicrobiologyOpen 8:e00794 doi: 10.1002/mbo3.794
CrossRef Google Scholar
|
[115]
|
Zhi Y, Wu Q, Xu Y. 2017. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Scientific Reports 7:40976 doi: 10.1038/srep40976
CrossRef Google Scholar
|
[116]
|
Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, et al. 1991. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. Journal of Bacteriology 173:1770−78 doi: 10.1128/JB.173.5.1770-1778.1991
CrossRef Google Scholar
|
[117]
|
Domingos DF, de Faria AF, de Souza Galaverna R, Eberlin MN, Greenfield P, et al. 2015. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Applied Microbiology and Biotechnology 99:3155−67 doi: 10.1007/S00253-015-6377-8
CrossRef Google Scholar
|
[118]
|
Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, et al. 2010. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. Journal of Applied Microbiology 109:480−91 doi: 10.1111/J.1365-2672.2010.04683.X
CrossRef Google Scholar
|
[119]
|
Zhao H, Shao D, Jiang C, Shi J, Li Q, et al. 2017. Biological activity of lipopeptides from Bacillus. Applied Microbiology and Biotechnology 101:5951−60 doi: 10.1007/s00253-017-8396-0
CrossRef Google Scholar
|
[120]
|
Jin P, Wang H, Liu W, Fan Y, Miao W. 2018. A new cyclic lipopeptide isolated from Bacillus amyloliquefaciens HAB-2 and safety evaluation. Pesticide Biochemistry and Physiology 147:40−45 doi: 10.1016/J.PESTBP.2017.08.015
CrossRef Google Scholar
|
[121]
|
Hoff G, Arias AA, Boubsi F, Pršic J, Meyer T, et al. 2021. Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. mBio 12:e0177421 doi: 10.1128/mBio.01774-21
CrossRef Google Scholar
|
[122]
|
Zhang Y, Qi J, Wang Y, Wen J, Zhao X, et al. 2022. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiological Research 254:126920 doi: 10.1016/j.micres.2021.126920
CrossRef Google Scholar
|
[123]
|
Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud JM, et al. 2015. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Applied Microbiology and Biotechnology 99:5083−93 doi: 10.1007/S00253-014-6317-Z
CrossRef Google Scholar
|
[124]
|
Kracht M, Rokos H, Özel M, Kowall M, Pauli G, et al. 1999. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. The Journal of antibiotics 52:613−19 doi: 10.7164/ANTIBIOTICS.52.613
CrossRef Google Scholar
|
[125]
|
Etchegaray A, De Castro Bueno C, De Melo IS, Tsai SM, De Fátima Fiore M, et al. 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology 190:611−22 doi: 10.1007/S00203-008-0409-Z
CrossRef Google Scholar
|
[126]
|
Ali S, Hameed S, Imran A, Iqbal M, Lazarovits G. 2014. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microbial Cell Factories 13:144 doi: 10.1186/S12934-014-0144-X
CrossRef Google Scholar
|
[127]
|
Wan C, Fan X, Lou Z, Wang H, Olatunde A, et al. 2022. Iturin: cyclic lipopeptide with multifunction biological potential. Critical Reviews in Food Science and Nutrition 62:7976−88 doi: 10.1080/10408398.2021.1922355
CrossRef Google Scholar
|
[128]
|
Hiradate S, Yoshida S, Sugie H, Yada H, Fujii Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693−98 doi: 10.1016/S0031-9422(02)00365-5
CrossRef Google Scholar
|
[129]
|
Yu C, Liu X, Zhang X, Zhang M, Gu Y, et al. 2021. Mycosubtilin produced by Bacillus subtilis ATCC6633 inhibits growth and mycotoxin biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins 13:791 doi: 10.3390/toxins13110791
CrossRef Google Scholar
|
[130]
|
Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF. 1995. Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. The Journal of Antibiotics 48:1240−47 doi: 10.7164/ANTIBIOTICS.48.1240
CrossRef Google Scholar
|
[131]
|
Roongsawang N, Washio K, Morikawa M. 2011. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences 12:141−72 doi: 10.3390/ijms12010141
CrossRef Google Scholar
|
[132]
|
Tsuge K, Akiyama T, Shoda M. 2001. Cloning, sequencing, and characterization of the Iturin A operon. Journal of Bacteriology 183:6265−73 doi: 10.1128/JB.183.21.6265-6273.2001
CrossRef Google Scholar
|
[133]
|
Koumoutsi A, Chen XH, Vater J, Borriss R. 2007. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Applied and Environmental Microbiology 73:6953−64 doi: 10.1128/AEM.00565-07
CrossRef Google Scholar
|
[134]
|
Moyne AL, Cleveland TE, Tuzun S. 2004. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiology Letters 234:43−49 doi: 10.1016/J.FEMSLE.2004.03.011
CrossRef Google Scholar
|
[135]
|
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, et al. 2007. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Applied and Environmental Microbiology 73:3490−96 doi: 10.1128/AEM.02751-06
CrossRef Google Scholar
|
[136]
|
Chen K, Tian Z, Luo Y, Cheng Y, Long CA. 2018. Antagonistic activity and the mechanism of bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology 108:1253−62 doi: 10.1094/PHYTO-01-17-0032-R
CrossRef Google Scholar
|
[137]
|
Gu Q, Yang Y, Yuan Q, Shi G, Wu L, et al. 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plantpathogenic fungus Fusarium graminearum. Applied and Environmental Microbiology 83:e0107517 doi: 10.1128/AEM.01075-17
CrossRef Google Scholar
|
[138]
|
Ben Abdallah D, Frikha-Gargouri O, Tounsi S. 2015. Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. Journal of Applied Microbiology 119:196−207 doi: 10.1111/JAM.12797
CrossRef Google Scholar
|
[139]
|
Aranda FJ, Teruel JA, Ortiz A. 2005. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochimica et Biophysica Acta (BBA) - Biomembranes 1713:51−56 doi: 10.1016/J.BBAMEM.2005.05.003
CrossRef Google Scholar
|
[140]
|
Thimon L, Peypoux F, Wallach J, Michel G. 1995. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiology Letters 128:101−6 doi: 10.1111/J.1574-6968.1995.TB07507.X
CrossRef Google Scholar
|
[141]
|
Xu BH, Lu YQ, Ye ZW, Zheng QW, Wei T, et al. 2018. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS ONE 13:0202893
|
[142]
|
Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, et al. 2010. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology 87:499−507 doi: 10.1007/S00253-010-2504-8
CrossRef Google Scholar
|
[143]
|
Yang H, Li X, Li X, Yu H, Shen Z. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Analytical and Bioanalytical Chemistry 407:2529−42 doi: 10.1007/S00216-015-8486-8/TABLES/1
CrossRef Google Scholar
|
[144]
|
Yang R, Lei S, Xu X, Jin H, Sun H, et al. 2020. Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Applied Microbiology and Biotechnology 104:8077−87 doi: 10.1007/S00253-020-10801-X
CrossRef Google Scholar
|
[145]
|
Wu CY, Chen CL, Lee YH, Cheng YC, Wu YC, et al. 2007. Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. The Journal of Biological Chemistry 282:5608−16 doi: 10.1074/JBC.M609726200
CrossRef Google Scholar
|
[146]
|
Wang P, Guo Q, Ma Y, Li S, Lu X, et al. 2015. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiological Research 178:42−50 doi: 10.1016/J.MICRES.2015.06.006
CrossRef Google Scholar
|
[147]
|
Medeot DB, Fernandez M, Morales GM, Jofré E. 2020. Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Frontiers in Microbiology 10:3107 doi: 10.3389/FMICB.2019.03107
CrossRef Google Scholar
|
[148]
|
Chen M, Wang J, Liu B, Zhu Y, Xiao R, et al. 2020. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC microbiology 20:160 doi: 10.1186/S12866-020-01851-2
CrossRef Google Scholar
|
[149]
|
Schneider A, Marahiel MA. 1998. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Archives of Microbiology 169:404−10 doi: 10.1007/S002030050590
CrossRef Google Scholar
|
[150]
|
Vaca J, Ortiz A, Sansinenea E. 2022. Bacillus sp. Bacteriocins: natural weapons against bacterial enemies. Current Medicinal Chemistry 29:2093−108 doi: 10.2174/0929867328666210527093041
CrossRef Google Scholar
|
[151]
|
Lu M, Chen Y, Li L, Ma Y, Tong Z, et al. 2022. Analysis and evaluation of the flagellin activity of Bacillus amyloliquefaciens Ba168 antimicrobial proteins against Penicillium expansum. Molecules 27:4259 doi: 10.3390/MOLECULES27134259
CrossRef Google Scholar
|
[152]
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. 2022. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microbial Cell Factories 21:57 doi: 10.1186/S12934-022-01782-9
CrossRef Google Scholar
|
[153]
|
Alajlani MM. 2022. Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role. Scientific Reports 12:10521 doi: 10.1038/S41598-022-13804-Y
CrossRef Google Scholar
|
[154]
|
Hantke I, Schäfer H, Janczikowski A, Turgay K. 2019. YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Molecular Microbiology 111:423−40 doi: 10.1111/MMI.14164
CrossRef Google Scholar
|
[155]
|
Manjula K, Podile AR. 2005. Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian Journal of Experimental Biology 43:892−96
Google Scholar
|
[156]
|
Akeed Y, Atrash F, Naffaa W. 2020. Partial purification and characterization of chitinase produced byBacillus licheniformis B307. Heliyon 6:e03858 doi: 10.1016/J.HELIYON.2020.E03858
CrossRef Google Scholar
|
[157]
|
Khalid A, Ye M, Wei C, Dai B, Yang R, et al. 2021. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets. Preparative Biochemistry & Biotechnology 51:497−510 doi: 10.1080/10826068.2020.1833344
CrossRef Google Scholar
|
[158]
|
Rajaofera MJN, Wang Y, Dahar GY, Jin P, Fan L, et al. 2019. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pesticide Biochemistry and Physiology 156:170−76 doi: 10.1016/j.pestbp.2019.02.019
CrossRef Google Scholar
|
[159]
|
Tan Z, Clomburg JM, Cheong S, Qian S, Gonzalez R. 2020. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones. Nature Catalysis 3:593−603 doi: 10.1038/s41929-020-0471-8
CrossRef Google Scholar
|
[160]
|
Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, et al. 2007. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 104:1506−1509 doi: 10.1073/pnas.0610503104
CrossRef Google Scholar
|
[161]
|
Jin P, Wang H, Liu W, Miao W. 2017. Characterization of lpaH2 gene corresponding to lipopeptide synthesis in Bacillus amyloliquefaciens HAB-2. BMC Microbiology 17:227 doi: 10.1186/s12866-017-1134-z
CrossRef Google Scholar
|
[162]
|
Ye J, Cao N, Wu J, Hu J, Zhang J. 2014. Progress in the application of Biocontainment of Bacillus sphaericus. Journal of Northwest A& F University (Natural Science Edition) 42(8):185−90 doi: 10.13207/j.cnki.jnwafu.2014.08.019
CrossRef Google Scholar
|
[163]
|
Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant disease 88:736−40 doi: 10.1094/pdis.2004.88.7.736
CrossRef Google Scholar
|
[164]
|
Yan B, Li Z. 2020. Research on the growth-promoting effect of Paenibacillus terrae on maize and its biological control mechanism against NCLB. Ph.D. Dissertation. Heilongjiang Bayi Agricultural University, China. doi:10.27122/d.cnki.ghlnu.2020.000007
|
[165]
|
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, et al. 2021. Systemic propagation of immunity in plants. New Phytologist 229:1234−50 doi: 10.1111/nph.16953
CrossRef Google Scholar
|
[166]
|
Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson M, et al. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology® 92:1329−33 doi: 10.1094/PHYTO.2002.92.12.1329
CrossRef Google Scholar
|
[167]
|
Choudhary DK, Prakash A, Johri BN. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47:289−97 doi: 10.1007/s12088-007-0054-2
CrossRef Google Scholar
|
[168]
|
Yanti Y, Warnita, Reflin. 2019. Involvement of jasmonic acid in the induced systemic resistance of tomato against Ralstonia syzigiisub sp. indonesiensis by indigenous endophyte bacteria. IOP Conference Series: Earth and Environmental Science 347:012024 doi: 10.1088/1755-1315/347/1/012024
CrossRef Google Scholar
|
[169]
|
Ding T, Su B, Chen X, Xie S, Gu S, et al. 2017. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Frontiers in Microbiology 8:262221 doi: 10.3389/FMICB.2017.00903/BIBTEX
CrossRef Google Scholar
|
[170]
|
Adrees H, Haider MS, Anjum T, Akram W. 2019. Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protection 115:75−83 doi: 10.1016/j.cropro.2018.09.011
CrossRef Google Scholar
|
[171]
|
Bai X, Li Q, Zhang D, Zhao Y, Zhao D, et al. 2023. Bacillus velezensis strain HN-Q-8 induced resistance to Alternaria solani and stimulated growth of potato plant. Biology 12:856 doi: 10.3390/BIOLOGY12060856
CrossRef Google Scholar
|
[172]
|
Cao Y, Wang Y, Gui C, Nguvo KJ, Ma L, et al. 2023. Beneficial rhizobacterium triggers induced systemic resistance of maize to gibberella stalk rot via calcium signaling. Molecular Plant-Microbe Interactions 36:516−28 doi: 10.1094/mpmi-08-22-0173-r
CrossRef Google Scholar
|
[173]
|
Segal LM, Wilson RA. 2018. Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology 110:1−9 doi: 10.1016/j.fgb.2017.12.003
CrossRef Google Scholar
|
[174]
|
Guo D. 2020. Research on honokiol and Bacillus velezensis for TMV control. M.S. Thesis. Northwest A&F University, China. doi: 10.27409/d.cnki.gxbnu.2020.001081
|
[175]
|
Yuan Z, Zhao Y, Mo Z, Liu H. 2022. A Bacillus licheniformis glycoside hydrolase 43 protein is recognized as a MAMP. International Journal of Molecular Sciences 23(22):14435 doi: 10.3390/ijms232214435
CrossRef Google Scholar
|
[176]
|
Zhang G, Ding Y, Wang Q, Dai Q, Huang H, et al. 2010. Silicon effects on rice chitinase and β-1,3-glucanase activities and their relationship with resistance to grain blight. Journal of Plant Nutrition and Fertilisation 16:598−604
Google Scholar
|
[177]
|
Ben Rejeb K, Benzarti M, Debez A, Bailly C, Savouré A, et al. 2015. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology 174:5−15 doi: 10.1016/j.jplph.2014.08.022
CrossRef Google Scholar
|
[178]
|
Yu Y, Si F, Wang N, Wang T, Jin Y, et al. 2022. Bacillus-secreted oxalic acid induces tomato resistance against gray mold disease caused by Botrytis cinerea by activating the JA/ET pathway. Molecular Plant-Microbe Interactions 35:659−71 doi: 10.1094/mpmi-11-21-0289-r
CrossRef Google Scholar
|
[179]
|
Karthika S, Remya M, Varghese S, Dhanraj ND, Sali S, et al. 2022. Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10 - As double headed swords to combat Fusarium oxysporum f. sp. lycopersici induced tomato wilt. Microbial Pathogenesis 172:105784 doi: 10.1016/j.micpath.2022.105784
CrossRef Google Scholar
|
[180]
|
Lu Y, Ma D, He X, Wang F, Wu J, et al. 2021. Bacillus subtilis KLBC BS6 induces resistance and defence-related response against Botrytis cinerea in blueberry fruit. Physiological and Molecular Plant Pathology 114:101599 doi: 10.1016/j.pmpp.2020.101599
CrossRef Google Scholar
|
[181]
|
Wang X, Yuan Z, Shi Y, Cai F, Zhao J, et al. 2020. Bacillus amyloliquefaciens HG01 induces resistance in loquats against anthracnose rot caused by Colletotrichum acutatum. Postharvest Biology and Technology 160:111034 doi: 10.1016/j.postharvbio.2019.111034
CrossRef Google Scholar
|
[182]
|
Jia S, Song C, Dong H, Yang X, Li X, et al. 2023. Evaluation of efficacy and mechanism of Bacillus velezensis CB13 for controlling peanut stem rot caused by Sclerotium rolfsii. Frontiers in Microbiology 14:e1111965
|
[183]
|
Wang X, Xie S, Mu X, Guan B, Hu Y, et al. 2023. Investigating the resistance responses to Alternaria brassicicola in 'Korla' fragrant pear fruit induced by a biocontrol strain Bacillus subtilis Y2. Postharvest Biology and Technology 199:112293 doi: 10.1016/j.postharvbio.2023.112293
CrossRef Google Scholar
|
[184]
|
Yánez-Mendizábal V, Falconí CE. 2021. Bacillus subtilis CtpxS2-1 induces systemic resistance against anthracnose in Andean lupin by lipopeptide production. Biotechnology Letters 43:719−28 doi: 10.1007/s10529-020-03066-x
CrossRef Google Scholar
|
[185]
|
Jiang CH, Yao XF, Mi DD, Li ZJ, Yang BY, et al. 2019. Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium Wilt. on watermelon. Frontiers in Microbiology 10:652 doi: 10.3389/fmicb.2019.00652
CrossRef Google Scholar
|
[186]
|
Mou Z, Fan W, Dong X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935−44 doi: 10.1016/s0092-8674(03)00429-x
CrossRef Google Scholar
|
[187]
|
Amin HA, El Kammar HF, Saied SM, Soliman AM. 2023. Effect of Bacillus subtilis on potato virus Y (PVY) disease resistance and growth promotion in potato plants. European Journal of Plant Pathology 167:743−58 doi: 10.1007/s10658-023-02774-0
CrossRef Google Scholar
|
[188]
|
Samaniego-Gámez BY, Valle-Gough RE, Garruña-Hernández R, Reyes-Ramírez A, Latournerie-Moreno L, et al. 2023. Induced systemic resistance in the Bacillus spp. — Capsicum chinense Jacq. — PepGMV interaction, elicited by defense-related gene expression. Plants 12:2069 doi: 10.3390/plants12112069
CrossRef Google Scholar
|
[189]
|
Vanthana M, Nakkeeran S, Malathi VG, Renukadevi P, Vinodkumar S, et al. 2022. Flagellin and elongation factor of Bacillus velezensis (VB7) reprogramme the immune response in tomato towards the management of GBNV infection. Journal of Virological Methods 301:114438 doi: 10.1016/j.jviromet.2021.114438
CrossRef Google Scholar
|
[190]
|
Qiu Y, Yan HH, Sun SM, Wang YQ, Zhao XR, et al. 2022. Use of Bacillus velezensis SDTB022 against tobacco black shank (TBS) and the biochemical mechanism involved. Biological Control 165:104785 doi: 10.1016/j.biocontrol.2021.104785
CrossRef Google Scholar
|
[191]
|
Wang Y. 2021. Function of Arp membrane transporters and anti-PVMV mechanism of Bacillus velezensis. M.S. Thesis. Hainan University, China. doi: 10.27073/d.cnki.ghadu.2021.001395
|
[192]
|
Qin J, Xu YF, Huang Y, Wang HY. 2020. Identification and functional study on sRNA Bpsr112 of Bacillus pumilus. Journal of Sichuan University (Natural Science Edition) 57:993−1001 doi: 10.3969/j.issn.0490-6756.2020.05.026
CrossRef Google Scholar
|
[193]
|
Chao Y, Li L, Girodat D, Förstner KU, Said N, et al. 2017. In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Molecular Cell 65:39−51 doi: 10.1016/J.MOLCEL.2016.11.002
CrossRef Google Scholar
|
[194]
|
Gerrick ER, Barbier T, Chase MR, Xu R, François J, et al. 2018. Small RNA profiling in Mycobacterium tuberculosis identifies MrsI as necessary for an anticipatory iron sparing response. Proceedings of the National Academy of Sciences of the United States of America 115:6464−69 doi: 10.1073/PNAS.1718003115
CrossRef Google Scholar
|
[195]
|
Camacho MI, Alvarez AF, Chavez RG, Romeo T, Merino E, et al. 2015. Effects of the global regulator CsrA on the BarA/UvrY two-Component signaling system. Journal of Bacteriology 197:983−91 doi: 10.1128/JB.02325-14
CrossRef Google Scholar
|
[196]
|
Heidrich N, Chinali A, Gerth U, Brantl S. 2006. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Molecular Microbiology 62:520−36 doi: 10.1111/J.1365-2958.2006.05384.X
CrossRef Google Scholar
|
[197]
|
Morfeldt E, Taylor D, Von Gabain A, Arvidson S. 1995. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. The EMBO Journal 14:4569−77 doi: 10.1002/J.1460-2075.1995.TB00136.X
CrossRef Google Scholar
|
[198]
|
Opdyke JA, Kang JG, Storz G. 2004. GadY, a small-RNA regulator of acid response genes in Escherichia coli. Journal of Bacteriology 186:6698−705 doi: 10.1128/JB.186.20.6698-6705.2004
CrossRef Google Scholar
|
[199]
|
Johnson JR, Clabots C, Rosen H. 2006. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1: K1: H7 in a mouse model of ascending urinary tract infection. Infection and immunity 74:461−68 doi: 10.1128/IAI.74.1.461-468.2006
CrossRef Google Scholar
|
[200]
|
Hertel R, Meyerjürgens S, Voigt B, Liesegang H, Volland S. 2017. Small RNA mediated repression of subtilisin production in Bacillus licheniformis. Scientific Reports 7:5699 doi: 10.1038/S41598-017-05628-Y
CrossRef Google Scholar
|
[201]
|
De Lay N, Schu DJ, Gottesman S. 2013. Bacterial small RNA-based negative regulation: Hfq and its accomplices. Journal of Biological Chemistry 288:7996−8003 doi: 10.1074/JBC.R112.441386
CrossRef Google Scholar
|
[202]
|
Brantl S, Brückner R. 2014. Small regulatory RNAs from low-GC gram-positive bacteria. RNA Biology 11:443−56 doi: 10.4161/RNA.28036
CrossRef Google Scholar
|
[203]
|
van Dijl JM, Hecker M. 2013. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories 12:3 doi: 10.1186/1475-2859-12-3
CrossRef Google Scholar
|
[204]
|
Gimpel M, Maiwald C, Wiedemann C, Görlach M, Brantl S. 2017. Characterization of the interaction between the small RNA-encoded peptide SR1P and GapA from Bacillus subtilis. Microbiology 163:1248−59 doi: 10.1099/MIC.0.000505
CrossRef Google Scholar
|
[205]
|
Ul Haq I, Brantl S, Müller P. 2021. A new role for SR1 from Bacillus subtilis: regulation of sporulation by inhibition of kinA translation. Nucleic Acids Research 49:10589−603 doi: 10.1093/NAR/GKAB747
CrossRef Google Scholar
|
[206]
|
Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nature Reviews Microbiology 9:578−89 doi: 10.1038/NRMICRO2615
CrossRef Google Scholar
|
[207]
|
Geng J, Song Y, Yang L, Feng Y, Qiu Y, et al. 2009. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS ONE 4:0006213
|
[208]
|
Dambach M, Irnov I, Winkler WC. 2013. Association of RNAs with Bacillus subtilis Hfq. PLOS ONE 8:e55156 doi: 10.1371/JOURNAL.PONE.0055156
CrossRef Google Scholar
|
[209]
|
Jagtap CB, Kumar P, Rao KK. 2016. Bacillus subtilis Hfq: a role in chemotaxis and motility. Journal of Biosciences 41:347−58 doi: 10.1007/S12038-016-9618-9
CrossRef Google Scholar
|
[210]
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. 2015. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiology and Molecular Biology Reviews 79:193−224 doi: 10.1128/MMBR.00052-14
CrossRef Google Scholar
|
[211]
|
Dubey AK, Baker CS, Romeo T, Babitzke P. 2005. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11:1579−87 doi: 10.1261/RNA.2990205
CrossRef Google Scholar
|
[212]
|
Park H, Yakhnin H, Connolly M, Romeo T, Babitzke P. 2015. CsrA participates in a PNPase autoregulatory mechanism by selectively repressing translation of pnp transcripts that have been previously processed by RNase III and PNPase. Journal of Bacteriology 197:3751−59 doi: 10.1128/JB.00721-15
CrossRef Google Scholar
|
[213]
|
Patterson-Fortin LM, Vakulskas CA, Yakhnin H, Babitzke P, Romeo T. 2013. Dual posttranscriptional regulation via a cofactor-responsive mRNA leader. Journal of Molecular Biology 425:3662−77 doi: 10.1016/J.JMB.2012.12.010
CrossRef Google Scholar
|
[214]
|
Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, et al. 2013. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Molecular Microbiology 87:851−66 doi: 10.1111/MMI.12136
CrossRef Google Scholar
|
[215]
|
Figueroa-Bossi N, Schwartz A, Guillemardet B, D'heygè F, Bossi L, et al. 2014. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes & Development 28:1239−51 doi: 10.1101/gad.240192.114
CrossRef Google Scholar
|
[216]
|
Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, et al. 2011. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Molecular Microbiology 82:447−61 doi: 10.1111/J.1365-2958.2011.07822.X
CrossRef Google Scholar
|
[217]
|
Mukherjee S, Oshiro RT, Yakhnin H, Babitzke P, Kearns DB. 2016. FliW antagonizes CsrA RNA binding by a noncompetitive allosteric mechanism. Proceedings of the National Academy of Sciences of the United States of America 113:9870−75 doi: 10.1073/PNAS.1602455113
CrossRef Google Scholar
|
[218]
|
Liu Furui, Zhong Zhijun, Zhou Ziyao, Peng Guangneng, Yang Ping, et al. 2015. The mechanism of small RNAs response to environmental stresses in bacteria. Microbiology China 42:2012−2018 doi: 10.13344/j.microbiol.china.140973
CrossRef Google Scholar
|
[219]
|
Pujiastuti Y, Suparman SHK, Umayah A. 2023. Potency of Bacillus thuringiensis in liquid formulation as a biological agent in controlling larvae of Oryctes rhinoceros (Coleoptera: Scarabaeidae). E3S Web of Conferences 373:07010 doi: 10.1051/e3sconf/202337307010
CrossRef Google Scholar
|
[220]
|
Djaenuddin N, Kalqutny SH, Muis A, Azrai M. 2021. Antagonistic bacteria Bacillus subtilis formulation as biopesticide to control corn downy mildew caused by Peronosclerospora philippinensis. International Journal on Advanced Science, Engineering and Information Technology 11:2148 doi: 10.18517/ijaseit.11.6.12447
CrossRef Google Scholar
|
[221]
|
Fajaruddin, Karmiati, Aulya W, Fitriani, Persada AY. 2020. The effect of silica liquid fertilizer from straw and formulation of Bacillus sp for rice growth (Oryza sativa L.) and tolerance to fungi Pyricularia oryzae Cav. IOP Conference Series: Materials Science and Engineering 725:12067 doi: 10.1088/1757-899X/725/1/012067
CrossRef Google Scholar
|
[222]
|
Klein MN, da Silva AC, Kupper KC. 2016. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus. World Journal of Microbiology and Biotechnology 32:205 doi: 10.1007/s11274-016-2157-6
CrossRef Google Scholar
|
[223]
|
Lee SY, Weon HY, Kim JJ, Han JH. 2016. Biocontrol of leaf mustard powdery mildew caused by Erysiphe cruciferarm using Bacillus velezensis YP2. The Korean Society of Pesticide Science 20:369−74 doi: 10.7585/kjps.2016.20.4.369
CrossRef Google Scholar
|
[224]
|
Liu X, Lu Z, Ma Z, Yu T, Chen H, et al. 2023. Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae. Chinese Journal of Biotechnology 39(2):741−54 doi: 10.13345/j.cjb.220412
CrossRef Google Scholar
|
[225]
|
Liu F, Gao R, Zhang F, Ren Y, Li W, et al. 2023. Postharvest biocontrol of green mold (Penicillium digitatum) in citrus by Bacillus velezensis strain S161 and its mode of action. Biological Control 187:105392 doi: 10.1016/j.biocontrol.2023.105392
CrossRef Google Scholar
|
[226]
|
Husna, Kim BE, Won MH, Jeong MI, Oh KK, et al. 2023. Characterization and genomic insight of surfactin-producing Bacillus velezensis and its biocontrol potential against pathogenic contamination in lettuce hydroponics. Environmental Science and Pollution Research International 30:121487−500 doi: 10.1007/s11356-023-30871-4
CrossRef Google Scholar
|