[1]
|
Zaid A, Wani SH. 2019. Reactive oxygen species generation, scavenging and signaling in plant defense responses. In Bioactive molecules in plant defense: Signaling in growth and stress, eds. Jogaiah S, Abdelrahman M. Cham: Springer. pp. 111–32. doi: 10.1007/978-3-030-27165-7_7
|
[2]
|
Xu G, Li L, Zhou J, Lyu D, Zhao D, et al. 2023. Comparison of transcriptome and metabolome analysis revealed differences in cold resistant metabolic pathways in different apple cultivars under low temperature stress. Horticultural Plant Journal 9:183−98 doi: 10.1016/j.hpj.2022.09.002
CrossRef Google Scholar
|
[3]
|
Shafi A, Hassan F, Khanday FA. 2022. Reactive oxygen and nitrogen species: Oxidative damage and antioxidative defense mechanism in plants under abiotic stress. In: Plant Abiotic Stress Physiology (Apple Academic Press. doi: 10.1201/9781003180562-3
|
[4]
|
Ntagkas N, Woltering E, Nicole C, Labrie C, Marcelis LFM. 2019. Light regulation of vitamin C in tomato fruit is mediated through photosynthesis. Environmental and Experimental Botany 158:180−88 doi: 10.1016/j.envexpbot.2018.12.002
CrossRef Google Scholar
|
[5]
|
Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, et al. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell 15:939−51 doi: 10.1105/tpc.010538
CrossRef Google Scholar
|
[6]
|
Cruz-Rus E, Amaya I, Valpuesta V. 2012. The challenge of increasing vitamin C content in plant foods. Biosynthesis Journal 7:1110−21 doi: 10.1002/biot.201200041
CrossRef Google Scholar
|
[7]
|
Gould BS. 1961. Ascorbic acid and collagen fiber formation. Vitamins & Hormones 18:89−120 doi: 10.1016/s0083-6729(08)60860-2
CrossRef Google Scholar
|
[8]
|
Hancock RD, Viola R. 2005. Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities. Journal of Agricultural and Food Chemistry 53:5248−57 doi: 10.1021/jf0503863
CrossRef Google Scholar
|
[9]
|
Aizawa S, Senda M, Harada A, Maruyama N, Ishida T, et al. 2013. Structural basis of the γ-lactone-ring formation in ascorbic acid biosynthesis by the senescence marker protein-30/gluconolactonase. PLoS One 8:53706 doi: 10.1371/journal.pone.0053706
CrossRef Google Scholar
|
[10]
|
Foyer CH, Kunert K. 2024. The ascorbate–glutathione cycle coming of age. Journal of Experimental Botany 75:2682−99 doi: 10.1093/jxb/erae023
CrossRef Google Scholar
|
[11]
|
Gest N, Gautier H, Stevens, R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany 64:33−53 doi: 10.1093/jxb/ers297
CrossRef Google Scholar
|
[12]
|
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A. 2024. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. Planta 260:55 doi: 10.1007/s00425-024-04484-1
CrossRef Google Scholar
|
[13]
|
Ishikawa T, Maruta T, Yoshimura K, Smirnoff, N. 2018. Biosynthesis and regulation of ascorbic acid in plants. In Antioxidants and antioxidant enzymes in higher plants, eds. Gupta D, Palma J, Corpas F. pp. 163−79. Cham: Springer. doi: 10.1007/978-3-319-75088-0_8
|
[14]
|
Klimczak I, Gliszczyńska-Świgło A. 2015. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175:100−5 doi: 10.1016/j.foodchem.2014.11.104
CrossRef Google Scholar
|
[15]
|
RoyChoudhury S. 2019. Towards stable electrochemical sensing for wearable wound monitoring. Thesis. Florida International University, USA. doi: 10.25148/etd.FIDC007817
|
[16]
|
Dou M, Sanjay ST, Benhabib M, Xu F, Li X. 2015. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 145:43−54 doi: 10.1016/j.talanta.2015.04.068
CrossRef Google Scholar
|
[17]
|
Boobphahom S, Nguyet Ly M, Soum V, Pyun N, Kwon OS, et al. 2020. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules 25:2970 doi: 10.3390/molecules25132970
CrossRef Google Scholar
|
[18]
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, et al. 2023. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chemical Society Reviews 52:663−704 doi: 10.1039/D2CS00651K
CrossRef Google Scholar
|
[19]
|
Hang Y, Boryczka J, Wu N. 2022. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chemical Society Reviews 51:329−75 doi: 10.1039/C9CS00621D
CrossRef Google Scholar
|
[20]
|
Karunathilake EMBM, Le AT, Heo S, Chung YS, Mansoor S. 2023. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 13:1593 doi: 10.3390/agriculture13081593
CrossRef Google Scholar
|
[21]
|
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. 2019. Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants 8:645 doi: 10.3390/antiox8120645
CrossRef Google Scholar
|
[22]
|
Roychoudhury A, Basu S. 2012. Ascorbate-glutathione and plant tolerance to various abiotic stresses. In Oxidative stress in plants: causes, consequences and tolerance, eds. Anjum NA, Umar S, Ahmad A. New Delhi, India: IK International Publishing House. pp. 177−258
|
[23]
|
Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161:1189−202 doi: 10.1016/j.jplph.2004.01.013
CrossRef Google Scholar
|
[24]
|
Pérez FJ, Villegas D, Mejia N. 2002. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry 60:573−80 doi: 10.1016/S0031-9422(02)00146-2
CrossRef Google Scholar
|
[25]
|
Arrigoni O, Tullio MC. 2000. The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. Journal of Plant Physiology 157:481−88 doi: 10.1016/S0176-1617(00)80102-9
CrossRef Google Scholar
|
[26]
|
Pacini E, Dolferus R. 2019. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Frontiers in Plant Science 10:679 doi: 10.3389/fpls.2019.00679
CrossRef Google Scholar
|
[27]
|
Arrigoni O. 1994. Ascorbate system in plant development. Journal of Bioenergetics and Biomembranes 26:407−19 doi: 10.1007/BF00762782
CrossRef Google Scholar
|
[28]
|
Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JAG, et al. 2010. Cytosolic APx knockdown indicates an ambiguous redox response in rice. Phytochemistry 71:548−58 doi: 10.1016/j.phytochem.2010.01.003
CrossRef Google Scholar
|
[29]
|
Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-María GE, et al. 2003. Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiology 132:2116−25 doi: 10.1104/pp.103.021717
CrossRef Google Scholar
|
[30]
|
Chatzopoulou F, Sanmartin M, Mellidou I, Pateraki I, Koukounaras A, et al. 2020. Silencing of ascorbate oxidase results in reduced growth, altered ascorbic acid levels and ripening pattern in melon fruit. Plant Physiology and Biochemistry 156:291−303 doi: 10.1016/j.plaphy.2020.08.040
CrossRef Google Scholar
|
[31]
|
Khalid S, Malik AU, Khan AS, Shahid M, Shafique M. 2016. Tree age, fruit size and storage conditions affect levels of ascorbic acid, total phenolic concentrations and total antioxidant activity of ‘Kinnow’ mandarin juice. Journal of the Science of Food and Agriculture 96:1319−25 doi: 10.1002/jsfa.7225
CrossRef Google Scholar
|
[32]
|
Santos MO, de Oliveira Silveira HR, de Souza KRD, Almeida Lima A, Boas LVV, et al. 2018. Antioxidant system differential regulation is involved in coffee ripening time at different altitudes. Tropical Plant Biology 11:131−40 doi: 10.1007/s12042-018-9206-2
CrossRef Google Scholar
|
[33]
|
Loewus FA. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193−210 doi: 10.1016/S0031-9422(99)00145-4
CrossRef Google Scholar
|
[34]
|
Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, et al. 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences 28:4276−90 doi: 10.1016/j.sjbs.2021.03.045
CrossRef Google Scholar
|
[35]
|
Davey MW, Montagu MV, Inze D, Sanmartin M, Kanellis A, et al. 2000. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture 80:825−60 doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6
CrossRef Google Scholar
|
[36]
|
Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T. 2009. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum 136:139−49 doi: 10.1111/j.1399-3054.2009.01213.x
CrossRef Google Scholar
|
[37]
|
Smirnoff N, Wheeler GL. 2024. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. Journal of Experimental Botany 75:2604−30 doi: 10.1093/jxb/erad505
CrossRef Google Scholar
|
[38]
|
Hodgson DA. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Advances in Microbial Physiology 42:47−238 doi: 10.1016/s0065-2911(00)42003-5
CrossRef Google Scholar
|
[39]
|
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMA, et al. 2022. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: possible implications for the plant performance. Frontiers in Plant Science 13:987077 doi: 10.3389/fpls.2022.987077
CrossRef Google Scholar
|
[40]
|
Schertl P, Sunderhaus S, Klodmann J, Grozeff GEG, Bartoli CG, et al. 2012. L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. Journal of Biological Chemistry 287:14412−19 doi: 10.1074/jbc.M111.305144
CrossRef Google Scholar
|
[41]
|
Szarka A, Bánhegyi G, Asard H. 2013. The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxidants & Redox Signaling 19:1036−44 doi: 10.1089/ars.2012.5059
CrossRef Google Scholar
|
[42]
|
Adler LN. 2012. From vitamin C to metabolite repair: The role of novel sugar nucleotide phosphorylases. Thesis. University of California, Los Angeles, United States.
|
[43]
|
Alok A, Singh S, Kumar P, Bhati KK. 2022. Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Molecular Biology Reports 49:8025−35 doi: 10.1007/s11033-022-07333-0
CrossRef Google Scholar
|
[44]
|
Viviani A, Fambrini M, Giordani T, Pugliesi C. 2021. L-Ascorbic acid in plants: From biosynthesis to its role in plant development and stress response. Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 65:151−71 doi: 10.12871/00021857202124
CrossRef Google Scholar
|
[45]
|
Mellidou I, Koukounaras A, Chatzopoulou F, Kostas S, Kanellis AK. 2017. Plant vitamin C: one single molecule with a plethora of roles. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, ed. Yahia EM. 2nd Edition. John Wiley & Sons. pp. 463−98. doi: https://doi.org/10.1002/9781119158042.ch22
|
[46]
|
Smirnoff N, Wheeler GL. 2000. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences 19:267−90 doi: 10.1080/07352680091139231
CrossRef Google Scholar
|
[47]
|
Broad RC, Bonneau JP, Hellens RP, Johnson AAT. 2020. Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. International Journal of Molecular Sciences 21:1790 doi: 10.3390/ijms21051790
CrossRef Google Scholar
|
[48]
|
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9:681 doi: 10.3390/antiox9080681
CrossRef Google Scholar
|
[49]
|
Tripathy BC, Oelmüller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior 7:1621−33 doi: 10.4161/psb.22455
CrossRef Google Scholar
|
[50]
|
Orabi SA, Abou-Hussein SD. 2019. Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Current Science International 8:565−76 doi: 10.20546/ijcmas.2019.807.069
CrossRef Google Scholar
|
[51]
|
Puskas F, Gergely P Jr, Banki K, Perl A. 2000. Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. The FASEB Journal 14:1352−61 doi: 10.1096/fasebj.14.10.1352
CrossRef Google Scholar
|
[52]
|
Das BK, Kumar A, Sreekumar SN, Ponraj K, Gadave K, et al. 2022. Comparative kinetic analysis of ascorbate (Vitamin-C) recycling dehydroascorbate reductases from plants and humans. Biochemical and Biophysical Research Communications 591:110−17 doi: 10.1016/j.bbrc.2021.12.103
CrossRef Google Scholar
|
[53]
|
Sharma SK, Singh D, Pandey H, Jatav RB, Singh V, et al. 2022. An overview of roles of enzymatic and nonenzymatic antioxidants in plant. In Antioxidant Defense in Plants: Molecular Basis of Regulation, eds. Aftab T, Hakeem KR. Singapore: Springer. pp. 1−13. doi: 10.1007/978-981-16-7981-0_1
|
[54]
|
Sharma P, Jha AB, Dubey RS, Pessarakli M. 2021. Reactive oxygen species generation, hazards, and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. In Handbook of Plant and Crop Physiology. Milton Park, United Kingdom. pp. 617−58. doi: 10.1201/9781003093640-37
|
[55]
|
Akram NA, Shafiq F, Ashraf M. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science 8:613 doi: 10.3389/fpls.2017.00613
CrossRef Google Scholar
|
[56]
|
Strand Å, Hurry V, Henkes S, Huner N, Gustafsson P, et al. 1999. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiology 119:1387−98 doi: 10.1104/pp.119.4.1387
CrossRef Google Scholar
|
[57]
|
Spreitzer RJ. 2003. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Archives of Biochemistry and Biophysics 414:141−49 doi: 10.1016/S0003-9861(03)00171-1
CrossRef Google Scholar
|
[58]
|
Pua EC, Gong H. 2004. Regulation of plant morphogenesis in vitro. In Biotechnology in Agriculture and Forestry, eds. Pua EC, Douglas CJ. Vol. 54. Berlin, Heidelberg: Springer. pp. 83−102. doi: 10.1007/978-3-662-06164-0_6
|
[59]
|
EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, et al. 2022. Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy 4:765068 doi: 10.3389/fagro.2022.765068
CrossRef Google Scholar
|
[60]
|
Lin YJ, Yao BT, Zhang Q, Feng YX, Xiang L. 2024. Biochemical insights into proline metabolism and its contribution to the endurant cell wall structure under metal stress. Ecotoxicology and Environmental Safety 282:116725 doi: 10.1016/j.ecoenv.2024.116725
CrossRef Google Scholar
|
[61]
|
Celi GEA, Gratão PL, Lanza MGDB, Reis ARD. 2023. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Plant Physiology and Biochemistry 202:107970 doi: 10.1016/j.plaphy.2023.107970
CrossRef Google Scholar
|
[62]
|
Xiao M, Li Z, Zhu L, Wang J, Zhang B, et al. 2021. The multiple roles of ascorbate in the abiotic stress response of plants: Antioxidant, cofactor, and regulator. Frontiers in Plant Science 12:598173 doi: 10.3389/fpls.2021.598173
CrossRef Google Scholar
|
[63]
|
Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28:463−87 doi: 10.1146/annurev-cellbio-101011-155741
CrossRef Google Scholar
|
[64]
|
Mohamed HI, El-Shazly HH, Badr A. 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In Plant Phenolics in Sustainable Agriculture, eds. Lone R, Shuab R, Kamili A. Vol 1. Singapore: Springer. pp. 533−54. doi: 10.1007/978-981-15-4890-1_23
|
[65]
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. 2016. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Molecular Biology 91:673−89 doi: 10.1007/s11103-016-0480-9
CrossRef Google Scholar
|
[66]
|
Chauhan P, Mir RA, Khah MA. 2022. Ascorbate-glutathione cycle: nitric oxide and phytohormone interactions for plant stress tolerance. In Nitric Oxide in Plants: A Molecule with Dual Roles, eds. Ahanger MA, Ahmad P. Hoboken, USA:John Wiley & Sons. pp. 148−78. doi: 10.1002/9781119800156.ch8
|
[67]
|
Dias AS. 2021. Development of phenylalanine hydroxylase enzymosomes for the treatment of phenylketonuria. Thesis. University of Lisboa, Portugal.
|
[68]
|
Talaat NB. 2019. Role of reactive oxygen species signaling in plant growth and development. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, eds. Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M. Hoboken, USA: John Wiley & Sons. pp. 225−66. doi: 10.1002/9781119468677.ch10
|
[69]
|
Zulfiqar F, Ashraf M. 2022. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. Journal of Hazardous Materials 427:127891 doi: 10.1016/j.jhazmat.2021.127891
CrossRef Google Scholar
|
[70]
|
Niyogi KK. 1993. Molecular and genetic analysis of anthranilate synthase in Arabidopsis thaliana. Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.
|
[71]
|
Antico CJ, Colon C, Banks T, Ramonell KM. 2012. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Frontiers in Biology 7:48−56 doi: 10.1007/s11515-011-1171-1
CrossRef Google Scholar
|
[72]
|
Wang C, Leng X, Zhang W, Fang J. 2017. The regulatory and signaling roles of glutathione in modulating abiotic stress responses and tolerance. In Glutathione in plant growth, development, and stress tolerance, eds. Hossain M, Mostofa M, Diaz-Vivancos P, Burritt D, Fujita M, et al. Cham: Springer. pp. 147−69. doi: 10.1007/978-3-319-66682-2_7
|
[73]
|
Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. 2013. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany 94:73−88 doi: 10.1016/j.envexpbot.2012.05.003
CrossRef Google Scholar
|
[74]
|
Brunetti C, Guidi L, Sebastiani F, Tattini M. 2015. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany 119:54−62 doi: 10.1016/j.envexpbot.2015.04.007
CrossRef Google Scholar
|
[75]
|
Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies 15(4):523−30
Google Scholar
|
[76]
|
Ortiz-Espín A, Sánchez-Guerrero A, Sevilla F, Jiménez A. 2017. The role of ascorbate in plant growth and development. In Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 25−45. doi: 10.1007/978-3-319-74057-7_2
|
[77]
|
Jhanji S, Goyal E, Chumber M, Kaur G. 2024. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry 207:108352 doi: 10.1016/j.plaphy.2024.108352
CrossRef Google Scholar
|
[78]
|
Kuźniak E, Kopczewski T, Chojak-Koźniewska J. 2017. Ascorbate-glutathione cycle and biotic stress tolerance in plants. In Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 201−31. doi: 10.1007/978-3-319-74057-7_8
|
[79]
|
Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AAT, Hellens RP. 2017. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology 44:153−60 doi: 10.1016/j.copbio.2017.01.011
CrossRef Google Scholar
|
[80]
|
Sansome FW, Zilva SS. 1933. Polyploidy and vitamin C. Biochemical Journal 27:1935 doi: 10.1042/bj0271935
CrossRef Google Scholar
|
[81]
|
Ishikawa T, Shigeoka S. 2008. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry 72:1143−54 doi: 10.1271/bbb.80062
CrossRef Google Scholar
|
[82]
|
Prajapati P, Gupta P, Kharwar RN, Seth CS. 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. International Journal of Phytoremediation 25:403−14 doi: 10.1080/15226514.2022.2086215
CrossRef Google Scholar
|
[83]
|
Wang J, Lian W, Cao Y, Wang X, Wang G, et al. 2018. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports 8:13349 doi: 10.1038/s41598-018-31690-1
CrossRef Google Scholar
|
[84]
|
Rosado-Souza L, Fernie AR, Aarabi F. 2020. Ascorbate and thiamin: metabolic modulators in plant acclimation responses. Plants 9:101 doi: 10.3390/plants9010101
CrossRef Google Scholar
|
[85]
|
Chiaiese P, Corrado G, Minutolo M, Barone A, Errico A. 2019. Transcriptional regulation of ascorbic acid during fruit ripening in pepper (Capsicum annuum) varieties with low and high antioxidants content. Plants 8:206 doi: 10.3390/plants8070206
CrossRef Google Scholar
|
[86]
|
Dykes IM, Emanueli C. 2017. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics and Bioinformatics 15:177−86 doi: 10.1016/j.gpb.2016.12.005
CrossRef Google Scholar
|
[87]
|
Baier M, Pitsch NT, Mellenthin M, Guo W. 2010. Regulation of genes encoding chloroplast antioxidant enzymes in comparison to regulation of the extra-plastidic antioxidant defense system. In Ascorbate-glutathione pathway and stress tolerance in plants, eds. Anjum N, Chan MT, Umar S. Dordrecht: Springer. pp. 337−86. doi: 10.1007/978-90-481-9404-9_13
|
[88]
|
Khan WU, Khan LU, Chen D, Chen F. 2023. Comparative analyses of superoxide dismutase (SOD) gene family and expression profiling under multiple abiotic stresses in water lilies. Horticulturae 9:781 doi: 10.3390/horticulturae9070781
CrossRef Google Scholar
|
[89]
|
Knorre DG, Kudryashova NV, Godovikova TS. 2009. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 1:29−51
Google Scholar
|
[90]
|
Foyer CH, Kyndt T, Hancock RD. 2020. Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxidants & Redox Signaling 32:463−85 doi: 10.1089/ars.2019.7819
CrossRef Google Scholar
|
[91]
|
Bulley S, Laing W. 2016. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology 33:15−22 doi: 10.1016/j.pbi.2016.04.010
CrossRef Google Scholar
|
[92]
|
Wishart K. 2017. Increased micronutrient requirements during physiologically demanding situations: Review of the current evidence. Vitamins & Minerals 6:2376−1318.1000166
Google Scholar
|
[93]
|
Sofo A, Scopa A, Nuzzaci M, Vitti A. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16:13561−78 doi: 10.3390/ijms160613561
CrossRef Google Scholar
|
[94]
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, et al. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87:421−66 doi: 10.1007/s12229-020-09231-1
CrossRef Google Scholar
|
[95]
|
Awasthi R, Bhandari K, Nayyar H. 2015. Temperature stress and redox homeostasis in agricultural crops. Frontiers in Environmental Science 3:11 doi: 10.3389/fenvs.2015.00011
CrossRef Google Scholar
|
[96]
|
Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R. 2016. Plant growth under drought stress: Significance of mineral nutrients. In Water stress and crop plants: a sustainable approach, ed. Ahmad P. Hoboken, USA: John Wiley & Sons. 649−68. doi: 10.1002/9781119054450.ch37
|
[97]
|
Franceschi VR, Tarlyn NM. 2002. L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiology 130:649−56 doi: 10.1104/pp.007062
CrossRef Google Scholar
|
[98]
|
Wang Y, Mostafa S, Zeng W, Jin B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22:8568 doi: 10.3390/ijms22168568
CrossRef Google Scholar
|
[99]
|
Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, et al. 2019. Oxidative stress and antioxidant defense in plants under drought conditions. In Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches, eds. Hasanuzzaman M, Hakeem K, Nahar K, Alharby H. Cham: Springer. pp. 207−19. doi: 10.1007/978-3-030-06118-0_9
|
[100]
|
Boubakri H. 2017. The role of ascorbic acid in plant–pathogen interactions. In: Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 255−71. doi: 10.1007/978-3-319-74057-7_10
|
[101]
|
Yu X, Zhang W, Zhang Y, Zhang X, Lang D, et al. 2018. The roles of methyl jasmonate to stress in plants. Functional Plant Biology 46:197−212 doi: 10.1071/FP18106
CrossRef Google Scholar
|
[102]
|
Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. 2022. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. Physiology and Molecular Biology of Plants 28:871−84 doi: 10.1007/s12298-022-01172-w
CrossRef Google Scholar
|
[103]
|
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, et al. 2003. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology 21:177−81 doi: 10.1038/nbt777
CrossRef Google Scholar
|
[104]
|
Hancock RD, Viola R. 2005. Biosynthesis and catabolism of L-ascorbic acid in plants. Critical Reviews in Plant Sciences 24:167−88 doi: 10.1080/07352680591002165
CrossRef Google Scholar
|
[105]
|
Wai AH, Naing AH, Lee DJ, Kim CK, Chung MY. 2020. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato. Plant Biotechnology Reports 14:515−37 doi: 10.1007/s11816-020-00638-1
CrossRef Google Scholar
|
[106]
|
Ding S, Lu Q, Zhang Y, Yang Z, Wen X, et al. 2009. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Molecular Biology 69:577−92 doi: 10.1007/s11103-008-9440-3
CrossRef Google Scholar
|
[107]
|
Ishikawa T, Dowdle J, Smirnoff N. 2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum 126:343−55 doi: 10.1111/j.1399-3054.2006.00640.x
CrossRef Google Scholar
|
[108]
|
Castro JC, Castro CG, Cobos M. 2023. Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Frontiers in Plant Science 14:1099829 doi: 10.3389/fpls.2023.1099829
CrossRef Google Scholar
|
[109]
|
Zhou Y, Zhang J, Xiong X, Cheng ZM, Chen F. 2022. De novo assembly of plant complete genomes. Tropical Plants 1:1−8 doi: 10.48130/tp-2022-0007
CrossRef Google Scholar
|
[110]
|
Li X, Ye J, Munir S, Yang T, Chen W, et al. 2019. Biosynthetic gene pyramiding leads to ascorbate accumulation with enhanced oxidative stress tolerance in tomato. International Journal of Molecular Sciences 20:1558 doi: 10.3390/ijms20071558
CrossRef Google Scholar
|
[111]
|
Fenech M, Amaya I, Valpuesta V, Botella MA. 2019. Vitamin C content in fruits: Biosynthesis and regulation. Frontiers in Plant Science 9:2006 doi: 10.3389/fpls.2018.02006
CrossRef Google Scholar
|
[112]
|
Mellidou I, Kanellis AK. 2023. Deep inside the genetic regulation of ascorbic acid during fruit ripening and postharvest storage. Postharvest Biology and Technology 204:112436 doi: 10.1016/j.postharvbio.2023.112436
CrossRef Google Scholar
|
[113]
|
Zhang Y. 2012. Ascorbic acid in plants: biosynthesis, regulation and enhancement. Berlin, Heidelberg, Germany: Springer Science & Business Media
|
[114]
|
Liu Q, Yang F, Zhang J, Liu H, Rahman S, et al. 2021. Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences 22:4206 doi: 10.3390/ijms22084206
CrossRef Google Scholar
|
[115]
|
Rommens CM. 2007. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. Journal of Agricultural and Food Chemistry 55:4281−88 doi: 10.1021/jf0706631
CrossRef Google Scholar
|
[116]
|
Zhang J, He S, Wang W, Chen F, Li Z. 2023. FTGD: a machine learning method for flowering-time gene prediction. Tropical Plants 2:23 doi: 10.48130/tp-2023-0023
CrossRef Google Scholar
|
[117]
|
He S, Liu E, Chen F, Li Z. 2023. SCCGs_Prediction: a machine learning tool for prediction of sulfur-containing compound associated genes. Tropical Plants 2:18 doi: 10.48130/tp-2023-0018
CrossRef Google Scholar
|
[118]
|
Abeysuriya HI, Bulugahapitiya VP, Loku Pulukkuttige JL. 2020. Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka. International Journal of Food Science 2020:4783029 doi: 10.1155/2020/4783029
CrossRef Google Scholar
|
[119]
|
Xu J, Vidyarthi SK, Bai W, Pan Z. 2019. Nutritional constituents, health benefits and processing of Rosa Roxburghii: A review. Journal of Functional Foods 60:103456 doi: 10.1016/j.jff.2019.103456
CrossRef Google Scholar
|
[120]
|
Pissard A, Fernández Pierna JA, Baeten V, Sinnaeve G, Lognay G, et al. 2013. Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. Journal of the Science of Food and Agriculture 93:238−44 doi: 10.1002/jsfa.5779
CrossRef Google Scholar
|
[121]
|
Popova A. 2019. Comparison of vitamin C content of commercially available fresh fruits. Asian Food Science Journal 13:1−6 doi: 10.9734/afsj/2019/v13i230100
CrossRef Google Scholar
|
[122]
|
Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I. 1999. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research 60:57−80 doi: 10.1016/S0378-4290(98)00133-6
CrossRef Google Scholar
|
[123]
|
da Silva Dias JC. 2014. Guiding strategies for breeding vegetable cultivars. Agricultural Sciences 5:9 doi: 10.4236/as.2014.51002
CrossRef Google Scholar
|
[124]
|
Ali B, Pantha S, Acharya R, Ueda Y, Wu LB, et al. 2019. Enhanced ascorbate level improves multi-stress tolerance in a widely grown Indica rice variety without compromising its agronomic characteristics. Journal of Plant Physiology 240:152998 doi: 10.1016/j.jplph.2019.152998
CrossRef Google Scholar
|
[125]
|
Boopathi NM. 2013. Genetic mapping and marker assisted selection. New Delhi: Springer. doi: 10.1007/978-81-322-0958-4
|
[126]
|
Tiwari JK, Yerasu SR, Rai N, Singh DP, Singh AK, et al. 2022. 'Progress in marker-assisted selection to genomics-assisted breeding in tomato. Critical Reviews in Plant Sciences 41:321−50 doi: 10.1080/07352689.2022.2130361
CrossRef Google Scholar
|
[127]
|
Varshney RK, Dubey A. 2009. Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology 18:127−38 doi: 10.1007/BF03263311
CrossRef Google Scholar
|
[128]
|
Strobbe S, De Lepeleire J, Van Der Straeten D. 2018. From in planta function to vitamin-rich food crops: the ACE of biofortification. Frontiers in Plant Science 9:1862 doi: 10.3389/fpls.2018.01862
CrossRef Google Scholar
|
[129]
|
Shu DF, Wang LY, Duan M, Deng YS, Meng QW. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiology and Biochemistry 49:1228−37 doi: 10.1016/j.plaphy.2011.04.005
CrossRef Google Scholar
|
[130]
|
Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, et al. 2013. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnology Journal 11:129−41 doi: 10.1111/j.1467-7652.2012.00740.x
CrossRef Google Scholar
|
[131]
|
Asrey R, Barman K, Prajapati U, Sharma S, Yadav A. 2021. Genetically modified fruit and vegetable-An overview on senescence regulation, postharvest nutraceutical quality preservation and shelf-life extension. The Journal of Horticultural Science and Biotechnology 96:271−87 doi: 10.1080/14620316.2020.1845986
CrossRef Google Scholar
|
[132]
|
Tamim SA, Li F, Wang Y, Shang L, Zhang X, et al. 2022. Effect of shading on ascorbic acid accumulation and biosynthetic gene expression during tomato fruit development and ripening. Vegetable Research 2:1 doi: 10.48130/vr-2022-0001
CrossRef Google Scholar
|
[133]
|
Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis AK. 2021. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes 12:694 doi: 10.3390/genes12050694
CrossRef Google Scholar
|
[134]
|
Maqbool MA, Aslam M, Beshir A, Khan MS. 2018. Breeding for provitamin A biofortification of maize (Zea mays L.). Plant Breeding 137:451−69 doi: 10.1111/pbr.12618
CrossRef Google Scholar
|
[135]
|
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. 2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in Plant Science 6:84 doi: 10.3389/fpls.2015.00084
CrossRef Google Scholar
|
[136]
|
George GM, Ruckle ME, Abt MR, Bull SE. 2017. Ascorbic acid biofortification in crops. In: Ascorbic acid in plant growth, development and stress tolerance, eds. Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, et al. Cham: Springer. pp. 375−415. doi: 10.1007/978-3-319-74057-7_15
|
[137]
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, et al. 2022. Conventional and omics approaches for understanding the abiotic stress response in cereal crops—an updated overview. Plants 11:2852 doi: 10.3390/plants11212852
CrossRef Google Scholar
|
[138]
|
He S, Dong W, Chen J, Zhang J, Lin W, et al. 2024. DataColor: unveiling biological data relationships through distinctive color mapping. Horticulture Research 11:uhad273 doi: 10.1093/hr/uhad273
CrossRef Google Scholar
|
[139]
|
Li Z, Wang C, Wang S, Wang W, Chen F. 2024. HortDB V1.0: a genomic database of horticultural plants. Horticulture Research 11:uhae224 doi: 10.1093/hr/uhae224
CrossRef Google Scholar
|
[140]
|
Lima-Silva V, Rosado A, Amorim-Silva V, Muñoz-Mérida A, Pons C, et al. 2012. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187 doi: 10.1186/1471-2164-13-187
CrossRef Google Scholar
|
[141]
|
Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14:4885−911 doi: 10.3390/ijms14034885
CrossRef Google Scholar
|
[142]
|
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, et al. 2023. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. Plant Physiology 193:2037−54 doi: 10.1093/plphys/kiad323
CrossRef Google Scholar
|
[143]
|
Deslous P. 2018. Towards the characterization of regulators involved in the metabolism of ascorbic acid in tomato: Impact of environmental conditions on plant adaptation. Université de Bordeaux
|
[144]
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. 2019. Multilevel regulation of peroxisomal proteome by post-translational modifications. International Journal of Molecular Sciences, 20:4881 doi: 10.3390/ijms20194881
CrossRef Google Scholar
|
[145]
|
Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M. 2014. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum 36:1−19 doi: 10.1007/s11738-013-1402-y
CrossRef Google Scholar
|
[146]
|
Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, et al. 2014. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell & Environment 37:864−85 doi: 10.1111/pce.12204
CrossRef Google Scholar
|
[147]
|
Perumal V, Khatib A, Ahmed QU, Uzir BF, Abas F, et al. 2021. Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chemistry: Molecular Sciences 2:100012 doi: 10.1016/j.fochms.2021.100012
CrossRef Google Scholar
|
[148]
|
Li Z, Liu Q, Wu C, Yuan Y, Ni X, et al. 2024. Volatile organic compounds produced by Metschnikowia pulcherrima yeast T-2 inhibited the growth of Botrytis cinerea in postharvest blueberry fruits. Horticultural Plant Journal In Press doi: 10.1016/j.hpj.2023.12.003
CrossRef Google Scholar
|
[149]
|
Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, et al. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology 35:1011−19 doi: 10.1590/S1415-47572012000600016
CrossRef Google Scholar
|
[150]
|
Kruger NJ, Masakapalli SK, Ratcliffe RG. 2012. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. Journal of Experimental Botany 63:2309−23 doi: 10.1093/jxb/err382
CrossRef Google Scholar
|
[151]
|
Zou W, Liu L, Zhang J, Yang H, Zhou M, et al. 2012. Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology 161:42−48 doi: 10.1016/j.jbiotec.2012.05.015
CrossRef Google Scholar
|
[152]
|
Sweetlove LJ, Fernie AR. 2005. Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytologist 168:9−24 doi: 10.1111/j.1469-8137.2005.01513.x
CrossRef Google Scholar
|
[153]
|
Wong DCJ, Sweetman C, Ford CM. 2014. Annotation of gene function in citrus using gene expression information and co-expression networks. BMC Plant Biology 14:186 doi: 10.1186/1471-2229-14-186
CrossRef Google Scholar
|
[154]
|
Decros G. 2022. Role of redox signaling by ascorbate in the performance of tomato fruit. Thesis. Université de Bordeaux, Nouvelle-Aquitaine, France.
|
[155]
|
Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, et al. 2023. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. Planta 257:80 doi: 10.1007/s00425-023-04111-5
CrossRef Google Scholar
|
[156]
|
Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS. 2014. Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Critical Reviews in Plant Sciences 33:225−37 doi: 10.1080/07352689.2014.870420
CrossRef Google Scholar
|
[157]
|
Foyer CH, Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11:861−905 doi: 10.1089/ars.2008.2177
CrossRef Google Scholar
|
[158]
|
Caarls L, Pieterse CMJ, Van Wees SCM. 2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science 6:170 doi: 10.3389/fpls.2015.00170
CrossRef Google Scholar
|
[159]
|
Savoi S, Wong DCJ, Degu A, Herrera JC, Bucchetti B, et al. 2017. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Frontiers in Plant Science 8:1124 doi: 10.3389/fpls.2017.01124
CrossRef Google Scholar
|
[160]
|
Carr AC, Vissers MCM. 2013. Synthetic or food-derived vitamin C—are they equally bioavailable? Nutrients 5:4284−304 doi: 10.3390/nu5114284
CrossRef Google Scholar
|
[161]
|
Yang W, Xu H. 2016. Industrial fermentation of vitamin C. In: Industrial Biotechnology of vitamins, biopigments, and antioxidants, eds. Vandamme EJ, Revuelta JL. Hoboken, New Jersey, USA: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 161−92. doi: 10.1002/9783527681754.ch7
|
[162]
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, et al. 2022. Multi-omics revolution to promote plant breeding efficiency. Frontiers in Plant Science 13:1062952 doi: 10.3389/fpls.2022.1062952
CrossRef Google Scholar
|
[163]
|
Chandrasekaran M, Boopathi T, Paramasivan M. 2021. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. International Journal of Biological Macromolecules 190:120−29 doi: 10.1016/j.ijbiomac.2021.08.169
CrossRef Google Scholar
|
[164]
|
Dong C, Xi Y, Satheesh V, Lei M. 2023. Advances in CRISPR/Cas technologies and their application in plants. Tropical Plants, 2:2 doi: 10.48130/tp-2023-0002
CrossRef Google Scholar
|
[165]
|
Anwar A, Kim JK. 2020. Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences 21:2695 doi: 10.3390/ijms21082695
CrossRef Google Scholar
|