[1]
|
Loupit G, Brocard L, Ollat N, Cookson SJ. 2023. Grafting in plants: recent discoveries and new applications. Journal of Experimental Botany 74:2433−47 doi: 10.1093/jxb/erad061
CrossRef Google Scholar
|
[2]
|
Henriques R, Calderan-Rodrigues MJ, Luis Crespo J, Baena-González E, Caldana C. 2022. Growing of the TOR world. Journal of Experimental Botany 73:6987−92 doi: 10.1093/jxb/erac401
CrossRef Google Scholar
|
[3]
|
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, et al. 2016. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife 5:e17023
Google Scholar
|
[4]
|
Li X, Cai W, Liu Y, Li H, Fu L, et al. 2017. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America 114:2765−70 doi: 10.1073/pnas.1618782114
CrossRef Google Scholar
|
[5]
|
Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, et al. 2017. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. The EMBO Journal 36:886−903 doi: 10.15252/embj.201694816
CrossRef Google Scholar
|
[6]
|
Chen GH, Liu MJ, Xiong Y, Sheen J, Wu SH. 2018. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 115:12823−28 doi: 10.1073/pnas.1809526115
CrossRef Google Scholar
|
[7]
|
D'Alessandro S, Velay F, Lebrun R, Mehrez M, Romand S, et al. 2023. Post-translational regulation of photosynthetic activity via the TOR kinase in plants. BioRxiv [preprint doi: 10.1101/2023.05.05.539554
CrossRef Google Scholar
|
[8]
|
Shokrian Hajibehzad S, Silva SS, Peeters N, Stouten E, Buijs G, et al. 2023. Arabidopsis thaliana rosette habit is controlled by combined light and energy signaling converging on transcriptional control of the TALE homeobox gene ATH1. New Phytologist 239:1051−67 doi: 10.1111/nph.19014
CrossRef Google Scholar
|
[9]
|
Favero DS, Lambolez A, Sugimoto K. 2021. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. The Plant Journal 105:392−420 doi: 10.1111/tpj.14996
CrossRef Google Scholar
|
[10]
|
Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, et al. 2013. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. The EMBO Journal 32:1087−102 doi: 10.1038/emboj.2013.61
CrossRef Google Scholar
|
[11]
|
Mancera-Martínez E, Dong Y, Makarian J, Srour O, Thiébeauld O, et al. 2021. Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Research 49:6908−24 doi: 10.1093/nar/gkab501
CrossRef Google Scholar
|
[12]
|
Zhang Z, Zhu J, Roh J, Marchive C, Kim SK, et al. 2016. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Current Biology 26:1854−60 doi: 10.1016/j.cub.2016.05.005
CrossRef Google Scholar
|
[13]
|
Montes C, Wang P, Liao CY, Nolan TM, Song G, et al. 2022. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. New Phytologist 236:893−910 doi: 10.1111/nph.18404
CrossRef Google Scholar
|
[14]
|
Xiong F, Zhang R, Meng Z, Deng K, Que Y, et al. 2017. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis. New Phytologist 213:233−49 doi: 10.1111/nph.14118
CrossRef Google Scholar
|
[15]
|
Liao CY, Pu Y, Nolan TM, Montes C, Guo H, et al. 2023. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy 19:1293−310 doi: 10.1080/15548627.2022.2124501
CrossRef Google Scholar
|
[16]
|
Smailov B, Alybayev S, Smekenov I, Mursalimov A, Saparbaev M, et al. 2020. Wheat germination is dependent on plant target of rapamycin signaling. Frontiers in Cell and Developmental Biology 8:606685 doi: 10.3389/fcell.2020.606685
CrossRef Google Scholar
|
[17]
|
Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, et al. 2007. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8:864−70 doi: 10.1038/sj.embor.7401043
CrossRef Google Scholar
|
[18]
|
Xiong Y, McCormack M, Li L, Hall Q, Xiang C, et al. 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181−86 doi: 10.1038/nature12030
CrossRef Google Scholar
|
[19]
|
Salazar-Díaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, et al. 2021. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 24:103260 doi: 10.1016/j.isci.2021.103260
CrossRef Google Scholar
|
[20]
|
Sharma M, Sharma M, Jamsheer KM, Laxmi A. 2022. A glucose–target of rapamycin signaling axis integrates environmental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis. Journal of Experimental Botany 73:7083−102 doi: 10.1093/jxb/erac338
CrossRef Google Scholar
|
[21]
|
Dong Y, Uslu VV, Berr A, Singh G, Papdi C, et al. 2023. TOR represses stress responses through global regulation of H3K27 trimethylation in plants. Journal of Experimental Botany 74:1420−31 doi: 10.1093/jxb/erac486
CrossRef Google Scholar
|
[22]
|
Li X, Liang T, Liu H. 2022. How plants coordinate their development in response to light and temperature signals. The Plant Cell 34:955−66 doi: 10.1093/plcell/koab302
CrossRef Google Scholar
|
[23]
|
Stitz M, Kuster D, Reinert M, Schepetilnikov M, Berthet B, et al. 2023. TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana. The EMBO Journal 42:e111273 doi: 10.15252/embj.2022111273
CrossRef Google Scholar
|
[24]
|
Lee K, Seo PJ. 2017. Arabidopsis TOR signaling is essential for sugar-regulated callus formation. Journal of Integrative Plant Biology 59:742−46 doi: 10.1111/jipb.12560
CrossRef Google Scholar
|
[25]
|
Deng K, Dong P, Wang W, Feng L, Xiong F, et al. 2017. The TOR pathway is involved in adventitious root formation in Arabidopsis and potato. Frontiers in Plant Science 8:784 doi: 10.3389/fpls.2017.00784
CrossRef Google Scholar
|
[26]
|
Liu Y, Xiong Y. 2022. Plant target of rapamycin signaling network: complexes, conservations, and specificities. Journal of Integrative Plant Biology 64:342−70 doi: 10.1111/jipb.13212
CrossRef Google Scholar
|
[27]
|
Rodriguez E, Chevalier J, Olsen J, Ansbøl J, Kapousidou V, et al. 2020. Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. The EMBO Journal 39:e103315 doi: 10.15252/embj.2019103315
CrossRef Google Scholar
|
[28]
|
Ye R, Wang M, Du H, Chhajed S, Koh J, et al. 2022. Glucose-driven TOR–FIE–PRC2 signalling controls plant development. Nature 609:986−93 doi: 10.1038/s41586-022-05171-5
CrossRef Google Scholar
|
[29]
|
Mozgova I, Hennig L. 2015. The polycomb group protein regulatory network. Annual Review of Plant Biology 66:269−96 doi: 10.1146/annurev-arplant-043014-115627
CrossRef Google Scholar
|
[30]
|
Omary M, Matosevich R, Efroni I. 2023. Systemic control of plant regeneration and wound repair. New Phytologist 237:408−13 doi: 10.1111/nph.18487
CrossRef Google Scholar
|
[31]
|
Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, et al. 2018. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America 115:E2447−E2456 doi: 10.1073/pnas.1718263115
CrossRef Google Scholar
|
[32]
|
Miao L, Li Q, Sun T, Chai S, Wang C, et al. 2021. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research 8:146 doi: 10.1038/s41438-021-00580-5
CrossRef Google Scholar
|
[33]
|
Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology 25:1306−18 doi: 10.1016/j.cub.2015.03.032
CrossRef Google Scholar
|
[34]
|
Wulf KE, Reid JB, Foo E. 2019. Auxin transport and stem vascular reconnection - has our thinking become canalized? Annals of Botany 123:429−39 doi: 10.1093/aob/mcy180
CrossRef Google Scholar
|
[35]
|
Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, et al. 2022. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 149:dev200079 doi: 10.1242/dev.200079
CrossRef Google Scholar
|
[36]
|
Marsch-Martínez N, Franken J, Gonzalez-Aguilera KL, de Folter S, Angenent G, et al. 2013. An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods 9:14 doi: 10.1186/1746-4811-9-14
CrossRef Google Scholar
|
[37]
|
Kondhare KR, Patil NS, Banerjee AK. 2021. A historical overview of long-distance signalling in plants. Journal of Experimental Botany 72:4218−36 doi: 10.1093/jxb/erab048
CrossRef Google Scholar
|
[38]
|
Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, et al. 2022. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. The Plant Cell 34:3814−29 doi: 10.1093/plcell/koac201
CrossRef Google Scholar
|
[39]
|
Wang P, Zhao Y, Li Z, Hsu CC, Liu X, et al. 2018. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell 69:100−112.e6 doi: 10.1016/j.molcel.2017.12.002
CrossRef Google Scholar
|
[40]
|
Chen Q, Hu T, Li X, Song C, Zhu J, et al. 2022. Phosphorylation of SWEET sucrose transporters regulates plant root: shoot ratio under drought. Nature Plants 8:68−77 doi: 10.1038/s41477-021-01040-7
CrossRef Google Scholar
|
[41]
|
Bommer UA, Telerman A. 2020. Dysregulation of TCTP in biological processes and diseases. Cells 9:1632 doi: 10.3390/cells9071632
CrossRef Google Scholar
|
[42]
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. 2016. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. Plant Signaling & Behavior 11:e1071003 doi: 10.1080/15592324.2015.1071003
CrossRef Google Scholar
|
[43]
|
Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, et al. 2019. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Current Biology 29:2465−2476.e5 doi: 10.1016/j.cub.2019.06.042
CrossRef Google Scholar
|
[44]
|
Berkowitz O, Jost R, Pollmann S, Masle J. 2008. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell 20:3430−47 doi: 10.1105/tpc.108.061010
CrossRef Google Scholar
|
[45]
|
Liu Z, Wang C, Li X, Lu X, Liu M, et al. 2023. The role of shoot-derived RNAs transported to plant root in response to abiotic stresses. Plant Science 328:111570 doi: 10.1016/j.plantsci.2022.111570
CrossRef Google Scholar
|
[46]
|
Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W. 2016. An evolutionary perspective of AMPK–TOR signaling in the three domains of life. Journal of Experimental Botany 67:3897−907 doi: 10.1093/jxb/erw211
CrossRef Google Scholar
|
[47]
|
Brunkard JO. 2020. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. Developmental Cell 54:142−55 doi: 10.1016/j.devcel.2020.06.022
CrossRef Google Scholar
|
[48]
|
Zhulyn O, Rosenblatt HD, Shokat L, Dai S, Kuzuoglu-Öztürk D, et al. 2023. Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature 620:163−71 doi: 10.1038/s41586-023-06365-1
CrossRef Google Scholar
|
[49]
|
Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, et al. 2002. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the United States of America 99:6422−27 doi: 10.1073/pnas.092141899
CrossRef Google Scholar
|
[50]
|
Xiong F, Dong P, Liu M, Xie G, Wang K, et al. 2016. Tomato FK506 Binding Protein 12KD (FKBP12) mediates the interaction between rapamycin and Target of Rapamycin (TOR). Frontiers in Plant Science 7:1746 doi: 10.3389/fpls.2016.01746
CrossRef Google Scholar
|
[51]
|
Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, et al. 2018. Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416−21 doi: 10.1126/science.aan1053
CrossRef Google Scholar
|
[52]
|
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1:15025 doi: 10.1038/nplants.2015.25
CrossRef Google Scholar
|
[53]
|
Li X, Lin S, Xiang C, Liu W, Zhang X, et al. 2023. CUCUME: an RNA methylation database integrating systemic mRNAs signals, GWAS and QTL genetic regulation and epigenetics in different tissues of Cucurbitaceae. Computational and Structural Biotechnology Journal 21:837−46 doi: 10.1016/j.csbj.2023.01.012
CrossRef Google Scholar
|
[54]
|
Xiong F, Tian J, Wei Z, Deng K, Li Y, et al. 2023. Suppression of the target of rapamycin kinase accelerates tomato fruit ripening through reprogramming the transcription profile and promoting ethylene biosynthesis. Journal of Experimental Botany 74:2603−19 doi: 10.1093/jxb/erad056
CrossRef Google Scholar
|
[55]
|
Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, et al. 2022. Silencing of the target of rapamycin complex genes stimulates tomato fruit ripening. Molecules and Cells 45:660−72 doi: 10.14348/molcells.2022.2025
CrossRef Google Scholar
|
[56]
|
Zhang Y, Xing H, Wang H, Yu L, Yang Z, et al. 2022. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. Frontiers in Plant Science 13:1013445 doi: 10.3389/fpls.2022.1013445
CrossRef Google Scholar
|