[1]
|
Chinese Nutrition Society. 2022. The dietary guidelines for Chinese residents. Beijing, China: People's Medical Publishing House (in Chinese).
|
[2]
|
Kyriacou MC, Rouphael Y. 2018. Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae 234:463−69 doi: 10.1016/j.scienta.2017.09.046
CrossRef Google Scholar
|
[3]
|
Yin Z, Li B, Li S, Ding J, Zhang L. 2022. Key influencing factors of green vegetable consumption in Beijing, China. Journal of Retailing and Consumer Services 66:102907 doi: 10.1016/j.jretconser.2021.102907
CrossRef Google Scholar
|
[4]
|
Wang S, Qiang Q, Xiang L, Fernie AR, Yang J. 2023. Targeted approaches to improve tomato fruit taste. Horticulture Research 10:uhac229 doi: 10.1093/hr/uhac229
CrossRef Google Scholar
|
[5]
|
Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B, Chen CYO, et al. 2020. Fruits, vegetables, and health: a comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition 60:2174−211 doi: 10.1080/10408398.2019.1632258
CrossRef Google Scholar
|
[6]
|
Hall RD, Brouwer ID, Fitzgerald MA. 2008. Plant metabolomics and its potential application for human nutrition. Physiologia Plantarum 132:162−75 doi: 10.1111/j.1399-3054.2007.00989.x
CrossRef Google Scholar
|
[7]
|
Yang X, Gil MI, Yang Q, Tomás-Barberán FA. 2022. Bioactive compounds in lettuce: highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety 21:4−45 doi: 10.1111/1541-4337.12877
CrossRef Google Scholar
|
[8]
|
Stanaway JD, Afshin A, Ashbaugh C, Bisignano C, Brauer M, et al. 2022. Health effects associated with vegetable consumption: a burden of proof study. Nature Medincine 28:2066−74 doi: 10.1038/s41591-022-01970-5
CrossRef Google Scholar
|
[9]
|
Klee HJ, Tieman DM. 2018. The genetics of fruit flavour preferences. Nature Reviews Genetics 19:347−56 doi: 10.1038/s41576-018-0002-5
CrossRef Google Scholar
|
[10]
|
Hartung F, Schiemann J. 2014. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. The Plant Journal 78:742−52 doi: 10.1111/tpj.12413
CrossRef Google Scholar
|
[11]
|
Li H, Yang X, Shang Y, Zhang Z, Huang S. 2023. Vegetable biology and breeding in the genomics era. Science China Life Sciences 66:226−50 doi: 10.1007/s11427-022-2248-6
CrossRef Google Scholar
|
[12]
|
Young SN, Kayacan E, Peschel JM. 2019. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Agriculture 20:697−722 doi: 10.1007/s11119-018-9601-6
CrossRef Google Scholar
|
[13]
|
Watt M, Fiorani F, Usadel B, Rascher U, Muller O, et al. 2020. Phenotyping: new windows into the plant for breeders. Annual Review of Plant Biology 71:689−712 doi: 10.1146/annurev-arplant-042916-041124
CrossRef Google Scholar
|
[14]
|
Razzaq A, Wishart DS, Wani SH, Hameed MK, Mubin M, et al. 2022. Advances in metabolomics-driven diagnostic breeding and crop improvement. Metabolites 12:511 doi: 10.3390/metabo12060511
CrossRef Google Scholar
|
[15]
|
Egorova KV, Sinyavina NG, Artemyeva AM, Kocherina NV, Chesnokov YV. 2021. QTL analysis of the content of some bioactive compounds in Brassica rapa L. grown under light culture conditions. Horticulturae 7:583 doi: 10.3390/horticulturae7120583
CrossRef Google Scholar
|
[16]
|
Weng JK, Philippe RN, Noel JP. 2012. The rise of chemodiversity in plants. Science 336:1667−70 doi: 10.1126/science.1217411
CrossRef Google Scholar
|
[17]
|
Zhang J, Yang X, Zhang X, Zhang L, Zhang Z, et al. 2022. Linking environmental signals to plant metabolism: the combination of field trials and environment simulators. Molecular Plant 15:213−15 doi: 10.1016/j.molp.2021.12.017
CrossRef Google Scholar
|
[18]
|
Rouphael Y, Cardarelli M, Bassal AH, Leonardi C, Giuffrida F, et al. 2012. Vegetable quality as affected by genetic, agronomic and environmental factors. Journal of Food, Agriculture & Environment 10:680−88
Google Scholar
|
[19]
|
Chowdhury M, Kiraga S, Islam MN, Ali M, Reza MN, et al. 2021. Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Foods 10:1524 doi: 10.3390/foods10071524
CrossRef Google Scholar
|
[20]
|
Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G. 2018. Improving vegetable quality in controlled environments. Scientia Horticulturae 234:275−89 doi: 10.1016/j.scienta.2018.02.033
CrossRef Google Scholar
|
[21]
|
Zhang L, Yang X, Li T, Gan R, Wang Z, et al. 2022. Plant factory technology lights up urban horticulture in the post-coronavirus world. Horticulture Research 9:uhac018 doi: 10.1093/hr/uhac018
CrossRef Google Scholar
|
[22]
|
Kozai T, Niu G, Takagaki M. 2019. Plant factory: an indoor vertical farming system for efficient quality food production, 2nd Edition. US: Academic Press. 516 pp.
|
[23]
|
SharathKumar M, Heuvelink E, Marcelis LFM. 2020. Vertical farming: moving from genetic to environmental modification. Trends in Plant Science 25:724−27 doi: 10.1016/j.tplants.2020.05.012
CrossRef Google Scholar
|
[24]
|
Zhang L, Huang L, Li T, Wang T, Yang X, et al. 2023. The skyscraper crop factory: a potential crop-production system to meet rising urban food demand. Engineering 31:70−75 doi: 10.1016/j.eng.2023.08.014
CrossRef Google Scholar
|
[25]
|
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, et al. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4:23−29 doi: 10.1038/s41477-017-0083-8
CrossRef Google Scholar
|
[26]
|
Chiurugwi T, Kemp S, Powell W, Hickey LT. 2019. Speed breeding orphan crops. Theoretical and Applied Genetics 132:607−16 doi: 10.1007/s00122-018-3202-7
CrossRef Google Scholar
|
[27]
|
Xu Y, Luo H, Zhang H, Yung WS, Li MW, et al. 2023. Feeding the world using speed breeding technology. Trends in Plant Science 28:372−73 doi: 10.1016/j.tplants.2022.12.003
CrossRef Google Scholar
|
[28]
|
Shaik R, Gandikota B, Chukkamettu A. 2023. Speed breeding in vegetables: a potential approach for future food security. Just Agriculture 3:495−503
Google Scholar
|
[29]
|
Hickey LT, N Hafeez A, Robinson H, Jackson SA, Leal-Bertioli SCM, et al. 2019. Breeding crops to feed 10 billion. Nature Biotechnology 37:744−54 doi: 10.1038/s41587-019-0152-9
CrossRef Google Scholar
|
[30]
|
Voss-Fels KP, Herzog E, Dreisigacker S, Sukumaran S, Watson A, et al. 2019. "SpeedGS" to accelerate genetic gain in spring wheat. In Applications of Genetic and Genomic Research in Cereals, eds Miedaner T, Korzun V. UK: Woodhead Publishing. pp. 303−27. https://doi.org/10.1016/B978-0-08-102163-7.00014-4
|
[31]
|
Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, et al. 2010. Molecular breeding of tomato lines for mass production of miraculin in a plant factory. Journal of Agricultural Food Chemistry 58:9505−10 doi: 10.1021/jf101874b
CrossRef Google Scholar
|
[32]
|
Bian Z, Yang Q, Liu W. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food Agriculture 95:869−77 doi: 10.1002/jsfa.6789
CrossRef Google Scholar
|
[33]
|
Kyriacou MC, Soteriou GA, Rouphael Y, Siomos AS, Gerasopoulos D. 2016. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. Journal of the Science of Food Agriculture 96:2400−09 doi: 10.1002/jsfa.7356
CrossRef Google Scholar
|
[34]
|
Hao J, Lou P, Han Y, Zheng L, Lu J, et al. 2022. Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L.) by inducing flavonoid biosynthesis. Plants 11:766 doi: 10.3390/plants11060766
CrossRef Google Scholar
|
[35]
|
Jacobo-Velázquez DA, Moreira-Rodríguez M, Benavides J. 2022. UVA and UVB radiation as innovative tools to biofortify horticultural crops with nutraceuticals. Horticulturae 8:387 doi: 10.3390/horticulturae8050387
CrossRef Google Scholar
|
[36]
|
Boo HO, Hwang SJ, Bae CS, Park SH, Heo BG, et al. 2012. Extraction and characterization of some natural plant pigments. Industrial Crops and Products 40:129−35 doi: 10.1016/j.indcrop.2012.02.042
CrossRef Google Scholar
|
[37]
|
Amitrano C, Rouphael Y, De Pascale S, De Micco V. 2021. Modulating vapor pressure deficit in the plant micro-environment may enhance the bioactive value of lettuce. Horticulturae 7:32 doi: 10.3390/horticulturae7020032
CrossRef Google Scholar
|
[38]
|
Lee JJ, Crosby KM, Pike LM, Yoo KS, Leskovar DI. 2005. Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper (Capsicum spp.). Scientia Horticulturae 106:341−52 doi: 10.1016/j.scienta.2005.04.008
CrossRef Google Scholar
|
[39]
|
Wang Z, Yang R, Liang Y, Zhang S, Zhang Z, et al. 2022. Comparing efficacy of different biostimulants for hydroponically grown lettuce (Lactuca sativa L.). Agronomy 12:786 doi: 10.3390/agronomy12040786
CrossRef Google Scholar
|
[40]
|
Wu L, Deng Z, Cao L, Meng L. 2020. Effect of plant density on yield and quality of perilla sprouts. Scientific Reports 10:9937 doi: 10.1038/s41598-020-67106-2
CrossRef Google Scholar
|
[41]
|
Thakur O, Kumar V, Singh J. 2018. A review on advances in pruning to vegetable crops. International Journal of Current Microbiology and Applied Sciences 7:3556−65 doi: 10.20546/ijcmas.2018.702.422
CrossRef Google Scholar
|
[42]
|
Yang X, Hu J, Wang Z, Huang T, Xiang Y, et al. 2023. Pre-harvest nitrogen limitation and continuous lighting improve the quality and flavor of lettuce (Lactuca sativa L.) under hydroponic conditions in greenhouse. Journal of Agricultural Food Chemistry 71:710−20 doi: 10.1021/acs.jafc.2c07420
CrossRef Google Scholar
|
[43]
|
Abbott AB. 2010. The isolation of flowering time genes from lettuce to enable the manipulation of bolting time. PhD thesis. University of Warwick, UK.
|
[44]
|
Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, et al. 2000. Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theoretical and Applied Genetics 101:1066−73 doi: 10.1007/s001220051581
CrossRef Google Scholar
|
[45]
|
Mou B. 2011. Mutations in lettuce improvement. International Journal of Plant Genomics 2011:723518 doi: 10.1155/2011/723518
CrossRef Google Scholar
|
[46]
|
Huo G, Ge G, He S, Liu H, Long P, et al. 2022. A new lettuce cultivar 'Haonong 1'. Acta Horticulturae Sinica 49:97−98
Google Scholar
|
[47]
|
Liang Y, Dong Y, Yang Q, Urano D, Wang Z. 2023. Interactive effects of light quality and nitrate supply on growth and metabolic processes in two lettuce cultivars (Lactuca sativa L.). Environmental and Experimental Botany 213:105443 doi: 10.1016/j.envexpbot.2023.105443
CrossRef Google Scholar
|