[1]
|
Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, et al. 2018. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communication 9:364 doi: 10.1038/s41467-017-02782-9
CrossRef Google Scholar
|
[2]
|
Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, et al. 2009. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60:1823−37 doi: 10.1093/jxb/erp055
CrossRef Google Scholar
|
[3]
|
Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015. Transport of sugars. Annual Review of Biochemistry 84:865−94 doi: 10.1146/annurev-biochem-060614-033904
CrossRef Google Scholar
|
[4]
|
Braun DM, Wang L, Ruan YL. 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany 65:1713−35 doi: 10.1093/jxb/ert416
CrossRef Google Scholar
|
[5]
|
Wan H, Wu L, Yang Y, Zhou G, Ruan YL. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends in Plant Science 23:163−77 doi: 10.1016/j.tplants.2017.11.001
CrossRef Google Scholar
|
[6]
|
Ho LH, Klemens PAW, Neuhaus HE, Ko HY, Hsieh SY, et al. 2019. SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany 70:3241−54 doi: 10.1093/jxb/erz154
CrossRef Google Scholar
|
[7]
|
Li Y, Liu H, Yao X, Wang J, Feng S, et al. 2021. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Plant Physiology 186:640−54 doi: 10.1093/plphys/kiab046
CrossRef Google Scholar
|
[8]
|
Ruan YL, Patrick JW. 1995. The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta 196:434−44 doi: 10.1007/BF00203641
CrossRef Google Scholar
|
[9]
|
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, et al. 2014. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant and Cell Physiology 55:1123−41 doi: 10.1093/pcp/pcu052
CrossRef Google Scholar
|
[10]
|
Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, et al. 2006. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45:180−92 doi: 10.1111/j.1365-313X.2005.02572.x
CrossRef Google Scholar
|
[11]
|
Milne RJ, Grof CPL, Patrick JW. 2018. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Current Opinion in Plant Biology 43:8−15 doi: 10.1016/j.pbi.2017.11.003
CrossRef Google Scholar
|
[12]
|
McCurdy DW, Dibley S, Cahyanegara R, Martin A, Patrick JW. 2010. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Molecular Plant 3:1049−63 doi: 10.1093/mp/ssq050
CrossRef Google Scholar
|
[13]
|
Zhen Q, Fang T, Peng Q, Liao L, Zhao L, et al. 2018. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Horticulture Research 5:14 doi: 10.1038/s41438-018-0024-3
CrossRef Google Scholar
|
[14]
|
Chen L, Qu X, Hou B, Sosso D, Osorio S, et al. 2011. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207−11 doi: 10.1126/science.1213351
CrossRef Google Scholar
|
[15]
|
Li X, Guo W, Li J, Yue P, Bu H, Jiang J, et al. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology 182:2035−46 doi: 10.1104/pp.20.00002
CrossRef Google Scholar
|
[16]
|
Ren Y, Li M, Guo S, Sun H, Zhao J, Zhang J, et al. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. The Plant Cell 33:1554−73 doi: 10.1093/plcell/koab055
CrossRef Google Scholar
|
[17]
|
Zhang X, Feng C, Wang M, Li T, Liu X, et al. 2021. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Horticulture Research 8:186 doi: 10.1038/s41438-021-00624-w
CrossRef Google Scholar
|
[18]
|
Sun J, Feng C, Liu X, Jiang J. 2022. The SlSWEET12c sugar transporter promotes sucrose unloading and metabolism in ripening tomato fruits. Horticulturae 8:935 doi: 10.3390/horticulturae8100935
CrossRef Google Scholar
|
[19]
|
Ko HY, Ho LH, Neuhaus HE, Guo WJ. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiology 187:2230−45 doi: 10.1093/plphys/kiab290
CrossRef Google Scholar
|
[20]
|
Ruan YL. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67 doi: 10.1146/annurev-arplant-050213-040251
CrossRef Google Scholar
|
[21]
|
Ru L, He Y, Zhu Z, Patrick JW, Ruan YL. 2020. Integrating sugar metabolism with transport: elevation of endogenous cell wall invertase activity up-regulates SlHT2 and SlSWEET12c expression for early fruit development in tomato. Frontiers in Genetics 11:592596 doi: 10.3389/fgene.2020.592596
CrossRef Google Scholar
|
[22]
|
Liao S, Wang L, Li J, Ruan YL. 2020. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiology 183:1126−44 doi: 10.1104/pp.20.00400
CrossRef Google Scholar
|
[23]
|
Ren R, Yue X, Li J, Xie S, Guo S, et al. 2020. Coexpression of sucrose synthase and the SWEET transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries. Frontiers in Plant Science 11:321 doi: 10.3389/fpls.2020.00321
CrossRef Google Scholar
|
[24]
|
Feng C, Han J, Han X, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573:261−72 doi: 10.1016/j.gene.2015.07.055
CrossRef Google Scholar
|
[25]
|
Qin G, Zhu Z, Wang W, Cai J, Chen Y, et al. 2016. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiology 172:1596−611 doi: 10.1104/pp.16.01269
CrossRef Google Scholar
|
[26]
|
Zhang S, Feng M, Chen W, Zhou X, Lu J, et al. 2019. In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. Nature Plants 5:290−99 doi: 10.1038/s41477-019-0376-1
CrossRef Google Scholar
|
[27]
|
Xuan Y, Hu Y, Chen L, Sosso D, Ducat DC, et al. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America 110:E3685−E3694 doi: 10.1073/pnas.1311244110
CrossRef Google Scholar
|
[28]
|
Nelson BK, Cai X, Nebenfuhr A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51:1126−36 doi: 10.1111/j.1365-313X.2007.03212.x
CrossRef Google Scholar
|
[29]
|
Guo M, Zhang YL, Meng ZJ, Jiang J. 2012. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genetics and Molecular Research 11:661−71 doi: 10.4238/2012.March.16.4
CrossRef Google Scholar
|
[30]
|
Jia H, Jiu S, Zhang C, Wang C, Tariq P, et al. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnology Journal 14:2045−65 doi: 10.1111/pbi.12563
CrossRef Google Scholar
|
[31]
|
Zhang N, Shi J, Zhao H, Jiang J. 2018. Activation of small heat shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato. Gene 679:90−99 doi: 10.1016/j.gene.2018.08.077
CrossRef Google Scholar
|
[32]
|
Ma L, Zhang D, Miao Q, Yang J, Xuan Y, et al. 2017. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant and Cell Physiology 58:863−73 doi: 10.1093/pcp/pcx040
CrossRef Google Scholar
|
[33]
|
Wang Z, Wei X, Yang J, Li H, Ma B, et al. 2019. Heterologous expression of the apple hexose transporter MdHT2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit. Plant Biotechnology Journal 18:540−52 doi: 10.1111/pbi.13222
CrossRef Google Scholar
|
[34]
|
Anjali A, Fatima U, Manu MS, Ramasamy S, Senthil-Kumar M. 2020. Structure and regulation of SWEET transporters in plants: an update. Plant Physiology and Biochemistry 156:1−6 doi: 10.1016/j.plaphy.2020.08.043
CrossRef Google Scholar
|
[35]
|
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527−32 doi: 10.1038/nature09606
CrossRef Google Scholar
|
[36]
|
Ko HY, Tseng HW, Ho LH, Wang L, Chang TF, et al. 2022. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum. Plant Physiology 189:344−59 doi: 10.1093/plphys/kiac057
CrossRef Google Scholar
|
[37]
|
Sun J, Li L, Liu X, Feng C, Jiang J. 2023. SlSWEET11b mediates sugar reallocation to regulate tomato stem morphogenesis. Scientia Horticulturae 321:112239 doi: 10.1016/j.scienta.2023.112239
CrossRef Google Scholar
|
[38]
|
Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, et al. 2019. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiology 180:2133−41 doi: 10.1104/pp.19.00641
CrossRef Google Scholar
|
[39]
|
Huang C, Yu J, Cai Q, Chen Y, Li Y, et al. 2020. Triple-localized WHIRLY2 influences leaf senescence and silique development via carbon allocation. Plant Physiology 184:1348−62 doi: 10.1104/pp.20.00832
CrossRef Google Scholar
|
[40]
|
Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, et al. 2019. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology 29:1178−1186.e6 doi: 10.1016/j.cub.2019.02.018
CrossRef Google Scholar
|
[41]
|
Alguel Y, Cameron AD, Diallinas G, Byrne B. 2016. Transporter oligomerization: form and function. Biochemical Society Transactions 44:1737−44 doi: 10.1042/BST20160217
CrossRef Google Scholar
|
[42]
|
Cecchetti C, Pyle E, Byrne B. 2019. Transporter oligomerisation: roles in structure and function. Biochemical Society Transactions 47:433−40 doi: 10.1042/BST20180316
CrossRef Google Scholar
|
[43]
|
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, et al. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:259−63 doi: 10.1038/nature15391
CrossRef Google Scholar
|
[44]
|
Wang H, Yan S, Xin H, Huang W, Zhang H, et al. 2019. A subsidiary cell-localized glucose transporter promotes stomatal conductance and photosynthesis. The Plant Cell 31:1328−43 doi: 10.1105/tpc.18.00736
CrossRef Google Scholar
|
[45]
|
Gao Y, Zhang C, Han X, Wang Z, Ma L, et al. 2018. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology 19:2149−61 doi: 10.1111/mpp.12689
CrossRef Google Scholar
|
[46]
|
Yao L, Ding C, Hao X, Zeng J, Yang Y, et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant and Cell Physiology 61:1669−82 doi: 10.1093/pcp/pcaa091
CrossRef Google Scholar
|
[47]
|
Reinders A, Schulze W, Kühn C, Barker L, Schulz A, et al. 2002. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. The Plant Cell 14:1567−77 doi: 10.1105/tpc.002428
CrossRef Google Scholar
|
[48]
|
Desnoues E, Gibon Y, Baldazzi V, Signoret V, Bénédicte M, et al. 2014. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology 14:336 doi: 10.1186/s12870-014-0336-x
CrossRef Google Scholar
|
[49]
|
Shammai A, Petreikov M, Yeselson Y, Faigenboim A, Moy-Komemi M, et al. 2018. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. The Plant Journal 96:343−57 doi: 10.1111/tpj.14035
CrossRef Google Scholar
|
[50]
|
Osorio S, Ruan YL, Fernie AR. 2014. An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science 5:516 doi: 10.3389/fpls.2014.00516
CrossRef Google Scholar
|
[51]
|
Chen C, Yuan Y, Zhang C, Li H, Ma F, et al. 2017. Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Science 255:40−50 doi: 10.1016/j.plantsci.2016.11.011
CrossRef Google Scholar
|
[52]
|
Jin Y, Ni DA, Ruan YL. 2009. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. The Plant Cell 21:2072−89 doi: 10.1105/tpc.108.063719
CrossRef Google Scholar
|
[53]
|
Kim P, Xue C, Song H, Gao Y, Feng L, et al. 2021. Tissue-specific activation of DOF11 promotes rice resistance to sheath blight disease and increases grain weight via activation of SWEET14. Plant Biotechnology Journal 19:409−11 doi: 10.1111/pbi.13489
CrossRef Google Scholar
|
[54]
|
Zeng X, Luo Y, Vu NTQ, Shen S, Xia K, et al. 2020. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology 20:313 doi: 10.1186/s12870-020-02524-y
CrossRef Google Scholar
|
[55]
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Oge L, et al. 2018. The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. International Journal of Molecular Sciences 19:2506 doi: 10.3390/ijms19092506
CrossRef Google Scholar
|
[56]
|
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communication 7:13245 doi: 10.1038/ncomms13245
CrossRef Google Scholar
|
[57]
|
Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, et al. 2009. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology 150:1204−18 doi: 10.1104/pp.109.136598
CrossRef Google Scholar
|