[1]
|
Ali MS, Baek KH. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences 21:621 doi: 10.3390/ijms21020621
CrossRef Google Scholar
|
[2]
|
Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiology 182:1624−35 doi: 10.1104/pp.19.01464
CrossRef Google Scholar
|
[3]
|
Wolters H, Jürgens G. 2009. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics 10:305−17 doi: 10.1038/nrg2558
CrossRef Google Scholar
|
[4]
|
Gong Z. 2021. Plant abiotic stress: new insights into the factors that activate and modulate plant responses. Journal of Integrative Plant Biology 63:429−30 doi: 10.1111/jipb.13079
CrossRef Google Scholar
|
[5]
|
Lee S, Shin K, Lee I, Song HR, Noh YS, et al. 2013. Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. Plant Science 208:20−27 doi: 10.1016/j.plantsci.2013.03.009
CrossRef Google Scholar
|
[6]
|
Boss PK, Bastow RM, Mylne JS, Dean C. 2004. Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell 16:S18−S31 doi: 10.1105/tpc.015958
CrossRef Google Scholar
|
[7]
|
Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology 32:121−29 doi: 10.1016/j.copbio.2014.11.023
CrossRef Google Scholar
|
[8]
|
Wada KC, Takeno K. 2010. Stress-induced flowering. Plant Signaling & Behavior 5:944−47 doi: 10.4161/psb.5.8.11826
CrossRef Google Scholar
|
[9]
|
Mouradov A, Cremer F, Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14:S111−S130 doi: 10.1105/tpc.001362
CrossRef Google Scholar
|
[10]
|
Zhang M, Zhu J, Wang L, Xu M. 2016. Progress of stress-induced flowering in plants. Chinese Journal of Biotechnology 32:1301−08 doi: 10.13345/j.cjb.160012
CrossRef Google Scholar
|
[11]
|
Takeno K. 2016. Stress-induced flowering: the third category of flowering response. Journal of Experimental Botany 67:4925−34 doi: 10.1093/jxb/erw272
CrossRef Google Scholar
|
[12]
|
Cho LH, Yoon J, An G. 2017. The control of flowering time by environmental factors. The Plant Journal 90:708−19 doi: 10.1111/tpj.13461
CrossRef Google Scholar
|
[13]
|
Takeno K. 2012. Stress-induced flowering. In Abiotic stress responses in plants, eds Ahmad P, Prasad M. New York, NY: Springer. pp. 331−45. https://doi.org/10.1007/978-1-4614-0634-1_17
|
[14]
|
Ventura Y, Eshel A, Pasternak D, Sagi M. 2015. The development of halophyte-based agriculture: past and present. Annals of Botany 115:529−40 doi: 10.1093/aob/mcu173
CrossRef Google Scholar
|
[15]
|
Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444:139−58 doi: 10.1016/j.abb.2005.10.018
CrossRef Google Scholar
|
[16]
|
Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38 doi: 10.1016/S0076-6879(07)28024-3
CrossRef Google Scholar
|
[17]
|
Munns R, Gilliham M. 2015. Salinity tolerance of crops – what is the cost? New Phytologist 208:668−73 doi: 10.1111/nph.13519
CrossRef Google Scholar
|
[18]
|
Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK. 2016. Halophytes as bioenergy crops. Frontiers in Plant Science 7:1372 doi: 10.3389/fpls.2016.01372
CrossRef Google Scholar
|
[19]
|
Li K, Wang Y, Han C, Zhang W, Jia H, et al. 2007. GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regulation 53:195−206 doi: 10.1007/s10725-007-9218-7
CrossRef Google Scholar
|
[20]
|
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, et al. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22:4609 doi: 10.3390/ijms22094609
CrossRef Google Scholar
|
[21]
|
Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73 doi: 10.1146/annurev.arplant.53.091401.143329
CrossRef Google Scholar
|
[22]
|
Chen Y, Hoehenwarter W. 2015. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiology 169:3021−33 doi: 10.1104/pp.15.01486
CrossRef Google Scholar
|
[23]
|
Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, et al. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18 doi: 10.3390/agronomy7010018
CrossRef Google Scholar
|
[24]
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, et al. 2019. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? International Journal of Molecular Sciences 20:2366 doi: 10.3390/ijms20092366
CrossRef Google Scholar
|
[25]
|
Park HJ, Kim WY, Yun DJ. 2013. A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance. Plant Signaling & Behavior 8:e24820 doi: 10.4161/psb.24820
CrossRef Google Scholar
|
[26]
|
Kim SG, Kim SY, Park CM. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647−54 doi: 10.1007/s00425-007-0513-3
CrossRef Google Scholar
|
[27]
|
Julien KK, Abdou MA, Armel CGM, Françoise AK, Eliane K, et al. 2019. Effect of salt stress on flowering, fructification and fruit nutrients concentration in a local cultivar of chili pepper (Capsicum frutescens L.). International Journal of Plant Physiology and Biochemistry 11:1−7 doi: 10.5897/IJPPB2019.0284
CrossRef Google Scholar
|
[28]
|
Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, et al. 2016. Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. Journal of Agronomy and Crop Science 202:125−38 doi: 10.1111/jac.12128
CrossRef Google Scholar
|
[29]
|
Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, et al. 2019. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants 25:807−20 doi: 10.1007/s12298-019-00676-2
CrossRef Google Scholar
|
[30]
|
Zapryanova N, Atanassova B. 2009. Effects of salt stress on growth and flowering of ornamental annual species. Biotechnology & Biotechnological Equipment 23:177−79 doi: 10.1080/13102818.2009.10818394
CrossRef Google Scholar
|
[31]
|
Van Zandt PA, Mopper S. 2002. Delayed and carryover effects of salinity on flowering in Iris hexagona (Iridaceae). American Journal of Botany 89:1847−51 doi: 10.3732/ajb.89.11.1847
CrossRef Google Scholar
|
[32]
|
Abdullah Z, Khan MA, Flowers TJ. 2002. Causes of sterility in rice under salinity stress. In Prospects for saline agriculture, eds Ahmad R, Malik KA. Dordrecht: Springer. pp. 177–87. https://doi.org/10.1007/978-94-017-0067-2_19
|
[33]
|
Komeda Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55:521−35 doi: 10.1146/annurev.arplant.55.031903.141644
CrossRef Google Scholar
|
[34]
|
Quiroz S, Yustis JC, Chávez-Hernández EC, Martínez T, de la Paz Sanchez M, et al. 2021. Beyond the genetic pathways, flowering regulation complexity in Arabidopsis thaliana. International Journal of Molecular Sciences 22:5716 doi: 10.3390/ijms22115716
CrossRef Google Scholar
|
[35]
|
Samach A, Lotan H. 2007. The transition to flowering in tomato. Plant Biotechnology 24:71−82 doi: 10.5511/plantbiotechnology.24.71
CrossRef Google Scholar
|
[36]
|
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843−59 doi: 10.1016/0092-8674(92)90295-N
CrossRef Google Scholar
|
[37]
|
Blázquez MA, Soowal LN, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835−44 doi: 10.1242/dev.124.19.3835
CrossRef Google Scholar
|
[38]
|
Molinero-Rosales N, Jamilena M, Zurita S, Gómez P, Capel J, et al. 1999. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal 20:685−93 doi: 10.1046/j.1365-313X.1999.00641.x
CrossRef Google Scholar
|
[39]
|
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030−33 doi: 10.1126/science.1141752
CrossRef Google Scholar
|
[40]
|
Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694−96 doi: 10.1126/science.1117768
CrossRef Google Scholar
|
[41]
|
Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Molecular Plant 8:983−97 doi: 10.1016/j.molp.2015.01.007
CrossRef Google Scholar
|
[42]
|
Mizoguchi T, Niinuma K, Yoshida R. 2007. Day-neutral response of photoperiodic flowering in tomatoes: possible implications based on recent molecular genetics of Arabidopsis and rice. Plant Biotechnology 24:83−86 doi: 10.5511/plantbiotechnology.24.83
CrossRef Google Scholar
|
[43]
|
Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. 2004. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218:427−34 doi: 10.1007/s00425-003-1109-1
CrossRef Google Scholar
|
[44]
|
Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, et al. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the United States of America 103:6398−403 doi: 10.1073/pnas.0601620103
CrossRef Google Scholar
|
[45]
|
Yamada M, Takeno K. 2014. Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. Journal of Plant Physiology 171:205−12 doi: 10.1016/j.jplph.2013.07.005
CrossRef Google Scholar
|
[46]
|
Sablowski R, Carnier Dornelas M. 2014. Interplay between cell growth and cell cycle in plants. Journal of Experimental Botany 65:2703−14 doi: 10.1093/jxb/ert354
CrossRef Google Scholar
|
[47]
|
Francis D. 1992. The cell cycle in plant development. New Phytologist 122:1−20 doi: 10.1111/j.1469-8137.1992.tb00048.x
CrossRef Google Scholar
|
[48]
|
Dewitte W, Murray JAH. 2003. The plant cell cycle. Annual Review of Plant Biology 54:235−64 doi: 10.1146/annurev.arplant.54.031902.134836
CrossRef Google Scholar
|
[49]
|
Novák B, Sible JC, Tyson JJ. 2003. Checkpoints in the cell cycle. Encyclopedia of Life Sciences doi: 10.1038/npg.els.0001355
CrossRef Google Scholar
|
[50]
|
Kaufmann WK, Paules RS. 1996. DNA damage and cell cycle checkpoints. The FASEB Journal 10:238−47 doi: 10.1096/fasebj.10.2.8641557
CrossRef Google Scholar
|
[51]
|
West G, Inzé D, Beemster GTS. 2004. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology 135:1050−58 doi: 10.1104/pp.104.040022
CrossRef Google Scholar
|
[52]
|
Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, et al. 2021. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. Journal of Plant Research 134:261−77 doi: 10.1007/s10265-020-01250-8
CrossRef Google Scholar
|
[53]
|
Zhang P, Dai Y, Masateru S, Natsumi M, Kengo I. 2017. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency. Communications in Soil Science and Plant Analysis 48:2601−11 doi: 10.1080/00103624.2017.1411508
CrossRef Google Scholar
|
[54]
|
Khan W, Prithiviraj B, Smith DL. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160:485−92 doi: 10.1078/0176-1617-00865
CrossRef Google Scholar
|
[55]
|
Zhang J, Zhang P, Wang G, Chen C, Wang X, et al. 2023. Determination of nuclear DNA ploidy distribution in the mesocarp of tomato red ripe fruit using a flow cytometer. Vegetable Research 3:8 doi: 10.48130/VR-2023-0008
CrossRef Google Scholar
|
[56]
|
Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31:777−86 doi: 10.1046/j.1365-313X.2002.01394.x
CrossRef Google Scholar
|
[57]
|
Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA. 2015. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Molecular Plant 8:486−88 doi: 10.1016/j.molp.2014.11.024
CrossRef Google Scholar
|
[58]
|
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54 doi: 10.1093/jxb/erq098
CrossRef Google Scholar
|
[59]
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. 2021. Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology 72:273−96 doi: 10.1146/annurev-arplant-080720-103739
CrossRef Google Scholar
|
[60]
|
Qi F, Zhang F. 2019. Cell cycle regulation in the plant response to stress. Frontiers in Plant Science 10:1765 doi: 10.3389/fpls.2019.01765
CrossRef Google Scholar
|
[61]
|
Burssens S, Himanen K, Van de Cotte B, Beeckman T, Van Montagu M, et al. 2000. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632−40 doi: 10.1007/s004250000334
CrossRef Google Scholar
|
[62]
|
Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, et al. 2016. The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. The EMBO Journal 35:2068−86 doi: 10.15252/embj.201593083
CrossRef Google Scholar
|
[63]
|
Ortega-Amaro MA, Rodríguez-Kessler M, Becerra-Flora A, Jiménez-Bremont JF. 2012. Modulation of Arabidopsis CYCB1 expression patterns by polyamines and salt stress. Acta Physiologiae Plantarum 34:461−69 doi: 10.1007/s11738-011-0842-5
CrossRef Google Scholar
|
[64]
|
Khurana JP, Cleland CF. 1992. Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiology 100:1541−46 doi: 10.1104/pp.100.3.1541
CrossRef Google Scholar
|
[65]
|
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, et al. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science 8:1950 doi: 10.3389/fpls.2017.01950
CrossRef Google Scholar
|
[66]
|
Xu M, Zhang L, Li W, Hu X, Wang M, et al. 2014. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of Experimental Botany 65:89−101 doi: 10.1093/jxb/ert353
CrossRef Google Scholar
|