[1]
|
Allen DJ, Ort DR. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6:36−42 doi: 10.1016/S1360-1385(00)01808-2
CrossRef Google Scholar
|
[2]
|
Janská A, Maršík P, Zelenková S, Ovesná J. 2010. Cold stress and acclimation – what is important for metabolic adjustment? Plant Biology 12: 395−405 doi: 10.1111/j.1438-8677.2009.00299.x
CrossRef Google Scholar
|
[3]
|
Fan J, Hu Z, Xie Y, Chan Z, Chen K, et al. 2015. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Frontiers in Plant Science 6:925 doi: 10.3389/fpls.2015.00925
CrossRef Google Scholar
|
[4]
|
Bi H, Li F, Dong X, Ai X. 2017. Effects of transketolase gene silencing on photosynthesis in cucumber seedlings under high temperature stress. Plant Physiology Journal 53:1859−66 doi: 10.13592/j.cnki.ppj.2017.0084
CrossRef Google Scholar
|
[5]
|
Bi H, Li F, Wang H, Ai X. 2019. Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L. Physiologia Plantarum 167:502−15 doi: 10.1111/ppl.12903
CrossRef Google Scholar
|
[6]
|
Ahmad I, Song X, Hussein Ibrahim ME, Jamal Y, Younas MU, et al. 2023. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. Frontiers in Plant Science 14:1108507 doi: 10.3389/fpls.2023.1108507
CrossRef Google Scholar
|
[7]
|
Singh A, Roychoudhury A. 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports 42:961−74 doi: 10.1007/s00299-023-03013-w
CrossRef Google Scholar
|
[8]
|
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society 80:2587 doi: 10.1021/ja01543a060
CrossRef Google Scholar
|
[9]
|
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, et al. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35:627−34
Google Scholar
|
[10]
|
Balzer I, Hardeland R. 1996. Melatonin in algae and higher plants - possible new roles as a phytohormone and antioxidant. Botanica Acta 109:180−83 doi: 10.1111/j.1438-8677.1996.tb00560.x
CrossRef Google Scholar
|
[11]
|
Simlat M, Ptak A, Skrzypek E, Warchoł M, Morańska E, et al. 2018. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ 6:e5009 doi: 10.7717/peerj.5009
CrossRef Google Scholar
|
[12]
|
Mao J, Niu C, Li K, Chen S, Tahir MM, et al. 2020. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biology 20: 536 doi: 10.1186/s12870-020-02747-z
CrossRef Google Scholar
|
[13]
|
Liu K, Jing T, Wang Y, Ai X, Bi H. 2022. Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI. Environmental and Experimental Botany 200:104915 doi: 10.1016/j.envexpbot.2022.104915
CrossRef Google Scholar
|
[14]
|
Arnao MB, Hernández-Ruiz J. 2020. Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction 33:77−87 doi: 10.1007/s00497-020-00388-8
CrossRef Google Scholar
|
[15]
|
Shi H, Jiang C, Ye T, Tan D, Reiter RJ, et al. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany 66:681−94 doi: 10.1093/jxb/eru373
CrossRef Google Scholar
|
[16]
|
Shi H, Chen Y, Tan D, Reiter RJ, Chan Z, et al. 2015. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research 59:102−8 doi: 10.1111/jpi.12244
CrossRef Google Scholar
|
[17]
|
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, et al. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology 220:115−27 doi: 10.1016/j.jplph.2017.11.003
CrossRef Google Scholar
|
[18]
|
Zhang X, Feng Y, Jing T, Liu X, Ai X, et al. 2021. Melatonin promotes the chilling tolerance of cucumber seedlings by regulating antioxidant system and relieving photoinhibition. Frontiers in Plant Science 12:789617 doi: 10.3389/fpls.2021.789617
CrossRef Google Scholar
|
[19]
|
Xu C, Zhang X, Liu C, Liu K, Bi H, et al. 2022. Alleviating effect of exogenous melatonin and calcium on the peroxidation damages of cucumber under high temperature stress. Chinese Journal of Applied Ecology 33:2725−35 doi: 10.13287/j.1001-9332.202210.010
CrossRef Google Scholar
|
[20]
|
Sharma A, Wang J, Xu D, Tao S, Chong S, et al. 2020. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of The Total Environment 713:136675 doi: 10.1016/j.scitotenv.2020.136675
CrossRef Google Scholar
|
[21]
|
Zhang T, Shi Z, Zhang X, Zheng S, Wang J, et al. 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262:109070 doi: 10.1016/j.scienta.2019.109070
CrossRef Google Scholar
|
[22]
|
Liu C, Kang H, Wang Y, Yao Y, Gao Z, et al. 2021. Melatonin relieves ozone stress in grape leaves by inhibiting ethylene biosynthesis. Frontiers in Plant Science 12:702874 doi: 10.3389/fpls.2021.702874
CrossRef Google Scholar
|
[23]
|
Han Q, Huang B, Ding C, Zhang Z, Chen Y, et al. 2017. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Frontiers in Plant Science 8:785 doi: 10.3389/fpls.2017.00785
CrossRef Google Scholar
|
[24]
|
Korkmaz A, Karaca A, Kocacinar F, Cuci Y. 2017. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. Journal of Agricultural Science 23:167−76
Google Scholar
|
[25]
|
Qari SH, Hassan MU, Chattha MU, Mahmood A, Naqve M, et al. 2022. Melatonin induced cold tolerance in plants: physiological and molecular responses. Frontiers in Plant Science 13:843071 doi: 10.3389/fpls.2022.843071
CrossRef Google Scholar
|
[26]
|
Zhang Z, Zhang Y. 2021. Melatonin in plants: what we know and what we don't. Food Quality and Safety 5:fyab009 doi: 10.1093/fqsafe/fyab009
CrossRef Google Scholar
|
[27]
|
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85 doi: 10.1146/annurev.arplant.56.032604.144046
CrossRef Google Scholar
|
[28]
|
Huang X, Hou L, Meng J, You H, Li Z, et al. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant 11:970−82 doi: 10.1016/j.molp.2018.05.001
CrossRef Google Scholar
|
[29]
|
Abu-Ghosh S, Iluz D, Dubinsky Z, Miller G. 2021. Exogenous abscisic acid confers salinity tolerance in Chlamydomonas reinhardtii during its life cycle. Journal of Phycology 57:1323−34 doi: 10.1111/jpy.13174
CrossRef Google Scholar
|
[30]
|
Zhang Y, Fu X, Feng Y, Zhang X, Bi H, et al. 2022. Abscisic acid mediates salicylic acid induced chilling tolerance of grafted cucumber by activating H2O2 biosynthesis and accumulation. International Journal of Molecular Sciences 23:16057 doi: 10.3390/ijms232416057
CrossRef Google Scholar
|
[31]
|
Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324−49 doi: 10.1016/j.ecoenv.2004.06.010
CrossRef Google Scholar
|
[32]
|
Huang X, Shi H, Hu Z, Liu A, Amombo E, et al. 2017. ABA is involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science 8:1613 doi: 10.3389/fpls.2017.01613
CrossRef Google Scholar
|
[33]
|
Daszkowska-Golec A, Collin A, Sitko K, Janiak A, Kalaji HM, et al. 2019. Genetic and physiological dissection of photosynthesis in barley exposed to drought stress. International Journal of Molecular Sciences 20:6341 doi: 10.3390/ijms20246341
CrossRef Google Scholar
|
[34]
|
Lv C, Li F, Ai X, Bi H. 2022. H2O2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. Plant Cell Reports 41:1115−30 doi: 10.1007/s00299-022-02841-6
CrossRef Google Scholar
|
[35]
|
Xu L, Yue Q, Xiang G, Bian F, Yao Y. 2018. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Horticulture Research 5:41 doi: 10.1038/s41438-018-0045-y
CrossRef Google Scholar
|
[36]
|
Li C, Tan D, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany 66:669−80 doi: 10.1093/jxb/eru476
CrossRef Google Scholar
|
[37]
|
Feng Y, Fu X, Han L, Xu C, Liu C, et al. 2021. Nitric oxide functions as a downstream signal for melatonin-induced cold tolerance in cucumber seedlings. Frontiers in Plant Science 12:686545 doi: 10.3389/fpls.2021.686545
CrossRef Google Scholar
|
[38]
|
Qiu S. 2022. Mitigative effects of melatonin on chilling stress of cucumber in solar greenhouse. Thesis. University of Shandong Agricultural, CN.
|
[39]
|
Bian F, Xiao Q, Hao G, Sun Y, Lu W, et al. 2018. Effect of root-applied melatonin on endogenous melatonin and chlorophyll fluorescence characteristics in grapevine under NaCl stress. Scientia Agricultura Sinica 51:952−63 doi: 10.3864/j.issn.0578-1752.2018.05.013
CrossRef Google Scholar
|
[40]
|
Gong J, Xiang J. 2001. Study on non-destructive rapid measurement method of cucumber leaf area. Chinese Vegetables 2001:7−9
Google Scholar
|
[41]
|
Zhu G, Liu Z, Zhu P. 1986. A study on Determination of lethal temperature with logistic function. Journal of Nanjing Agricultural University 3:11−16
Google Scholar
|
[42]
|
Dong X, Bi H, Wu G, Ai X. 2013. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. International Journal of Plant Production 7:67−80 doi: 10.22069/IJPP.2012.922
CrossRef Google Scholar
|
[43]
|
Li Z, Gong M. 2005. Improvement of measurement method for superoxide anion radical in plant. Acta Botanica Yunnanica 27:211−16 doi: 10.3969/j.issn.2095-0845.2005.02.012
CrossRef Google Scholar
|
[44]
|
Zhang X, Liu F, Zhai J, Li F, Bi H, et al. 2020. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:69 doi: 10.1007/s00425-020-03362-w
CrossRef Google Scholar
|
[45]
|
Stewart RRC, Bewley JD. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65:245−48 doi: 10.1104/pp.65.2.245
CrossRef Google Scholar
|
[46]
|
Omran RG. 1980. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology 65:407−8 doi: 10.1104/pp.65.2.407
CrossRef Google Scholar
|
[47]
|
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867−80 doi: 10.1093/oxfordjournals.pcp.a076232
CrossRef Google Scholar
|
[48]
|
Law MY, Charles SA, Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. The Biochemical Journal 210:899−03 doi: 10.1042/bj2100899
CrossRef Google Scholar
|
[49]
|
Sartory DP, Grobbelaar JU. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177−87 doi: 10.1007/BF00031869
CrossRef Google Scholar
|
[50]
|
Demming-Adams B, Adams WW III. 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology 43:599−626. doi: 10.1146/annurev.pp.43.060192.003123
CrossRef Google Scholar
|
[51]
|
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltse V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1313−26 doi: 10.1016/j.bbabio.2010.03.008
CrossRef Google Scholar
|
[52]
|
Lei X, Zhu R, Zhang G, Dai Y. 2004. Attenuation of coldinduced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. Journal of Pineal Research 36:126−31 doi: 10.1046/j.1600-079X.2003.00106.x
CrossRef Google Scholar
|
[53]
|
Kang K, Lee K, Park S, Kim YS, Back K. 2010. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research 49:176−82 doi: 10.1111/j.1600-079X.2010.00783.x
CrossRef Google Scholar
|
[54]
|
Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 138:36−45 doi: 10.1016/j.envexpbot.2017.02.012
CrossRef Google Scholar
|
[55]
|
El-Yazied AA, Ibrahim MFM, Ibrahim MAR, Nasef IN, Al-Qahtani SM, et al. 2022. Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, aba homeostasis and antioxidant enzymes. Plants 11:1151 doi: 10.3390/plants11091151
CrossRef Google Scholar
|
[56]
|
Li H, Mo Y, Cui Q, Yang X, Guo Y. 2019. Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and-susceptible watermelon genotypes. Plant Science 278:32−43. doi: 10.1016/j.plantsci.2018.10.016
CrossRef Google Scholar
|
[57]
|
Wang D, Chen Q, Chen W, Guo Q, Xia Y, et al. 2021. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environmental and Experimental Botany 181:104291 doi: 10.1016/j.envexpbot.2020.104291
CrossRef Google Scholar
|
[58]
|
Zahedi SM, Hosseini MS, Abadía J, Marjani M. 2020. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.) Plant Physiology and Biochemistry 49:313−23 doi: 10.1016/j.plaphy.2020.02.021
CrossRef Google Scholar
|
[59]
|
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. doi: 10.3390/antiox9080681
CrossRef Google Scholar
|
[60]
|
Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annual Review of Plant Biology 69:209−36. doi: 10.1146/annurev-arplant-042817-040322
CrossRef Google Scholar
|
[61]
|
Zhang X, Du H, Shi Q, Gong B. 2022. Loss of GSNOR increases abiotic stress sensitivity via regulating MAPK-ethylene cascade signaling in Solanum lycopersicum L. Environmental and Experimental Botany 199:104872 doi: 10.1016/j.envexpbot.2022.104872
CrossRef Google Scholar
|
[62]
|
Zhang Z, Yang C, Gao H, Zhang L, Fan X, et al. 2014. The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber. Journal of Photochemistry and Photobiology B: Biology 137:127−34 doi: 10.1016/j.jphotobiol.2013.12.012
CrossRef Google Scholar
|
[63]
|
Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170:1903−16 doi: 10.1104/pp.15.01935
CrossRef Google Scholar
|
[64]
|
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. 2010. Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany 106:1−16 doi: 10.1093/aob/mcq059
CrossRef Google Scholar
|
[65]
|
Li X, Wang H, Jin H. 2020. Light signaling-dependent regulation of PSII biogenesis and functional maintenance. Plant Physiology 183:1855−68 doi: 10.1104/pp.20.00200
CrossRef Google Scholar
|
[66]
|
Acebron K, Matsubara S, Jedmowski C, Emin D, Muller O, et al. 2021. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytologist 229:2104−19 doi: 10.1111/nph.16984
CrossRef Google Scholar
|
[67]
|
Lou Y, Sun H, Zhu C, Yang K, Li X, et al. 2022. PeVDE, a violaxanthin de-epoxidase gene from moso bamboo, confers photoprotection ability in transgenic Arabidopsis under high light. Frontiers in Plant Science 13: 927949 doi: 10.3389/fpls.2022.927949
CrossRef Google Scholar
|
[68]
|
Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143:113−34 doi: 10.1016/0005-2728(93)90134-2
CrossRef Google Scholar
|
[69]
|
Srivastava A, Guissé B, Greppin H, Strasser RJ. 1997. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1320:95−106 doi: 10.1016/S0005-2728(97)00017-0
CrossRef Google Scholar
|
[70]
|
Medina J, Catalá R, Salinas J. 2011. The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Science 180:3−11 doi: 10.1016/j.plantsci.2010.06.019
CrossRef Google Scholar
|
[71]
|
Zhao C, Zhang Z, Xie S, Si T, Li Y, et al. 2016. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology 171:2744−59 doi: 10.1104/pp.16.00533
CrossRef Google Scholar
|